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1 Group Theory

1.1 Permutations of a Set

Definition 1.1. Let X be a set. f : X → X is a bijection if ∀y ∈ X, there exists a unique x ∈ X, such that
f(x) = y.

Remark 1.2. We observe that f : X → X is bijective if and only if there exists g : X → X, such that f ◦ g =
g ◦ f = IdX . Such a mapping g is unique when it exists, denoted as f−1, the inverse mapping of f . We commonly
write S(X) or SX as the set of bijections from X to X, namely the set of permutations of X. Specifically,
Sn := S({1, . . . , n}).

Definition 1.3. Let G be a set, and we say that · is a binary operation on G if ∀x, y ∈ G, we have that x · y ∈ G.

1.2 Groups

Definition 1.4. A couple (G, ·), where G is a set and · is a binary operation on G, is called a group if the operation
· satisfies:

(1) Associativity: ∀g, h, f ∈ G, one has (g · h) · f = g · (h · f).

(2) Identity/neutral element: ∃e ∈ G, such that e · g = g · e = g, ∀g ∈ G.

(3) Inverse: ∀g ∈ G, ∃h ∈ G, such that g · h = h · g = e, i.e., every element in G has an inverse in G.

Remark 1.5. Suppose (G, ·) is a group with neutral element e and e′, we can see that e = e · e′ = e′, so that the
neutral element e is unique. We denote it by eG or 1G. Now take g ∈ G and suppose h and h′ are both inverse of g.
We can show that

h = h · eG = h · (g · h′) = h · g · h′ = (h · g) · h′ = eG · h′ = h′, (1)

and thus the inverse is also unique, denoted as h = g−1. When (G, ·) is a group, the group operation · can also be
called as group law or the multiplication on G.

Theorem 1.6. (1) Let (G, ·) be a group and g ∈ G, then (g−1)−1 = g.

(2) Take g, h ∈ G where (G, ·) is a group, then (g · h)−1 = h−1 · g−1.

Proof. (1) We can easily see that

g · g−1 = g−1 · g = eG =⇒ (g−1)−1 = g. (2)

(2) We can easily see that

(h−1 · g−1) · (g · h) = h−1 · (g−1 · g) · h = h−1 · eG · h = h−1 · h = eG, (3)

so we can conclude that (h−1 · g−1) = (g · h)−1.

Example 1.7. (1) (Z,+) is a group with neutral element 0, and inverse “n−1” = −n.

(2) (N,+) is not a group, because 1 ∈ N does not have an inverse in N for +.

(3) (R,+), (C,+), (Q,+) are groups.

(4) (R∗,×), (C∗,×), (Q∗,×) are groups, where K∗ = K \ {0}. We explicitly show that (Q∗,×) is a group. To see
this, take arbitrary elements a

b and c
d in Q∗ where a, b, c, d ∈ Z∗. Then a

b · c
d = ac

bd ∈ Q∗. Also, × is clearly

associative, 1 is the neutral element, and there exists the unique inverse element b
a ∈ Q∗ for any a

b ∈ Q∗.
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(5) (Z∗,×) is not a group, since 2 does not have an inverse in Z∗.

(6) Let X be a set, then (S(X), ◦) is a group. Indeed, ◦ satisfies associativity, the neutral element is IdX , and the
inverse of a mapping f is f−1. It suffices to validate that ◦ is a binary operation. Indeed, we have that

(f ◦ g) ◦ (g−1 ◦ f−1) = f ◦ (g ◦ g−1) ◦ f−1 = f ◦ f−1 = IdX , (4)

and similarly (g−1 ◦ f−1) ◦ (f ◦ g) = IdX . This means that f ◦ g is a bijection when f and g are both bijections,
and thus ◦ is a binary operator.

(7) (Mn,m(K),+) is a group, K = R,C,Q.

(8) Let GLn(K) := {invertible matrices in Mn(K)}, then (GLn(K),×) is a group, K = R,C,Q.

Definition 1.8. A group (G, ·) is called commutative or abelian if ∀g, h ∈ G, g · h = h · g.

Example 1.9. (1) (Z,+), (R∗,×), (C∗,×), (Q∗,×) are abelian groups.

(2) (Mn,m(K),+) is an abelian group, K = R,C,Q.

(3) (GLn(K),×) is not commutative for n ≥ 2, K = R,C,Q. Clearly high-dimensional matrix multiplication is
not commutative.

(4) (S(X), ◦) is not commutative for |X| ≥ 3.
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1.3 Subgroups

Definition 1.10. Let (G, ·) be a group and let H ⊆ G. Then H is a subgroup of G if:

(1) eG ∈ H.

(2) ∀x, y ∈ H, x · y ∈ H.

(3) ∀x ∈ H, x−1 ∈ H.

Often, one writes G instead of (G, ·G) and H instead of (H, ·H). We denote the subgroup relation by H ≤ G.

Remark 1.11. We can easily observe the following. If (G, ·G) is a group and H ≤ G, then (H, ·G) is a group,
eH = eG, and the inverse of an element in H is equal to its inverse in G. These follow trivially from the definition,
the uniqueness of neutral element, and the uniqueness of inverse.

Example 1.12. (1) (R,+) ≤ (C,+). Indeed, we can check that 0 ∈ R where 0 is the neutral element of (C,+).
Also, ∀x, y ∈ R, x+ y ∈ R and −x ∈ R.

(2) C∗ is not a subgroup of C, since the neutral element of C, 0, is not in C∗.

(3) For a ∈ Z, aZ := {ak; k ∈ Z} is a subgroup of Z.

(4) For any group G, {eG} and G are clearly subgroups of G. {eG} is called the trivial subgroup of G.

Example 1.13. K = Q,R,C, and let GLn(K) = {invertible matrices in Mn(K)}. Set

SLn(K) = {M ∈ GLn(K); det(H) = 1} , (5)

On(K) =
{
M ∈ GLn(K); M⊤M = In

}
. (6)

(1) Show that SLn(K) ≤ GLn(K). Indeed, the neutral element of GLn(K) is the n-dimensional identity matrix
In. Clearly det(In) = 1, so that In ∈ SLn(K). Moreover, taking arbitrary A,B ∈ SLn(K), we have that
det(AB) = det(A) det(B) = 1 and det(A−1) = (det(A))−1 = 1, so that AB,A−1 ∈ SLn(K). The proof is done.
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(2) Show that On(K) ≤ SLn(K). Indeed, we have checked that the neutral element of SLn(K) is In, and clearly
I⊤n In = In. Therefore, In ∈ On(K). Moreover, taking arbitrary A,B ∈ On(K), we have that (AB)⊤AB =
B⊤(A⊤A)B = B⊤B = In. Since A⊤A = In, we have that A−1 = A⊤. Taking transpose on both sides, we
can see that (A−1)⊤ = (A⊤)⊤ = A. By multiplying A−1 from the right on both sides, we can conclude that
(A−1)⊤A−1 = AA−1 = In. The proof is done.

Lemma 1.14. Let (G, ·) be a group. If K ≤ G and H ≤ K, then H ≤ G.

Proof. We have observed that the neutral element of a group and its subgroup is the same, so that eH = eK = eG ∈ H.
Now take arbitrary x, y ∈ H, we have that x · y ∈ H and x−1 ∈ H because H ≤ K (for the inverse it is important to
also note that the inverse of x in H and G are equal). Therefore it follows that H ≤ G, and the proof is complete.

Lemma 1.15. If K ≤ G, H ≤ G, and H ⊆ K, then H ≤ K.

Proof. Similar to above, we can see that eH = eG = eK ∈ H. Take arbitrary x, y ∈ H, then x · y ∈ H and x−1 ∈ H
because H ≤ G. Therefore it follows that H ≤ K, and the proof is complete.

Proposition 1.16. Let (G, ·) be a group and Hi ≤ G, ∀i ∈ I, where I is a (possibly infinite) indexing set. Then⋂
i∈I Hi ≤ G.

Proof. We have that eG ∈ Hi, ∀i ∈ I, so that eG ∈
⋂

i∈I Hi. Moreover, taking arbitrary x, y ∈
⋂

i∈I Hi, x, y ∈ Hi,
∀i ∈ I. Then x · y, x−1 ∈ Hi, ∀i ∈ I. This implies that x · y, x−1 ∈

⋂
i∈I Hi, so the proof is complete.

1.4 Groups Generated by a Subset

Definition 1.17. Let (G, ·) be a group and S ⊆ G. One sets

⟨S⟩ =
⋂

H≤G,S⊆H

H = {intersection of all subgroups containing S} , (7)

where ⟨S⟩ is called the subgroup generated by S.

Remark 1.18. We observe that ⟨S⟩ ≤ H by the previous proposition, and ⟨S⟩ is in fact the smallest subgroup of G
containing S.

Lemma 1.19. Let (G, ·) be a group and H ≤ G. Then S ⊆ H if and only if ⟨S⟩ ⊆ H.

Proof. =⇒ H is a subgroup of G containing S, and ⟨S⟩ is the smallest subgroup of G containing S. Therefore,
⟨S⟩ ⊆ H trivially. In fact, ⟨S⟩ ≤ H by Proposition 1.16.

⇐= Clearly, S ⊆ ⟨S⟩ so this direction is trivial.

Proposition 1.20. Let (G, ·) be a group and S ⊆ G, then

⟨S⟩ = {eG} ∪ {sϵ11 . . . sϵnn ; n ∈ N∗, ϵi = ±1, si ∈ S} . (8)

Proof. ⊆ Denote the right-hand side by A. We need to check that A is a subgroup of G containing S, so it will
definitely contain the smallest subgroup of G containing S, i.e., ⟨S⟩. Clearly for each s ∈ S, we can take n = 1
and s = sϵ11 with s1 = s and ϵ1 = 1, so S ⊆ A. Now it suffices to check that A ≤ G. By definition eG ∈ A. Take
arbitrary a, b ∈ A, we can see that a · b ∈ A. This can be discussed in two cases. If one of the elements is eG,
then the product is simply the other element. Otherwise, the two sequences of products can be concatenated
into a longer sequence of product, still falling into A. Finally a−1 ∈ A, because clearly e−1

G = eG ∈ A, and for
any other element, we can simply revert the signs of the ϵi’s which falls back to A. Thus we have shown that
A is a subgroup of G containing S, and this direction is done.

⊇ Since ⟨S⟩ ≤ G, we have that eG ∈ ⟨S⟩. Moreover, each si ∈ S, so all their inverses and all possible products of
their inverses and themselves are in ⟨S⟩. This direction is thus done.
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1.5 Group Homomorphisms

Definition 1.21. Let (G, ·) and (G′, ∗) be two groups. A mapping f : G → G′ is called a group homomorphism
if f(x · y) = f(x) ∗ f(y), ∀x, y ∈ G.

Remark 1.22. If f : G → G′ is a group isomorphism, then f(e) = e′. Indeed, we can see that f(e) = f(e · e) =
f(e) ∗ f(e). Multiplying on the left by (f(e))−1 on both sides of the equation, we have that e′ = f(e). Moreover,
f(x−1) = (f(x))−1, ∀x ∈ G. Indeed, we can see that e′ = f(e) = f(x · x−1) = f(x) ∗ f(x−1), so f(x−1) = (f(x))−1.

Remark 1.23. We denote the set of homomorphisms from G to G′ by Hom(G,G′). We further define the set of
endomorphisms on G to be End(G) := Hom(G,G), the homomorphisms from G to iteself. For f ∈ Hom(G,G′), if
it is furthermore bijective, we say that f ∈ Iso(G,G′), the set of isomorphisms from G to G′. In what follows, we
write the group law · for abstract groups. In particular, writing (G, ·) and (G′, ·) does not mean that ·G = ·G′ . It is
an abuse of notation and may sometimes be omitted.

Example 1.24. (1) det : GLn(K) → K∗ belongs to Hom(GLn(K),K∗). Indeed, det(AB) = det(A) det(B).

(2) For a fixed a ∈ Z, the mapping ma : Z → Z such that x 7→ ax, belongs to End(Z). Indeed, ma(x + y) =
a(x+y) = ax+ay = ma(x)+ma(y). Check that End(Z) = {ma; a ∈ Z}. Check that if f ∈ End(Z), then
f = mf(1).

(3) If G and G′ are groups, then the trivial isomorphism 1G,G′ : G → G′ defined by 1G,G′(x) = e′, ∀x ∈ G, is a
group homomorphism from G to G′. In particular, Hom(G,G′) ̸= ∅ because it always contains 1G,G′ .

(4) IdG,G′ : x 7→ x is a endomorphism of G. In particular, End(G) contains at least two elements 1G,G and IdG as
long as G ̸= {e}.

Proposition 1.25. If f1 ∈ Hom(G1, G2) and f2 ∈ Hom(G2, G3), then f2 ◦ f1 ∈ Hom(G1, G3).

Proof. Take arbitrary x, y ∈ G1, then we have that

(f2 ◦ f1)(x · y) = f2(f1(x · y)) = f2(f1(x) · f1(y)) = f2(f1(x)) · f2(f1(y)) = (f2 ◦ f1)(x) · (f2 ◦ f1)(y), (9)

so the proof is complete.

Proposition 1.26. For f ∈ Hom(G,G′), if H ≤ G and H ′ ≤ G′, then f(H) ≤ G′ and f−1(H ′) ≤ G.

Proof. Since e ∈ H, e′ = f(e) ∈ f(H). Take arbitrary x′, y′ ∈ f(H), then there exists x, y ∈ H, such that f(x) = x′

and f(y) = y′. Clearly (x′)−1 = (f(x))−1 = f(x−1) ∈ f(H) because x−1 ∈ H. Also, x′ · y′ = f(x) · f(y) = f(x · y) ∈
f(H) because x · y ∈ H. Up till now we have shown that f(H) ≤ G. Similarly, since e′ = f(e) ∈ H ′, e ∈ f−1(H ′).
Take arbitrary x, y ∈ f−1(H ′), then f(x), f(y) ∈ H ′. Clearly x−1 ∈ f−1(H ′) because f(x−1) = (f(x))−1 ∈ H ′. Also,
x · y ∈ f−1(H ′) because f(x · y) = f(x) · f(y) ∈ H ′. Now we have also shown that f−1(H ′) ≤ G, so the proof is
complete.

Definition 1.27. For f ∈ Hom(G,G′), one sets Ker(f) := {x ∈ G; f(x) = e′} = f−1({e′}) as the kernel of f , and
Im(f) := f(G) as the image of f .

Example 1.28. (1) Im(det) = K∗ and Ker(det) = SLn(K), where det ∈ Hom(GLn(K),K∗). Recall that SLn(K)
is given by SLn(K) = {M ∈ GLn(K); det(H) = 1}.

(2) Im(exp) = R>0 and Ker(exp) = {0}, where exp ∈ Hom(R,R>0) is the real exponential mapping.

(3) Im(exp) = C∗ and Ker(exp) = 2iπZ, where exp ∈ Hom(C,C∗) is the complex exponential mapping.
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Proposition 1.29. If f ∈ Hom(G,G′), then Ker(f) ≤ G and Im(f) ≤ G′.

Proof. This is a direct consequence of Proposition 1.26.

Proposition 1.30. If f ∈ Hom(G,G′), then f is injective if and only if Ker(f) = {e}, and f is surjective if and only
if Im(f) = G.

Proof. The second point is obvious, so we only prove the first point. If f is injective, then there can only be a unique
element mapped to e′. Since f(e) = e′, we have that Ker(f) = {e}. Conversely assume that Ker(f) = {e}. Take
arbitrary x, y ∈ G such that f(x) = f(y), then f(x · y−1) = f(x) · (f(y))−1 = e′. This implies that x · y−1 = e since
Ker(f) = {e}. But then by uniqueness of inverse, x = y, so f is indeed injective.

Proposition 1.31. If f ∈ Iso(G,G′), then f−1 ∈ Iso(G′, G).

Proof. Take arbitrary x′, y′ ∈ G′, then since f is a bijection, we can set x = f−1(x′) and y = f−1(y′). Then
f−1(x′ · y′) = f−1(f(x) · f(y)) = f−1(f(x · y)) = x · y = f−1(x′) · f−1(y′), which implies that f−1 ∈ Hom(G′, G).
Clearly f−1 is a bijection because f is a bijection, so f−1 ∈ Iso(G′, G) and the proof is complete.

Definition 1.32. We say that two groups G and G′ are isomorphic if Iso(G,G′) ̸= ∅.

Example 1.33. The real exponential mapping exp : R → R>0 belongs to Iso(R,R>0). This amounts to say that
studying (R>0,×) as a group is equivalent to studying (R,+) as a group, which is more familiar.
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1.6 Automorphisms

Definition 1.34. Let Aut(G) := Iso(G,G). We call an element in Aut(G) an automorphism of G.

Proposition 1.35. We have that (Aut(G), ◦) ≤ (S(G), ◦).

Proof. Clearly the neutral element IdG ∈ Aut(G). Take arbitrary f, g ∈ Aut(G), then f ◦ g ∈ Aut(G) by Proposi-
tion 1.25 since automorphism are homomorphisms. Also, f−1 ∈ Aut(G) by Proposition 1.31 since automorphisms
are isomorphisms. Therefore (Aut(G), ◦) ≤ (S(G), ◦), so the proof is complete.

Example 1.36. Aut(Z) = {m1,m−1} = {±IdZ}. Indeed, ∀m ∈ Z, we have that f(m) = f(1) + . . .+ f(1) = f(1)m,
which means that any f ∈ Aut(Z) must be such that m 7→ f(1)m. Now f must also be bijective. Suppose f(1)m = 1,
then since f(1),m ∈ Z, the only possibilities are f(1) = ±1. Therefore, either m 7→ m or m 7→ −m, and we can
check that they are indeed automorphisms of Z.

Remark 1.37. For x in a group G, we define ιx : G → G, such that g 7→ x · g · x−1. Then for x ∈ G, we can see
that ιx ∈ Aut(G). Indeed, take arbitrary f, g ∈ G, we have that

ιx(f · g) = x · (f · g) · x−1 = x · f · (x−1 · x) · g · x−1 = (x · f · x−1) · (x · g · x−1) = ιx(f) · ιx(g). (10)

To see that ιx is bijective, we claim that ιx−1 is its inverse. Indeed, we can see that

(ιx ◦ ιx−1)(f) = ιx(ιx−1(f)) = ιx(x
−1 · f · x) = x · (x−1 · f · x) · x−1 = f, ∀f ∈ G. (11)

The case is the same for ιx−1 ◦ ιx, both equal to IdG. This implies that ιx is bijective, and an automorphism of G.

Remark 1.38. The mapping ι : G → Aut(G) such that x 7→ ιx is a group homomorphism. Indeed, take arbitrary
x, y ∈ G, we can check that

ι(x · y)(g) = ιx·y(g) = (x · y) · g · (x · y)−1 = x · (y · g · y−1) · x−1

= x · ιy(g) · x−1 = ιx(ιy(g)) = (ιx ◦ ιy)(g) = (ι(x) ◦ ι(y))(g), ∀g ∈ G. (12)
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Definition 1.39. We set Inn(G) := ι(G). An element in Inn(G) is called an inner automorphism of G. We call
ιx the conjugation by x.

Definition 1.40. Two elements x, y ∈ G are said to be conjugate if there exists g ∈ G, such that y = ιg(x) = gxg−1.

Proposition 1.41. Conjugation on the group G, denoted ∼, is an equivalence relation.

Proof. We have that ιx(x) = xxx−1 = x so x ∼ x, which means that conjugation is reflexive. If x ∼ y and y ∼ z,
we assume that y = ιf (x) and z = ιg(y). Then x = ι−1

f (y) = ιf−1(y) so y ∼ x, which means that conjugation is
symmetric. Moreover, z = ιg(ιf (x)) = ιgf (x) so x ∼ z, which means that conjugation is transitive. These three
properties show that conjugation on the group G is an equivalence relation.

Remark 1.42. We denote by ClG(x) the conjugacy class of x in G.

Lemma 1.43. Take σ and c =
(
a1 . . . am

)
in Sn. Then

σ ◦ c ◦ σ−1 = ισ(c) =
(
σ(a1) . . . σ(am)

)
. (13)

Proof. Note that c here is a specific type of permutation where elements are cyclically permuted within the cycle,
and all other elements are fixed. There are thus two cases.

• If x /∈ {σ(a1), . . . , σ(am)}, then σ−1(x) /∈ {a1, . . . , am}. Therefore, σ−1(x) remain fixed when permuted, i.e.,
c(σ−1(x)) = σ−1(x). This means that (σ ◦ c ◦ σ−1)(x) = σ(σ−1(x)) = x. Indeed, in this case x should be fixed
under the cyclic permutation

(
σ(a1) . . . σ(am)

)
, so we are done.

• If x ∈ {σ(a1), . . . , σ(am)}, then σ−1(x) ∈ {a1, . . . , am}. Therefore, σ−1(x) will be cyclically permuted within the
cycle

(
a1 . . . am

)
. Suppose x = σ(ai), 1 ≤ i ≤ m− 1. Then (σ ◦ c ◦ σ−1)(x) = σ(c(ai)) = σ(ai+1). Indeed,

x = σ(ai) will be cyclically permuted as σ(ai+1) under
(
σ(a1) . . . σ(am)

)
when 1 ≤ i ≤ m. Otherwise,

x = σ(am). Then (σ ◦ c ◦ σ−1)(x) = σ(c(am)) = σ(a1). Indeed, x = σ(am) will be cyclically permuted as σ(a1)
under

(
σ(a1) . . . σ(am)

)
. We have checked all cases up till now, so the proof is complete.
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1.7 Normal Subgroups

Definition 1.44. Let (G, ·) be a group and H ≤ G. One says that H is a normal subgroup of G and writes
H ⊴ G, if xhx−1 ∈ H for all x ∈ G and h ∈ H. An equivalent formulation of the definition is that ιx(H) ⊆ H for
all x ∈ G.

Remark 1.45. Let H ≤ G, then H ⊴ G if and only if ιx(H) = H for all x ∈ G. Indeed, if ιx(H) = H necessarily
means that ιx(H) ⊆ H, so the ⇐= direction is trivial. For the other direction, suppose that H ⊴ G, then ιx(H) ⊆ H
for all x ∈ G. But then x−1 ∈ G, so that ι−1

x (H) = ιx−1(H) ⊆ H. Hence H ⊆ ιx(H), so the proof is complete.

Proposition 1.46. If f ∈ Hom(G,G′) and H ′ ⊴ G′, then f−1(H ′) ⊴ G.

Proof. We want to show that xhx−1 ∈ f−1(H ′) for all x ∈ G and h ∈ f−1(H ′). To see this, we observe that

f(xhx−1) = f(x)︸︷︷︸
∈G′

f(h)︸︷︷︸
∈H′

f(x−1)︸ ︷︷ ︸
∈G′

∈ H ′︸ ︷︷ ︸
since H′ ⊴ G′

. (14)

Therefore, xhx−1 ∈ f−1(H ′) for all x ∈ G and h ∈ f−1(H ′), so the proof is complete.
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Corollary 1.47. If f ∈ Hom(G,G′), then Ker(f) ⊴ G.

Proof. We check that {e′} ⊴ G′. Indeed, xe′x−1 = xx−1 = e′ ∈ {e′} for all x ∈ G′. Now since Ker(f) = f−1({e′}),
we can conclude directly by Proposition 1.46.

Example 1.48. Since det ∈ Hom(GLn(K),K∗), and SLn(K) = Ker(det), we have that SLn(K) ⊴ GLn(K).

Definition 1.49. For (G, ·) a group, we denote by Z(G) or ZG the set Z(G) = {z ∈ G; xz = zx, ∀x ∈ G}, called
the center of G. It is the subset of G the elements of which commute with all x ∈ G.

Proposition 1.50. Z(G) ≤ G and if H ≤ Z(G), then H is commutative and H ⊴ G. In particular, Z(G) ⊴ G.

Proof. Clearly e ∈ Z(G) because ex = xe = x for any x ∈ G. Now take arbitrary z, z1, z2 ∈ Z(G), then for any
x ∈ G, we have that

xz−1 = (z−1z)(xz−1) = z−1(zx)z−1 = z−1(xz)z−1 = (z−1x)(zz−1) = z−1x, (15)

x(z1z2) = (xz1)︸ ︷︷ ︸
∈G

z2 = z2(xz1) = (z2x)︸ ︷︷ ︸
∈G

z1 = z1(z2x) = (z1z2)x. (16)

Therefore, we have shown that Z(G) ≤ G. Now further assume that H ≤ Z(G). Now for any h1, h2 ∈ H, clearly
h1, h2 ∈ Z(G), and thus h1h2 = h2h1 which implies that H is commutative. Furthermore, take arbitrary h ∈ H and
x ∈ G, we can see that xhx−1 = (xh)x−1 = (hx)x−1 = h ∈ H, indicating that H is stable under G-conjugation, and
hence H ⊴ G. The proof is thus complete. Note that in particular, Z(G) ≤ Z(G) so that Z(G) ⊴ G.

Remark 1.51. A group G is commutative if and only if G = Z(G). The ⇐= direction is trivial, since then for
all x ∈ G, it commutes with all z ∈ G, meaning that xz = xz for all x, z ∈ G. The other direction is also trivial.
Assume that G is commutative, then for any x ∈ G, xz = zx for any z ∈ G so x ∈ Z(G). Clearly Z(G) ⊆ G, and
thus Z(G) = G and the proof is complete.

Corollary 1.52. If A is a commutative group, then all its subgroups are normal.

Remark 1.53. We can show that Z(G) = Ker(ι), where we recall that ι : G → Inn(G) such that x 7→ ιx. Indeed,
for any z ∈ Z(G), we have that zx = xz for all x ∈ G. Then ι(z)(x) = ιz(x) = zxz−1 = xzz−1 = x for all x ∈ G,
meaning that ι(z) = IdG, the neutral element in Inn(G). Hence z ∈ Ker(ι), implying that Z(G) ⊆ Ker(ι). On the
other hand, for any z ∈ Ker(ι), we have that ι(z) = IdG. This means that for any x ∈ G, we have

x = ι(z)(x) = ιz(x) = zxz−1 =⇒ xz = zx. (17)

Hence z ∈ Z(G), and thus Ker(ι) ⊆ Z(G). Both directions of inclusion hold, so Z(G) = Ker(ι).

Remark 1.54. We can show that Inn(G) ⊴ Aut(G). Indeed, for any f ∈ Inn(G) and g ∈ Aut(G), we can write
f = ιz for some z ∈ G. Then for any x ∈ G, we have that

(g ◦ ιz ◦ g−1)(x) = g(ιz(g
−1(x))) = g(g−1(x)z(g−1(x))−1)

= g(g−1(x)z g−1(x−1)︸ ︷︷ ︸
g∈Aut(G)

) = g(g−1(x))g(z)g(g−1(x−1))︸ ︷︷ ︸
g∈Aut(G)

= xg(z)x−1 = ιg(z)(x), (18)

which implies that g ◦ ιz ◦ g−1 = ιg(z) ∈ Inn(G). Clearly Inn(G) ≤ Aut(G), so that Inn(G) ⊴ Aut(G).

1.8 Quotient Groups

Remark 1.55. Let X be a set and ∼ be an equivalence relation on X, then we denote by Cl(x) = {y ∈ X; y ∼ x}
the equivalence class of x. We recall that for x, x′ ∈ X, either Cl(x) ∩ Cl(x′) = ∅ or Cl(x) = Cl(x′). Hence the
equivalence classes form a partition of X.
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Definition 1.56. We denote by X
∼ the set of classes for ∼, which is called the quotient set of X by ∼. For each

C ∈ X
∼ , we pick on element xC ∈ C (hence C = Cl(xC)), then the set R =

{
xC ; C ∈ X

∼
}

is called the set of
representatives for ∼. In particular X is the disjoint union X =

⊔
x∈R Cl(x).

Remark 1.57. A subset R ⊆ X is a set of representatives for ∼ if and only if the mapping Cl : R → X
∼ is a bijection.
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Remark 1.58. Let G be a group. For A ⊆ G and x, y ∈ G, we set the notations xAy = {xay; a ∈ A}, xA = xAe =
{xa; a ∈ A}, and Ay = eAy = {ay; a ∈ A}. From now on, H ≤ G.

Proposition 1.59. The relations yH ∼ x ⇐⇒ y ∈ Hx and y ∼H x ⇐⇒ y ∈ xH are equivalence relations on G.

Proof. We prove that H ∼ is an equivalence relation on G, and the proof for ∼H would be analogous. First, we have
that x = ex ∈ Hx so xH ∼ x, which means that H ∼ is reflexive. Second, if xH ∼ y, then there exists h ∈ H such
that y = hx. Then x = h−1y where h−1 ∈ H because H is a subgroup. Therefore, x ∈ Hy and thus yH ∼ x, which
means that H ∼ is symmetric. Finally, if xH ∼ y and yH ∼ z, then there exists h1, h2 ∈ H such that y = h1x and
z = h2y. Hence z = h2(h1x) = (h2h1)x where h2h1 ∈ H because H is a subgroup. Therefore, z ∈ Hx and thus
xH ∼ z, which means that H ∼ is transitive. Now we can conclude that H ∼ is an equivalence relation on G.

Remark 1.60. Note that xH is the equivalence class ClH(x) = {y ∈ G; yH ∼ x}, and Hx is the equivalence class

HCl(x) = {y ∈ G; yH ∼ x}.

Definition 1.61. We call xH the right H-coset of x, and Hx the left H-coset of x. We denote by G/H the set
of right H-cosets G/H = G

∼H
and H\G the set of left H-cosets H\G = G

H∼ .

Example 1.62. Define inv : G → G by inv(x) = x−1. We can easily see that inv ◦ inv = Id, and we can check that
inv(xH) = Hx−1 and inv(Hx) = x−1H. We want to show that inv induces a bijection between G/H and H\G.
Indeed, invH : xH 7→ inv(xH) = Hx−1 is a mapping from G/H to H\G, and invH : Hx 7→ inv(Hx) = x−1H is a
mapping from H\G to G/H. Moreover, invH and invH are inverses of each other.

Lemma 1.63. For all x ∈ G, the mapping lx : G → G such that g 7→ xg induces a bijection between H and xH,
and the mapping rx : G → G such that g 7→ gx induces a bijection between H and Hx.

Proof. We only prove for lx, then rx would be analogous. Indeed, the mapping lx : G → G is bijective with inverse
lx−1 , and moreover xH = lx(H), so the proof is trivial.

Corollary 1.64. If |H| < ∞, then |xH| = |H| and |Hx| = |H| for all x ∈ H.

Theorem 1.65 (Lagrange’s theorem). Let G be a group and H ≤ G be a subgroup of G. If G is finite, then |H|
divides |G| and |G| = |G/H| × |H|, and also |G| = |H\G| × |H|.

Proof. Let R ⊆ G be a set of representatives of G/H = G
∼H

, then G =
⊔

r∈R rH. Therefore, |G| =
∑

r∈R |rH|. But
by Corollary 1.64, we have that |rH| = |H|, and as a result |G| = |R| × |H|. This implies that |H| divides |G|, and
moreover we conclude the result by observing that |R| = |G/H|. The other result follows an analogous proof and
will not be explicitly shown here.

Remark 1.66. If G is a finite group with prime cardinality p, then G = ⟨x⟩ for any x ̸= e in G. Indeed by Lagrange’s
theorem (Theorem 1.65), we know that | ⟨x⟩ | divides |G| because ⟨x⟩ ≤ G, but since |G| is prime, either | ⟨x⟩ | = 1
or | ⟨x⟩ | = |G| = p. However | ⟨x⟩ | ≥ 2 because it at least contains the neutral element e and x ̸= e. Therefore, we
can conclude that G = ⟨x⟩ because ⟨x⟩ ⊆ G but both have the same cardinality.

9/18 Lecture
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Lemma 1.67. Let H ≤ G, then the following are equivalent.

(1) H ⊴ G.

(2) gHg−1 = H for all g ∈ G.

(3) gH = Hg for all g ∈ G.

Proof. We first argue that (1) and (2) are equivalent. (2) implies (1) by definition. Now assume that H ⊴ G, so that
gHg−1 ⊆ H for all g ∈ G. Taking g−1 ∈ G, we also have that g−1Hg ⊆ H for all g ∈ G, which necessarily means
that H ⊆ gHg−1. With both inclusions, we can conclude that gHg−1 = H for all g ∈ G and thus (1) implies (2) as
well. Now we move on to show that (2) is equivalent to (3). Indeed, multiplying by g on the right of (2) gives (3),
and multiplying by g−1 on the right of (3) gives (2). In conclusion, the three statements are all equivalent, and the
proof is complete.

Remark 1.68. In particular, if H ⊴ G, then G/H = H\G. By convention, we denote G
H := G/H = H\G, and we

set g for gH = Hg ∈ G
H .

Lemma 1.69. Suppose that H ⊴ G, then the multiplication mapping m : G
H × G

H → G
H , such that m(x, y) = xy is

well-defined.

Proof. It suffices to check that if x′ = x and y′ = y, then x′y′ = xy. By assumption, there exists x′ = xh for some
h ∈ H and y′ = yk for some k ∈ H. As a result, we can see that x′y′ = xhyk = x(yy−1)hyk = xy((y−1hy)k). Note
that since H ⊴ G, we have that y−1hy ∈ H because y ∈ G

H ⊆ G. Hence x′y′ = xy and the proof is complete.

Remark 1.70. From the previous lemma, we can see that it makes sense to put g · g′ = gg′.

Theorem 1.71. If H ⊴ G, then
(
G
H , ·

)
is a group with neutral element e = H.

Proof. This is trivial by previous observations and will be omitted here.

Proposition 1.72. If H ⊴ G, then the canonical projection/surjection p : G → G
H defined by p(g) = g, is a

surjective homomorphism with kernel Ker(p) = H.

Proof. Since p(xy) = xy = x · y = p(x)p(y), clearly p is a homomorphism. The surjectivity of p is trivial. Now if
x ∈ Ker(p), then p(x) = e = H. Necessarily x ∈ H, since otherwise x has at least an element not in H. On the other
hand, if x ∈ H, then p(x) = x = H = e, so that x ∈ Ker(p). By both directions of inclusion, we can conclude that
Ker(p) = H, and the proof is complete.

Corollary 1.73. If H = {e}, then p is an isomorphism between G and G
{e} .

Proof. By the previous proposition, p is a surjective homomorphism with Ker(p) = H, so that Ker(p) = {e}, which
necessarily means that p is injective as well. Therefore, p is bijective and thus an isomorphism. The proof is now
complete.

9/20 Lecture

Example 1.74. We recall that if G is commutative, then all its subgroups are normal. Also, we recall from recitations
that the subgroups of Z are the groups nZ, n ∈ N. We can see that

Z
nZ

{
≃ Z, if n = 0,

=
{
0, . . . , n− 1

}
, if n ≥ 1.

(19)

In the case n ≥ 1, we have that
∣∣ Z
nZ

∣∣ = 1, and R = {0, . . . , n− 1} is a system of representatives for Z
nZ .
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Theorem 1.75 (First isomorphism theorem). For f ∈ Hom(G,G′) and p : G → G
Ker(f) the canonical projection,

there exists a unique f : G
Ker(f) → G′, such that f = f ◦ p, i.e., such that the following diagram commutes.

G G′

G
Ker(f)

f

p
f

Moreover, f ∈ Hom
(

G
Ker(f) , G

′
)
and is injective.

Proof. If f = f ◦ p and x = p(x) ∈ G
Ker(f) , then the relation f(x) = f(p(x)) = (f ◦ p)(x) = f(x) shows that f is

unique if it exists. Therefore, it suffices to prove that such f exists, i.e., to check that the mapping f : G
Ker(f) → G′

such that x 7→ f(x) is well-defined. Indeed, if x′ = x, then there exists k ∈ Ker(f), such that x′ = xk. As a
consequence, f(x′) = f(xk) = f(x)f(k) = f(x) because f is a homomorphism and k is in the kernel. This proves
that f is well-defined. Now we prove that f is a group homomorphism. For any x, x′ ∈ G

Ker(f) , we have that

f(x · x′) = f(xx′) = f(xx′) = f(x)f(x′)︸ ︷︷ ︸
f∈Hom(G,G′)

= f(x)f(x′), (20)

so indeed f ∈ Hom
(

G
Ker(f) , G

′
)
. Finally if x ∈ Ker(f), we have that f(x) = e′ ∈ G′. This means that f(x) = e′, so

x ∈ Ker(f). Note again that the quotient space is G
Ker(f) , and thus x = e. Therefore, Ker(f) ⊆ {e}. But e ∈ Ker(f),

so necessarily Ker(f) = {e}, which implies that f is injective, so the proof is complete.

Corollary 1.76. The mapping f induces an isomorphism between G
Ker(f) and Im(f) = f(G). In other words,

G

Ker(f)

f
≃ Im(f). (21)

In particular for finite G, we have that |G| = |Ker(f)| × |Im(f)|.

Proof. This is a direct consequence of the first isomorphism theorem (Theorem 1.75), i.e., the quotient space of G
divided by Ker(f) is isomorphic to Im(f) if f is a group homomorphism from G. Moreover if G is finite, we have

that |G|/|Ker(f)| =
∣∣∣ G
Ker(f)

∣∣∣ = |Im(f)| by the Lagrange’s theorem (Theorem 1.65), and thus |G| = |Ker(f)|×|Im(f)|.
The proof is now complete.

Theorem 1.77. Let G be a cyclic group, i.e., a group generated by one element, up to isomorphism. Then there
exists a unique n ∈ N, such that G ≃ Z

nZ . If n = 0 then G ≃ Z is infinite, and if otherwise n ≥ 1, G is finite of
cardinality n.

Proof. Let G = ⟨x⟩, then the mapping f : Z → G, defined by f(k) = xk, is a surjective homomorphism. Indeed, we
have that f(k1+k2) = xk1+k2 = xk1xk2 = f(k1)f(k2) for any k1, k2 ∈ Z and f is clearly surjective. Since Ker(f) ≤ Z,
it is of the form nZ. Therefore by Corollary 1.76 and surjectivity of f , we can conclude that Z

nZ = Z
Ker(f) = Im(f) = G.

The rest of the theorem holds by Example 1.74, so the proof is complete.

Example 1.78. (1) For n ≥ 1, we check that Z
nZ ≃ Un := {z ∈ C; zn = 1}. Consider the mapping ϕ : Z → Un,

such that k 7→ (exp(i2π/n))k, which is a surjective homomorphism. Indeed, we have that ϕ(k1 + k2) =
(exp(i2π/n))k1+k2 = (exp(i2π/n))k1(exp(i2π/n))k2 = ϕ(k1)ϕ(k2) for any k1, k2 ∈ Z and ϕ is clearly surjective
because it maps to all powers of the nth root of unity. Since Ker(ϕ) ≤ Z, it is of the form nZ. Therefore by
Corollary 1.76 and surjectivity of ϕ, we can conclude that Z

nZ = Z
Ker(ϕ) ≃ Im(ϕ) = Un for some n ∈ N.
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(2) We check that R
Z ≃ Cu := {z ∈ C; |z| = 1}. Consider the mapping ϕ : R → Cu, such that x 7→ exp(i2πx), which

is a surjective homomorphism. Indeed, we have that ϕ(x1+x2) = exp(i2π(x1+x2)) = exp(i2πx1) exp(i2πx2) =
ϕ(x1)ϕ(x2) for any x1, x2 ∈ R and ϕ is clearly surjective because it maps to the whole unit circle. Now we
check that Ker(ϕ) = Z. Indeed, if x ∈ Ker(ϕ), we necessarily have that ϕ(x) = exp(i2πx) = 1, the rightmost
point of the unit circle in the complex plane. Hence 2πx ∈ 2πZ, i.e., x ∈ Z, which implies that Ker(ϕ) ⊆ Z.
The other direction of inclusion is trivial, so we can conclude that Ker(ϕ) = Z. Now by Corollary 1.76 and
surjectivity of ϕ, we can conclude that R

Z = Z
Ker(ϕ) ≃ Im(ϕ) = Cu.

(3) We check that GLn(K)
SLn(K) ≃ K∗. Recall that GLn(K) is the group of all n×n invertible matrices and SLn(K) is the

group of all n× n matrices with determinant 1 (and thus invertible). Consider the mapping det : GLn(K) →
K∗, which is a surjective homomorphism. Indeed, we have that det(M1M2) = det(M1) det(M2) for any
M1,M2 ∈ GLn(K) and det is clearly surjective because K∗ does not include 0 determinant and we can always
find invertible matrices with any non-zero determinant. Now recall that Ker(det) = SLn(K), which is trivial.

Therefore by Corollary 1.76 and surjectivity of det, we can conclude that GLn(K)
SLn(K) = GLn(K)

Ker(det) ≃ Im(det) = K∗.
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Lemma 1.79. Take f ∈ Hom(G,G′). If K ⊴ G′ then f−1(K) ⊴ G, whereas if H ⊴ G then f(H) ⊴ f(G).

Proof. For the first part, take arbitrary x ∈ f−1(K) and x′ ∈ G. Then we have that x ∈ G and thus x′x(x′)−1 ∈ G.
By arbitrariness of x and x′, we can conclude that f−1(K) ⊴ G. Now for the second part, take arbitrary y ∈ f(H)
and y′ ∈ f(G), there exists h ∈ H and g ∈ G such that y = f(h) and y′ = f(g). Then we have that y′y(y′)−1 =
f(g)f(h)(f(g))−1 = f(ghg−1) ∈ f(H) because f is a group homomorphism and H ⊴ G. Hence by arbitrariness of g
and h, we can conclude that f(H) ⊴ f(G). The proof is now complete.

Remark 1.80. Though H ⊴ G implies f(H) ⊴ f(G), it does not imply that f(H) ⊴ G′ in general.

Theorem 1.81. If f ∈ Hom(G,G′), then the mapping H 7→ f(H) is a bijection from the set {H; Ker(f) ≤ H ≤ G}
to the set {K; K ≤ Im(f)} of subgroups of Im(f), with inverse K 7→ f−1(K). Moreover, this bijection and its
inverse preserve normal subgroups.

Proof. Denote A = {H; Ker(f) ≤ H ≤ G} and B = {K; K ≤ Im(f)}. Also denote the mappings m : H 7→ f(H)
and n : K 7→ f−1(K). We want to show that m and n are bijective and are inverses of each other. First we show
that m ◦ n = IdB, i.e., for any K ∈ B, we claim that K = m(n(K)) = f(f−1(K)).

⊆ Fix arbitrary k ∈ K. Since K ≤ Im(f), we have that k ∈ Im(f), so by definition of image there exists x ∈ G
such that f(x) = k. Then by definition of preimage x ∈ f−1(K), and thus k = f(x) ∈ f(f−1(K)).

⊇ Fix arbitrary k ∈ f(f−1(K)), then there exists h ∈ f−1(K) such that k = f(h). By definition of preimage, we
can see that k = f(h) ∈ K.

Next we show that n ◦m = IdA , i.e., for any H ∈ A , we claim that H = n(m(H)) = f−1(f(H)).

⊆ Fix arbitrary h ∈ H, then f(h) ∈ f(H). By definition of preimage, h ∈ f−1(f(H)).

⊇ Fix arbitrary h ∈ f−1(f(H)), then f(h) ∈ f(H) by definition of preimage. This means that there exists h′ ∈ H,
such that f(h) = f(h′). Since f is a group homomorphism, we have that f(h(h′)−1) = f(h)(f(h′))−1 = e′, so
h(h′)−1 ∈ Ker(f). Since Ker(f) ≤ H, we have that h(h′)−1 ∈ H, and thus h ∈ Hh′ = {xh′; x ∈ H}. But we
claim that Hh′ = H.

⊆ Fix arbitrary h ∈ Hh′, then there exists x ∈ H such that h = xh′. But x ∈ H and h′ ∈ H, so h = xh′ ∈ H.

⊇ Fix arbitrary h ∈ H, then take x = h(h′)−1. Indeed x ∈ H since h ∈ H and h′ ∈ H, and clearly h = xh′

so that h ∈ Hh′.

Therefore, we can see that h ∈ Hh′ = H.

Up till now, we have shown that m ◦n = IdB and n ◦m = IdA , which prove that m and n are inverses of each other,
and thus automatically bijective. Moreover, they both preserve normal subgroups by Lemma 1.79, so the proof is
complete.
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Corollary 1.82 (Subgroups of quotients). Assume that N ⊴ G and p ∈ Hom
(
G, G

N

)
the canonical projection, then

the mapping H 7→ p(H) = H
N is a bijection from the set {H; N ≤ H ≤ G} to the set

{
K; K ≤ G

N

}
, with inverse

K 7→ p−1(K). Moreover, this bijection and its inverse preserve normal subgroups.

Proof. This is a direct consequence of the previous theorem by taking G = G and G′ = G
N . Note that Ker(p) = N .

Remark 1.83. In the corollary above, if N ≤ H, then automatically N ⊴ H because N ⊴ G. Hence H
N is indeed a

group.

Example 1.84. Take n ≥ 1, then we can check that the subgroups of Z
nZ are exactly those of the form dZ

nZ where
d ∈ D(n) = {d ∈ N∗; d | n}. First of all, if nZ ≤ H ≤ Z, then H must be of the form dZ because H ≤ Z and
necessarily d | n because it needs to contain all elements of nZ. Taking N = nZ and G = Z in Corollary 1.82, we
can see that the mapping m : {dZ; d ∈ D(n)} →

{
K; K ≤ Z

nZ
}
, such that dZ 7→ p(dZ) = dZ

nZ is a bijection. Clearly

all dZ
nZ with d ∈ D(n) would then be subgroups of Z

nZ . Moreover by the surjectivity of m, we can then see that for

any K ≤ Z
nZ , there exists dZ with d | n, such that K = m(dZ) = dZ

nZ . We can thus conclude that the subgroups of
Z
nZ are exactly those of the form dZ

nZ with d ∈ D(n).
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Proposition 1.85 (Digression on cyclic groups). A subgroup of a cyclic group is cyclic.

Proof. Let G be a cyclic group and assume that it is generated by a. Also let H be an arbitrary subgroup of G. If
H = {e}, then H = ⟨e⟩ and thus is cyclic so we are done. Therefore we assume that H ̸= {e}. This means that
an ∈ H for some n ∈ N∗. Let m be the smallest integer in N∗ such that am ∈ H, then we claim that H = ⟨am⟩. To
see this, we need to show that every b ∈ H is some positive integer power of am. Now since b ∈ H and H ≤ G, there
exists n ∈ N such that b = an. Then by Euclidean division property, there exists unique integers q and r such that
n = mq + r, with 0 ≤ r < m. Consequently, b = amq+r = (am)q · ar, and thus ar = b · (am)−q. We note that b ∈ H
and am ∈ H, so that ar ∈ H. But m is the smallest integer in N∗ such that am ∈ H, so necessarily r = 0 (otherwise
ar ∈ H with 0 < r < m leads to a contradiction). Therefore, each b can be written as b = (am)q, which means that
H = {am}. By arbitrariness of H, we can hence conclude that every subgroup of a cyclic group G is cyclic, and the
proof is complete.

Alternative proof. If G is cyclic, it is isomorphic to Z
nZ for some n ∈ N (Theorem 1.77). Hence, it is sufficient to prove

that the statement holds for subgroups H of Z
nZ . If n = 0, then Z

nZ ≃ Z, so any subgroup H must be of the form
H = mZ = ⟨m⟩ for some m ∈ N, thus being cyclic. Otherwise if n ≥ 1, we have just shown in a previous example
that any subgroup H must be of the form H = dZ

nZ =
〈
d
〉
for some d ∈ D(n), also being cyclic. The proof is thus

complete.

Example 1.86. We shall check that for d ∈ D(n), we have that dZ
nZ ≃ Z

n
d Z . How to do this?

Theorem 1.87 (Second isomorphism theorem). Take f ∈ Hom(G,G′), and fix N ⊴ G with N ⊆ Ker(f). If p is the
canonical projection from G to G

N , then there is a unique mapping f : G
N → G′ such that f = f ◦ p. Moreover, f is a

group homomorphism such that Im(f) = Im(f) and Ker(f) = Ker(f)
N .

Proof. If f exists, it is unique by the formula f(g) = f(p(g)) = (f ◦ p)(g) = f(g). Therefore, it suffices to prove
that such f exists, i.e., to check that the mapping f : G

N → G′ such that g 7→ f(g) is well-defined. Indeed, if

g′ = g, then there exists n ∈ N such that g′ = gn. As a consequence, f(g′) = f(gn) = f(g)f(n) = f(g) because
f is a homomorphism and n ∈ N ⊆ Ker(f). This proves that f is well-defined. Now we prove that f is a group
homomorphism. For any g, g′ ∈ G

N , we have that

f(g · g′) = f(gg′) = f(gg′) = f(g)f(g′)︸ ︷︷ ︸
f∈Hom(G,G′)

= f(g)f(g′), (22)
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so indeed f ∈ Hom
(
G
N , G′). Finally, Im(f) = Im(f) directly follows from the formula f(g) = f(g), and we note that

g ∈ Ker(f) ⇐⇒ f(g) = e′ ⇐⇒ f(g) = e′ ⇐⇒ g ∈ Ker(f) ⇐⇒ g ∈ Ker(f)

N
. (23)

This necessarily means that Ker(f) = Ker(f)
N , and the proof is now complete.

Corollary 1.88. With the same notations as in Theorem 1.87, we have that

G
N

Ker(f)
N

(f)
≃ Im(f). (24)

Proof. By the second isomorphism theorem (Theorem 1.87), we have that f ∈ Hom
(
G
N , G′). By Corollary 1.76, we

then have that

G
N

Ker(f)

(f)
≃ Im(f). (25)

Again by the second isomorphism theorem (Theorem 1.87), we have that Ker(f) = Ker(f)
N and Im(f) = Im(f), so

the proof is now complete by substituting these results into the relation above.

Corollary 1.89. Suppose that N and H are two normal subgroups of G with N ⊆ H, then H
N is a normal subgroup

of G
N and we have that

G
N
H
N

≃ G

H
. (26)

Proof. Since H is a normal subgroup of G, clearly H
N is a normal subgroup of G

N . Let f := pH be the canonical

projection from G to G
H . Then by the previous corollary we can conclude that

G
N
H
N

=
G
N

Ker(f)
N

≃ Im(f) =
G

H
. (27)

The proof is thus complete.

Example 1.90. If d ∈ D(n), then dZ and nZ are both normal subgroups of Z and nZ ⊆ dZ. Then dZ
nZ is a normal

subgroup of Z
nZ , and that

Z
nZ
dZ
nZ

≃ Z
dZ

. (28)

10/9 Lecture

1.9 Group Actions

Definition 1.91. Let G be a group and X be a set. One says that a map G×X → X defined by (g, x) 7→ g · x is a
group action if:

(1) e · x = x for all x ∈ X.

(2) g · (h · x) = (gh) · x for all g, h ∈ G and x ∈ X.

Example 1.92. (1) If V is a k-vector space, then GL(V ) acts on V by g · v = g(v).

(2) The group S(X) acts on X by σ · x = σ(x).

(3) If H ≤ G, the one can define at least three natural actions of H on G: the action by left translation
h ·1 g := hg, the action by right translation h ·2 g := gh−1, and the action by conjugation h ·3 g = hgh−1.

14



Proposition 1.93. (1) If (g, x) 7→ g ∗ x is an action of the group G and the set X, then for any fixed g ∈ G
the mapping ϕ∗(g) : X → X such that x 7→ g ∗ x belongs to S(X). The mapping ϕ∗ : G → S(X) is a
homomorphism from G to S(X).

(2) Conversely if ϕ : G → S(X) is a homomorphism and if we set g ∗ϕ x := ϕ(g)(x), then the mapping G×X → X
such that (g, x) 7→ g ∗ϕ x is a group action.

(3) Both constructions above are “inverse” of each other.

Proof. (1) For fixed g ∈ G, the mapping ϕ∗(g) is bijective with inverse ϕ∗(g
−1). Indeed for any x ∈ X, we have

(ϕ∗(g) ◦ ϕ∗(g
−1))(x) = ϕ∗(g)(ϕ∗(g

−1)(x)) = ϕ∗(g)(g
−1 ∗ x) = g ∗ (g−1 ∗ x) = (gg−1) ∗ x︸ ︷︷ ︸

by group action

= x, (29)

so that ϕ∗(g) ◦ ϕ∗(g
−1) = IdX , and analogously we can see that ϕ∗(g

−1) ◦ ϕ∗(g) = IdX as well. Hence,
ϕ∗(g) ∈ S(X). Moreover for arbitrary g, h ∈ G and x ∈ X, we have that

(ϕ∗(g) ◦ ϕ∗(h))(x) = ϕ∗(g)(ϕ∗(h)(x)) = ϕ∗(g)(h ∗ x) = g ∗ (h ∗ x) = (gh) ∗ x︸ ︷︷ ︸
by group action

= ϕ∗(gh)(x), (30)

so that ϕ∗(g) ◦ ϕ∗(h) = ϕ∗(gh), and by arbitrariness of g and h we can conclude that ϕ∗ ∈ Hom(G,S(X)).

(2) Since ϕ ∈ Hom(G,S(X)), for any g, h ∈ G and x ∈ X we have that

g ∗ϕ (h ∗ϕ x) = ϕ(g)(ϕ(h)(x)) = (ϕ(g) ◦ ϕ(h))(x) = ϕ(gh)(x) = (gh) ∗ϕ x, (31)

so (g, x) 7→ g ∗ϕ x is indeed a group action.

(3) We need to check that if (g, x) 7→ g ∗ x is an action of G on X then ∗ϕ∗ = ∗, and that if ϕ ∈ Hom(G,S(X))
then ϕ∗ϕ

= ϕ. First, if (g, x) 7→ g ∗ x is an action of G on X, then for any g ∈ G and x ∈ X, by definition we
have that g ∗ϕ∗ x = ϕ∗(g)(x) = g ∗x, so ∗ϕ∗ = ∗. On the other hand, if ϕ ∈ Hom(G,S(X)), then for any g ∈ G
and x ∈ X, we have that ϕ∗ϕ

(g)(x) = g ∗ϕ x = ϕ(g)(x), so ϕ∗ϕ
= ϕ as well. The proof is thus complete.
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Example 1.94. (1) Recall in a previous example that, if V is a k-vector space, then GL(V ) acts on V by g · v =
g(v). The corresponding homomorphism is the tautological homomorphism, i.e., the natural inclusion of GL(V )
into S(V ).

(2) Recall in a previous example that, the groupS(X) acts onX by σ·x = σ(x). The corresponding homomorphism
is again the tautological homomorphism, i.e., the identity mapping from S(X) to itself.

Definition 1.95. For x ∈ X and G acting on X, one calls the orbit of x the set Ox := G · x = {g · x; g ∈ G}.

Theorem 1.96. If G acts on X, the relation x ∼ y if there exists g ∈ G such that y = g ·x, is an equivalence relation
on X, and for this relation Cl(X) = G · x. In particular, the orbits of G in X form a partition of X.

Example 1.97. (1) For the natural action of GL(V ) on V , there are two orbits, i.e., {0} and V \ {0}.

(2) For the action of the rotations group SO(R2) =
{
Q ∈ GL2(R); Q⊤Q = QQ⊤ = I

}
on R2, the orbit of v ∈ R2

is the circle C(0, ∥v∥) of center 0 and radius ∥v∥ the Euclidean norm of v.

10/16 Lecture
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Definition 1.98. One says that an action of G on X is transitive if it has a single orbit, which must be X. In
other words X = G · x for some x ∈ X or equivalently X = G · x for all x ∈ X.

Proposition 1.99. Let G ×X → X such that (g, x) 7→ g · x be an action of G on X, and suppose that A ⊆ X is
G-stable, i.e., for any x ∈ A and g ∈ G, necessarily g · x ∈ A. Then the mapping G×A → A such that (g, x) 7→ g · x
obtained by restriction of the second variable is an action of G on A.

Example 1.100. The most basic example of the above situation is when you start with a group action G×X → X
such that (g, x) 7→ g ·x, and take A := G ·x to be the orbit of an element x ∈ X. Clearly G ·x is G-stable because of
the property g · (g′ ·x) = (gg′) ·x. Then by restriction (of the second variable) one gets an action of G on G ·x. Such
a restricted action to one orbit is automatically transitive by definition. For instance, the natural action of GL(V )
on V \ {0} is transitive as we saw that V \ {0} is the orbit of any nonzero vector.

Definition 1.101. If G acts on X and x ∈ X, we set StabG(x) = {g ∈ G; g · x = x} and call this set the stabilizer
subgroup of x in G.

Remark 1.102. Clearly StabG(x) ≤ G, so indeed it can be called a subgroup. Indeed, eG ∈ StabG(x) because
eG · x = x. Associativity clearly holds because StabG(x) ⊆ G. Finally, if g ∈ StabG(x), then g · x = x, and
multiplying both sides by g−1 on the left, we can see that x = g−1 · x, and thus g−1 ∈ StabG(x).

Example 1.103. We shall check that the action of Sn on {1, . . . , n} is transitive, and that StabSn(1) ≃ Sn−1.
Indeed, for any i ∈ {1, . . . , n}, we have that Sn · i = {1, . . . , n}. Moreover, Sn contains all possible permutations
over {1, . . . , n}, so the set of those permutations which fix 1 are simply the ones that permute the set {2, . . . , n} in
every possible way, thus StabSn

(1) ≃ Sn−1.

Example 1.104. Let H ≤ G, then the mapping G×G/H → G/H such that (g, g′H) 7→ gg′H defines a transitive
action of G on G/H. For this action StabG(eH) = H. Indeed, for any g ∈ G/H, there exists g ∈ G such that g = gH,
so we have that G·gH = {g′gH; g′ ∈ G} = {g′H; g′ ∈ G} = G/H. Moreover, for g ∈ G, if g ·eH = geH = gH = eH,
then necessarily g ∈ H. Hence we can conclude that StabG(eH) = H.

Theorem 1.105 (Orbit-stabilizer theorem). If G acts on X, then the mapping ϕx : G/StabG(x) → G · x such that
gStabG(x) 7→ g · x is well-defined and bijective. In particular if G is finite, then |G · x| = |G|/|StabG(x)|.

Proof. To see that ϕx is well-defined, we need to prove that if gStabG(x) = g′StabG(x) then g · x = g′ · x. Indeed, if
gStabG(x) = g′StabG(x), then there exists h ∈ StabG(x) such that g′ = gh, and thus g′ ·x = (gh)·x = g ·(h·x) = g ·x,
where the last equality is because of stability. Hence we have shown that ϕx is well-defined. Now clearly ϕx is
surjective by its definition, so it suffices to prove that ϕx is injective as well. Suppose that ϕx(g) = ϕx(g

′), then
g · x = g′ · x. Acting by g−1 on both sides, we can see that x = (g−1g) · x = g−1 · (g · x) = g−1 · (g′ · x) = (g−1g′) · x.
This further implies that g−1g′ ∈ StabG(x), and thus g′ ∈ gStabG(x). This necessarily means that gStabG(x) =
g′StabG(x), i.e., g = g′, so the proof of injectivity is done. Hence, we can conclude that ϕx is bijective. Finally if G
is finite, Lagrange’s theorem (Theorem 1.65) implies that |G · x| = |G/StabG(x)| = |G|/|StabG(x)|, and the proof is
thus complete.

Remark 1.106. In particular if the action of G on X is transitive, we obtain a natural bijection G/StabG(x) ≃ X.

10/18 Lecture

Corollary 1.107 (Class formula). If X is finite and the partition of X into G-orbits is given by X =
⊔r

i=1 G · xi,
then |X| =

∑r
i=1 |G · xi|. If G is moreover finite, then |X| =

∑r
i=1 |G|/|StabG(xi)|.

Proof. This is trivial.
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Definition 1.108. Let G be a group, then we say that a set X is a G-space if G acts on X. If X and Y are both
G-spaces, then we say that a mapping ϕ : X → Y is G-equivariant if ϕ(g · x) = g · ϕ(x) for all (g, x) ∈ G×X.

Remark 1.109. One can observe that the bijection ϕx : G/StabG(x) → G ·x in the statement of the orbit-stabilizer
theorem (Theorem 1.105) is G-equivariant for the action of G on G/StabG(x) defined in Example 1.104, and the
natural action of G on G ·x is defined by restriction of the second variable. Indeed, for all (g′, g) ∈ G×G/StabG(x),
there exists g ∈ G such that g = gStabG(x), so we have that

ϕx(g
′ · g) = ϕx(g

′gStabG(x)) = (g′g) · x = g′ · (g · x) = g′ · ϕx(gStabG(x)) = g′ · ϕx(g). (32)

Definition 1.110. If p is a prime number, one calls G a p-group if it is finite of cardinality of |G| = pa for some
a ∈ N.

Remark 1.111. By Lagrange’s theorem (Theorem 1.65), a subgroup of a p-group is again a p-group.

Definition 1.112. If X is a G-space, we set XG := {x ∈ X; g · x = x, ∀g ∈ G}. In other words, XG denotes the
fixed points of the action of G on X.

Lemma 1.113. Let G be a p-group for some prime number p, and X be a finite set. Then |X| ≡ |XG| mod p.

Proof. If X = XG then the result is obvious, so we assume that X ̸= XG. Note that

x ∈ XG ⇐⇒ G · x = {x} ⇐⇒ |G · x| = 1 ⇐⇒ |StabG(x)| = |G|, (33)

where the last equivalence follows from the orbit-stabilizer theorem (Theorem 1.105). We can write X =
⊔r

i=1 G · xi

and up to renumbering, suppose that the first s orbits are those of cardinality 1, i.e., XG = {x1, . . . , xs}. Our
assumption that X ̸= XG further ensures that s < r. By the class formula (Corollary 1.107), we can see that

|X| =
r∑

i=1

|G · xi| = s+

r∑
i=s+1

|G · xi| = |XG|+
r∑

i=s+1

|G · xi|. (34)

Hence, we are reduced to proving that
∑r

i=s+1 |G · xi| is a multiple of p, which will follow from the fact that each
|G · xi| is a multiple of p for i ≥ s + 1. Indeed, for i ≥ s + 1, we have that |G · xi| = |G|/|StabG(xi)| and |G| = pa

for some a ∈ N∗ (a cannot be zero since otherwise G would be trivial, contradicting our assumption that X ̸= XG),
so by primality of p, it is clearly that |G · xi| must also be a multiple of p given that it is not 1. The proof is thus
complete.

Corollary 1.114. If G is a non-trivial p-group for some prime number p, then Z(G) is not reduced to {e}.

Proof. Take X := G is the previous proposition and G acts on itself by conjugation (i.e., g · x = gxg−1, g ∈ G,
x ∈ X = G), then we have that |G| ≡ |GG| mod p. Note that GG = Z(G) in this case. Indeed if x ∈ GG, then
g · x = gxg−1 = x for all g ∈ G, which means that gx = xg for all g ∈ G, so x ∈ Z(G). On the other hand, if
x ∈ Z(G), then gx = xg for all g ∈ G, and thus then g · x = gxg−1 = xgg−1 = x for all g ∈ G, so x ∈ GG. Hence,
we can conclude that |G| ≡ |Z(G)| mod p. Since G is a non-trivial p-group, we have that |G| ≡ 0 mod p, and thus
|Z(G)| ≡ 0 mod p as well. This necessarily implies that |Z(G)| ≠ 1, so Z(G) cannot be reduced to {e}, and thus
the proof is complete.

Example 1.115. Let G be a group of order p2 for some prime number p, then G is commutative. Indeed, by
the previous corollary, we have that Z(G) ̸= {e}, so either |Z(G)| = p or |Z(G)| = p2. The latter case is trivial
since then Z(G) = G, meaning that G is commutative. In the former case, by Lagrange’s theorem (Theorem 1.65)
|G/Z(G)| = p, and further since p is prime by the remark of the same theorem G/Z(G) = ⟨g⟩ for any g ∈ G/Z(G)
with g ̸= e. Without loss of generality we assume that G/Z(G) = ⟨xZ(G)⟩ with x ∈ G and x ̸= e. For any g ∈ G,
there exists m ∈ N such that gZ(G) = xmZ(G). This means that g(xm)−1 ∈ Z(G), so there exists z ∈ Z(G) such
that g(xm)−1 = z, or in other words, g = zxm. Now for any g1, g2 ∈ G, suppose that g1 = xm1z1 and g2 = xm2z2,
where m1,m2 ∈ N and z1, z2 ∈ Z(G). We can thus compute that

g1g2 = xm1z1x
m2z2 = xm1+m2z1z2 = xm2+m1z2z1 = xm2z2x

m1z1 = g2g1, (35)

so G is commutative, and the proof is thus complete. To summarize what we have shown, G/Z(G) being of prime
order p implies that it is cyclic, and this necessarily means that G is commutative.
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1.10 Decomposition of Permutations

Definition 1.116. Let {a1, . . . , ar} be a subset of {1, . . . , n} with r ≥ 1 different elements, then the permutation(
a1 a2 . . . ar

)
∈ Sn fixes by definition any i ∈ {1, . . . , n} \ {a1, . . . , ar}, sends ai to ai+1 for i ∈ {1, . . . , r − 1},

and sends ar to a1. A permutation of this form is called an r-cycle or a cycle of length r.

Definition 1.117. A permutation in Sn is called a cycle if it is an r-cycle for some 1 ≤ r ≤ n.

Example 1.118. By definition, a 1-cycle is the identity of Sn. For this reason we usually do not consider 1-cycles
as they are all equal to the identity.

Definition 1.119. If σ ∈ Sn, one denotes by Fix(σ) its set of fixed points, i.e., we have that

Fix(σ) := {x ∈ {1, . . . , n} ; σ(x) = x} . (36)

Example 1.120. If c :=
(
a1 a2 . . . ar

)
∈ Sn, then Fix(c) = {1, . . . , n} \ {a1, . . . , ar}.

Remark 1.121. For σ ∈ Sn, we have that Fix(σ) ⊆ Fix(σk) for any k ∈ Z. In particular, σk(Fix(σ)) = Fix(σ).
Indeed, if x ∈ Fix(σ), then σ(x) = x, and composing both sides by σ−1 we also have x = σ−1(x). For any k1 ≥ 1
and k2 ≤ −1, inductively we have that

σk1(x) = σk1−1(x) = . . . = σ(x) = x = σ−1(x) = σ−2(x) = . . . = σk2(x), (37)

so σk(x) = x for any k ∈ Z. This proves that Fix(σ) ⊆ Fix(σk) for any k ∈ Z. It is then clear that σk acts like the
identity on Fix(σ), so σk(Fix(σ)) = Fix(σ).

Definition 1.122. The support Supp(σ) of a permutation σ ∈ Sn is by definition the set of non-fixed points of σ,
such that

Supp(σ) := {1, . . . , n} \ Fix(σ) = {x ∈ {1, . . . , n} ; σ(x) ̸= x} . (38)

Example 1.123. If c :=
(
a1 a2 . . . ar

)
∈ Sn, then Supp(c) = {a1, . . . , ar}.

Remark 1.124. For σ ∈ Sn, we have that Supp(σk) ⊆ Supp(σ) for any k ∈ Z. In particular, σk(Supp(σ)) =
Supp(σ). Indeed since Fix(σ) ⊆ Fix(σk), the first conclusion is trivial by taking complements. The second conclusion
follows since σk(Fix(σ)) = Fix(σ) and σk is bijective.

Lemma 1.125. If c1 and c2 are two cycles in Sn with disjoint support, then c1 ◦ c2 = c2 ◦ c1.

Proof. Write c1 =
(
a1 . . . ar

)
and c2 =

(
b1 . . . bs

)
, with respective supports S1 = {a1, . . . , ar} and S2 =

{b1, . . . , bs}. By assumption S1 ∩ S2 = ∅. We consider three cases:

• If i /∈ S1 ∪ S2, then c1(i) = c2(i) = i, so (c1 ◦ c2)(i) = c1(c2(i)) = c1(i) = i = c2(i) = c2(c1(i)) = (c2 ◦ c1)(i).

• If i ∈ S1, then c1(i) ∈ S1 and c2(i) = i. Hence c2(c1(i)) = c1(i) because c1(i) /∈ S2. Therefore, we can deduce
that (c1 ◦ c2)(i) = c1(c2(i)) = c1(i) = c2(c1(i)) = (c2 ◦ c1)(i).

• If i ∈ S2, then c2(i) ∈ S2 and c1(i) = i. Hence c1(c2(i)) = c2(i) because c2(i) /∈ S1. Therefore, we can deduce
that (c1 ◦ c2)(i) = c1(c2(i)) = c2(i) = c2(c1(i)) = (c2 ◦ c1)(i).

By arbitrariness of i, we can conclude that c1 ◦ c2 = c2 ◦ c1, and the proof is thus complete.
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Theorem 1.126. In Sn, any permutation σ can be written σ = c1 ◦ . . . ◦ cd for some d ∈ N (by convention σ = Id
if d = 0), where each ci is a cycle of length at least 2, and all cycles ci have disjoint supports. Moreover, the
decomposition is unique up to the reordering of the cycles ci.

Proof. The group G := ⟨σ⟩ acts on {1, . . . , n}, so we have a decomposition of {1, . . . , n} into G-orbits, such that

{1, . . . , n} =

m⊔
k=1

G · ik. (39)

Up to renumbering, we suppose that lk := |G · ik| ≥ 2 for 1 ≤ k ≤ d, whereas lk = 1 for d+1 ≤ k ≤ m. We note that
lk = 1 if and only if σ(ik) = ik. To see this, if σ(ik) = ik then σp(ik) = ik for any p ∈ Z, meaning that G · ik = {ik}
and so lk = 1. On the other hand if lk = 1, then G · ik = {ik} so that σ(ik) = ik. We can thus write that

Fix(σ) =

m⊔
k=d+1

G · ik = {id+1, . . . , im} . (40)

On the other hand, for k = 1, . . . , d, one shall be able to check that G·ik =
{
ik, σ(ik), . . . , σ

lk−1(ik)
}
and σlk(ik) = ik.

Why? From this, it follows that σ = c1 ◦ . . .◦ cd where ck :=
(
ik σ(ik) . . . σlk−1(ik)

)
for 1 ≤ k ≤ d. Why? This

proves the existence of the decomposition. To prove the uniqueness, suppose that σ = c′1 ◦ . . . ◦ c′d is another such
decomposition. One can easily check that G ·ai = Supp(c′i) if ai ∈ Supp(c′i), and G ·x = {x} if x is not in the support
of any c′i. Why? By uniqueness of the decomposition of {1, · · · , n} into G-orbits, we deduce that d = d′, and that
up to reordering, Supp(c′i) = Supp(ci). Why? Finally because σ decomposes over both families of cycles and by
disjointness of the supports, for any ai ∈ Supp(c′i) = Supp(ci), we can see that ci =

(
ai σ(ai) . . . σli−1(ai)

)
= c′i,

where li is the common length of ci and c′i. Why? The proof is thus complete.

Example 1.127. In S8, the permutation

σ =

(
1 2 3 4 5 6 7 8
3 5 6 2 4 1 8 7

)
(41)

has the commuting decomposition σ =
(
1 3 6

)
◦
(
2 5 4

)
◦
(
7 8

)
.
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Proposition 1.128. Let σ and σ′ be two permutations in Sn, and let σ = c1 ◦ . . . ◦ cd and σ′ = c′1 ◦ . . . ◦ c′d′ be
their two decompositions into (commuting) cycles with disjoint support (of length at least 2). We order the cycles
by length, such that 2 ≤ l1 ≤ . . . ≤ ld and 2 ≤ l′1 ≤ . . . ≤ l′d′ , where li = l(ci) and l′j = l(c′j). Then σ and σ′ are
conjugate in Sn if and only if d = d′ and li = l′i for all i = 1, . . . , d.

Proof. To be done...

Remark 1.129. In particular, if c is an r-cycle in Sn, then its conjugacy class consists of all r-cycles in Sn.

Remark 1.130. The r-cycle
(
a1 . . . ar

)
∈ Sn is can be decomposed as(

a1 . . . ar
)
=

(
a1 a2

)
◦
(
a2 a3

)
◦ . . . ◦

(
ar−1 ar

)
. (42)

Definition 1.131. A transposition is a 2-cycle.

Corollary 1.132. The group Sn is generated by the transpositions.

Proof. This is trivial because we have seen that every permutation is a product of cycles, and that every cycle is a
product of transpositions.

1.11 The Sign Map
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Definition 1.133. Let σ ∈ Sn, we say that (i, j) ∈ {1, . . . , n}2 with i < j is an inversion of σ if σ(i) > σ(j). We
denote by Inv(σ) the set of inversions of σ, and by l(σ) its cardinality.

Definition 1.134. For σ ∈ Sn, we set ϵ(σ) := (−1)l(σ), and call it the sign of σ.

Remark 1.135. For x ∈ R×, we set sgn(x) = x/|x|. Then by definition, for any σ ∈ Sn, we have that

ϵ(σ) =
∏

1≤i<j≤n

sgn(σ(j)− σ(i)). (43)

This formula is very useful in practice for computing the sign of a permutation.

Remark 1.136. We give another familiar (though not very useful) formula for the sign of a permutation. For
σ ∈ Sn, we have that

ϵ(σ) =
∏

1≤i<j≤n

σ(j)− σ(i)

j − i
. (44)

To see this, from the useful formula we have that

ϵ(σ) =
∏

1≤i<j≤n

σ(j)− σ(i)

|σ(j)− σ(i)|
=

∏
1≤i<j≤n(σ(j)− σ(i))∏
1≤i<j≤n |σ(j)− σ(i)|

. (45)

But note that
∏

1≤i<j≤n |σ(j)− σ(i)| =
∏

1≤j<i≤n |σ(j)− σ(i)|, so that ∏
1≤i<j≤n

|σ(j)− σ(i)|

2

=
∏

1≤i ̸=j≤n

|σ(j)− σ(i)|. (46)

Moreover, by the bijectivity of σ, we can see that

∏
1≤i ̸=j≤n

|σ(j)− σ(j)| =
∏

1≤k ̸=l≤n

|l − k| =
∏

1≤i ̸=j≤n

|j − i| =

 ∏
1≤i<j≤n

|j − i|

2

=

 ∏
1≤i<j≤n

(j − i)

2

, (47)

so we arrive at the conclusion that

ϵ(σ) =

∏
1≤i<j≤n(σ(j)− σ(i))∏

1≤i<j≤n(j − i)
=

∏
1≤i<j≤n

σ(j)− σ(i)

j − i
, (48)

as desired.

Theorem 1.137. ϵ : Sn → {±1} is a group homomorphism, which is surjective if n ≥ 2.

Proof. We prove this by the original definition of the sign map. If A ⊆
{
(i, j) ∈ {1, . . . , n}2 ; i < j

}
, we set

AC :=
{
(i, j) ∈ {1, . . . , n}2 ; i < j

}
\A. (49)

Take σ1, σ2 ∈ Sn and set I1 := Inv(σ1), J1 = IC1 , I2 := Inv(σ2), and J2 := IC2 . We observe that (i, j) ∈ Inv(σ1 ◦ σ2)
if and only if σ1(σ2(i)) > σ1(σ2(j)), i.e., if and only if we have one of the two disjoint cases (a) (i, j) ∈ I2 and
(σ2(j), σ2(i)) ∈ J1, or (b) (i, j) ∈ J2 and (σ2(j), σ2(i)) ∈ I1. In particular, we can see that

l(σ1 ◦ σ2) = |(i, j) ∈ I2, (σ2(j), σ2(i)) ∈ J1|+ |(i, j) ∈ J2, (σ2(j), σ2(i)) ∈ I1|. (50)

However, we know that

|(i, j) ∈ I2, (σ2(j), σ2(i)) ∈ J1|+ |(i, j) ∈ I2, (σ2(j), σ2(i)) ∈ I1| = |(i, j) ∈ I2| = |I2| = l(σ2), (51)

|(i, j) ∈ J2, (σ2(j), σ2(i)) ∈ I1|+ |(j, i) ∈ I2, (σ2(j), σ2(i)) ∈ I1| = |(σ2(j), σ2(i)) ∈ I1| = |I1| = l(σ1), (52)
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so that

l(σ1) + l(σ2) = l(σ1 ◦ σ2) + |(i, j) ∈ I2, (σ2(j), σ2(i)) ∈ I1|+ |(j, i) ∈ I2, (σ2(j), σ2(i)) ∈ I1|
= l(σ1 ◦ σ2) + 2|(i, j) ∈ I2, (σ2(j), σ2(i)) ∈ I1|. (53)

Hence, by definition we can deduce that

ϵ(σ1 ◦ σ2) = (−1)l(σ1◦σ2) = (−1)l(σ1)+l(σ2)+some even number = (−1)l(σ1)(−1)l(σ2) = ϵ(σ1)ϵ(σ2), (54)

which proves that σ is a group homomorphism by arbitrariness of σ1 and σ2. To prove surjectivity, we note that the
identity has sign 1 and the transposition has sign −1. The proof is thus complete.

Proposition 1.138. If τ is a transposition, then always ϵ(τ) = −1. More generally, if c is a r-cycle with r ≥ 2, then
ϵ(c) = (−1)r−1.

Proof. If τ is a transposition, then it is conjugate to
(
1 2

)
by some σ ∈ Sn, i.e., τ = σ ◦

(
1 2

)
◦ σ−1. Since ϵ is a

group homomorphism, we thus have that ϵ(τ) = ϵ(σ)ϵ(
(
1 2

)
)ϵ(σ−1) = ϵ(

(
1 2

)
) = −1. Then if c =

(
a1 . . . ar

)
is an r-cycle, we can write it as the composition of r − 1 transpositions, such that c =

(
a1 a2

)
◦ . . . ◦

(
ar−1 ar

)
.

Hence since ϵ is a group homomorphism, we can conclude that ϵ(c) = (−1)r−1, and the proof is thus complete.

Proposition 1.139. If σ = c1 ◦ . . . ◦ cd, with each ci being a li-cycle, then ϵ(σ) = (−1)
∑d

i=1(li−1).

Proof. This is trivial using the previous proposition and the fact that ϵ is a group homomorphism.

Example 1.140. We can compute that

ϵ

((
1 2 3 4 5 6 7 8
3 5 6 2 4 1 8 7

))
= ϵ

((
1 3 6

)
◦
(
2 5 4

)
◦
(
7 8

))
= (−1)2+2+1 = −1. (55)
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2 Ring Theory

2.1 Rings

Definition 2.1. A triple (A,+,×) where + and × are two binary operations on the set A is called a ring if:

(1) (A,+) is a commutative group (we denote 0A or 0 its neutral element).

(2) × is associative, and has a neutral element (denoted 1A or 1).

(3) × is distributive with respect to +, i.e., a(b+ c) = ab+ ac and (b+ c)a = ba+ ca for any a, b, c ∈ A (here we
have omitted × and we will often do it).

Definition 2.2. A ring A is said to be commutative if × is commutative.

Remark 2.3. (1) 0A × x = x × 0A = 0A for any x ∈ A. Indeed, 0A × x = (0A + 0A) × x = 0A × x + 0A × x, so
0A × x = 0. Analogously we can obtain that x× 0A = 0.

(2) (−1A)×x = x×(−1A) = −x (where −x is the inverse of x for +). Indeed, (−1A)×x+1A×x = (−1A+1A)×x =
0A × x = 0A, so (−1A)× x = −1A × x = −x. Analogously we can obtain that x× (−1A) = −x.

(3) a(b− c) = ab− ac and (b− c)a = ba− ca for any a, b, c ∈ A.

Example 2.4. (1) The triples (K,+,×), K = Z,Q,R,C are commutative rings.

(2) The triples (Mn(K),+,×), K = Z,Q,R,C are non-commutative rings when n ≥ 2.
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Definition 2.5. Let f : A → B be a mapping between two rings. One says that f is a ring homomorphism if:

(1) f : (A,+) → (B,+) is a group homomorphism (in particular, this implies that f(0A) = 0B).

(2) f(xy) = f(x)f(y) for any x, y ∈ A.

(3) f(1A) = 1B .

Definition 2.6. A ring homomorphism f : A → B is called an isomorphism if f is bijective.

Remark 2.7. If f : A → B is a ring isomorphism, then its inverse f−1 : B → A is a ring isomorphism as well.

Proposition 2.8. A ring A has only one element if and only if 0A = 1A. Such a ring is unique up to isomorphism
and is called the trivial ring.

Proof. Clearly if A has only one element, then A = {0A} = {1A} and this is indeed a ring. Conversely, if 0A = 1A,
then for any x ∈ A, we have that x = x× 1A = x× 0A = 0A, so A has only one element. Now suppose that A and
B are two rings with 0A = 1A and 0B = 1B . Then for any x ∈ A, we have that x = x × 1A = x × 0A = 0A, so
A = {0A} = {1A}. The uniqueness up to isomorphism is trivial.

2.2 Subrings

Definition 2.9. A subset B of a ring A is called a subring of A, denoted B ≤ A, if:

(1) B is stable under + and (B,+) is a subgroup of A.

(2) B is stable under ×.

(3) 1A ∈ B.

Remark 2.10. If A is a ring and B ≤ A, then (B,+,×) is a ring, and 0B = 0A and 1B = 1A. Indeed, (B,+)
is a commutative group because (A,+) is a commutative group and (B,+) ≤ (A,+). The associativity of × and
distributivity of × with respect to + are inherited from A. Hence we can conclude that B is indeed a ring. The
uniqueness of neutral elements is trivial.

Example 2.11. (1) (Z,+,×) ≤ (Q,+,×) ≤ (R,+,×) ≤ (C,+,×).

(2) (Mn(Z),+,×) ≤ (Mn(Q),+,×) ≤ (Mn(R),+,×) ≤ (Mn(C),+,×).

(3) The trivial ring {0} is contained in every ring but {0} ≤ A if and only if A = {0}. This is the consequence of the
third requirement in the definition of a subring. For instance, {0} is not a subring of Z because 1Z = 1 /∈ {0},
even though {0} is a ring contained in Z.

Definition 2.12. If A is a ring, we set Z(A) := {z ∈ A; zx = xz, ∀x ∈ A}, called the center of A.

Proposition 2.13. If A is a ring, then Z(A) ≤ A and Z(A) = A if and only if A is commutative.

Proof. We prove that Z(A) is stable under both + and ×. For any z1, z2 ∈ Z(A) and any x ∈ A, we have that

(z1z2)x = z1(z2x) = (z2x)z1 = z2(xz1) = (xz1)z2 = x(z1z2), (56)

where the second equality follows from the fact that z1 ∈ Z(A) and that z2x ∈ A, and the fourth equality is similar.
Hence we can conclude that z1z2 ∈ Z(A). On the other hand, we also have that

(z1 + z2)x = z1x+ z2x = xz1 + xz2 = x(z1 + z2), (57)

which means that z1 + z2 ∈ Z(A) as well. Hence Z(A) is stable under both + and × by arbitrariness of z1 and z2.
It is trivial that (Z(A),+) ≤ (A,+). Moreover, 1Ax = x1A for any x ∈ A so 1A ∈ Z(A). We have now completed
the proof that Z(A) is a subring of A. The second part of the proof is trivial and will be omitted here.

Example 2.14. Z(R) = R and Z(Mn(R)) = {tIn, ; t ∈ R} ≃ R.
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2.3 Fields

Definition 2.15. (1) An element x of a ring A is called invertible if there is an element y ∈ A, such that
xy = yx = 1A.

(2) The element y above is unique and we denote it by x−1, and call it the multiplicative inverse of x.

(3) We denote by A× the set of invertible elements in A.

Remark 2.16. If A is a ring, then (A×,×) is a group, so we are using the same notation as before. Indeed, if
x, y ∈ A× with respective inverses u and v, we can easily see that (xy)(vu) = x(yv)u = xu = 1A so xy ∈ A with
inverse vu, and thus xy ∈ A×, meaning that × does define a binary operation on A×. By definition, it is associative.
Moreover, 1A is the neutral element for this law, and each element in A× has an inverse in A× by definition of A×.
Therefore, we can conclude that (A×,×) is a group.

Definition 2.17. A ring F is called a field if F ̸= {0} and all its nonzero elements are invertible for ×, i.e., if
F× = F \ {0}.

Example 2.18. (1) (Z,+,×) is a commutative ring and Z× = {±1} ≠ Z \ {0}, so Z is not a field.

(2) Q, R, and C are commutative fields.

(3) Mn(R)× = GLn(R) hence it is not a field when n ≥ 2.

2.4 Polynomial Rings

Remark 2.19. If A is a commutative ring, we set

A[X] =

{ ∞∑
k=0

akX
k; ak ∈ A and there exists k0 ∈ N such that ak = 0 for all k ≥ k0

}
. (58)

This definition is formal but not totally rigorous. One just needs to remember that for P =
∑∞

k=0 akX
k ∈ A[X] and

Q =
∑∞

k=0 bkX
k ∈ A[X], by definition P = Q if and only if ak = bk for all k ∈ N.

Definition 2.20. Let A be a commutative ring. For P =
∑∞

k=0 akX
k and Q =

∑∞
k=0 bkX

k in A[X], we set

P +Q =

∞∑
k=0

(ak + bk)X
k, PQ = P ×Q =

∞∑
k=0

ckX
k, (59)

where cn =
∑n

k=0 akbn−k =
∑n

k=0 an−kbk for n ∈ N.

Remark 2.21. Let A be a commutative ring, then (A[X],+,×) is also a commutative ring with 1A[X] = 1A ×X0

and 0A[X] = 0A ×X0. For k, l ∈ N we have the relation Xk ×X l = Xk+l.

Definition 2.22. Let A be a commutative ring, then the ring A[X] is called the ring of polynomials with
coefficients in A.

Definition 2.23. Let A be a commutative ring. Let the mapping d◦ : A[X] → N∪{−∞} be such that d◦(0) = −∞
and d◦(P ) = d ∈ N if P ̸= 0 and P =

∑d
k=0 akX

k with ad ̸= 0. The mapping d◦(P ) the degree mapping.
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Definition 2.24. We denote by Ad[X] the set of polynomials of degree at most d in A[X].

Remark 2.25. The set A0[X] is in fact a subring of A, and the mapping i : A → A0[X] such that i(a) = a×X0 is
a ring isomorphism.

Remark 2.26. In view of the above remark, we will simply identify A with A0[X] and make the confusions that
1A[X] = 1A = X0 and 0A[X] = 0A. We also extend the addition on N to N∪{−∞} such that −∞+n = n+−∞ = −∞,
which shall allow us to state some useful properties of the degree mapping.

Proposition 2.27. Let A be a commutative ring, and let P,Q ∈ A[X]. We have that

(1) d◦(P +Q) ≤ max(d◦(P ), d◦(Q)).

(2) d◦(P ×Q) ≤ d◦(P ) + d◦(Q).

Definition 2.28. Let A be a nonzero commutative ring. If P ∈ A[X]\{0} and P =
∑d

k=0 akX
k for d = d◦(P ) (i.e.,

ad ̸= 0), we call ad the leading term of P .

Remark 2.29. Note that surprisingly the second inequality in the previous proposition is not an equality in general.
This is because the product of the leading terms of P and Q might be zero.

Definition 2.30. Let A be a commutative ring. We say that x ∈ A is a zero divisor if x ̸= 0 and there exists
y ̸= 0 ∈ A such that xy = 0.

Definition 2.31. A commutative ring is called an integral domain if it is not reduced to {0} but has no zero
divisors. The latter requirement is equivalent to the implication xy = 0 =⇒ x = 0 or y = 0.

Remark 2.32. By considering the leading term of polynomials, we see that if A is an integral domain and P,Q ∈
A[X], then d◦(P ×Q) = d◦(P ) + d◦(Q).

Proposition 2.33. If A is an integral domain, then A[X] is an integral domain.

Proof. If PQ = 0 ∈ A[X], then −∞ = d◦(PQ) = d◦(P )+d◦(Q), so either d◦(P ) = −∞ or d◦(Q) = −∞. This means
that either P = 0 or Q = 0, so A[X] is an integral domain.
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2.5 Properties of Ring Homomorphisms

Remark 2.34. We denote by Hom(A,B) the set of ring homomorphisms from a ring A to a ring B.

Remark 2.35. If f ∈ Hom(A,B), then Im(f) ≤ B. Indeed by group theory, we have (Im(f),+) ≤ (B,+). Moreover,
f(1A) = 1B hence 1B ∈ Im(f). Finally, the property f(x)f(y) = f(xy) for any x, y ∈ A shows that Im(f) is stable
under multiplication, so we can conclude that Im(f) is a subring of B.

Definition 2.36. If f ∈ Hom(A,B), we set the kernel of f as Ker(f) := {x ∈ A; f(x) = 0B}.

Remark 2.37. Note that the kernel of f above is almost never a subring of A due to the condition f(1A) = 1B ,
which prevents 1A to belong to the kernel of f unless B = {0A}.

Remark 2.38. (1) (Ker(f),+) ≤ (A,+). This comes from the fact that f is an additive group homomorphism.

(2) If x, y ∈ A and x ∈ Ker(f) or y ∈ Ker(f), then xy ∈ Ker(f). Indeed, without loss of generality we assume that
x ∈ Ker(f), then f(xy) = f(x)f(y) = 0Bf(y) = 0B , meaning that xy ∈ Ker(f).

(3) f is injective if and only if Ker(f) = {0A}. This again comes from the fact that f is an additive group
homomorphism.
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2.6 Ideals of Commutative Rings

Definition 2.39. A subset I ⊆ A of a commutative ring A is called an ideal of A, denoted I ⊴ A, if:

(1) I is an additive subgroup of (A,+).

(2) If x ∈ I and y ∈ I, then xy ∈ I.

Example 2.40. (1) Let A be a commutative ring and f : A → B be a ring homomorphism, then Ker(f) ⊴ A.

(2) If I ⊴ Z, then in particular it is a subgroup of (Z,+), hence of the form nZ. Therefore, there exists n ∈ N such
that I = nZ. Conversely, it is immediate to check that if n ∈ N, then nZ fulfills all the requirements to be an
ideal ot Z. Hence, the ideals of Z are exactly the sets nZ, n ∈ N. Beware that this is a completely exceptional
situation, and that in general not all subgroups of (A,+) are automatically ideals of a commutative ring A.

Remark 2.41. Let A be a commutative ring and let x ∈ A, we set (x) := {xa; a ∈ A}. We can also use the notation
xA for this subset of A, i.e., (x) = xA. We shall be able to check that (x) is an ideal of A. Indeed, (x) is an additive
subgroup of A because 0(x) = x0A = 0A ∈ A, −xa1 = x(−a1) ∈ (x) when xa1 ∈ (x), and xa1+xa2 = x(a1+a2) ∈ (x)
when xa1, xa2 ∈ (x). Moreover, if xa1, xa2 ∈ (x), then xa1xa2 = x(a1xa2) ∈ (x) because a1xa2 ∈ A. Hence, we can
conclude that (x) ⊴ A.

Definition 2.42. (1) For A a commutative ring and x ∈ A, we call (x) the ideal generated by A.

(2) We call an ideal of this form a principal ideal of A, i.e., an ideal is called principal if it is generated by one
element.

Example 2.43. We observe that all ideals of Z are principal.

Remark 2.44. Let A be a commutative ring. Let I ⊴ A and x ∈ A. Then x ∈ I if and only if (x) ⊆ I.

Example 2.45. Let A be a commutative ring, then (0A) = {0A} and (1A) = A. In particular, a nonzero ring has
at least two different ideals, namely the two listed above.

Remark 2.46. Let A be a commutative ring and x ∈ A. We shall be able to check that (x) = A if and only if
x ∈ A×, the set of invertible elements of A. Indeed, if x ∈ A×, then 1A = xx−1 ∈ (x), and thus (1A) ⊆ (x). But
(1A) = A, so that A ⊆ (x), and thus (x) = A. Conversely, if (x) = A, then 1A ∈ (x), so there exists a ∈ A such that
1A = xa. This means that x is invertible with inverse a, so x ∈ A×.

Proposition 2.47. Let A be a commutative ring, then A is a field if and only if it has two different ideals (which
must be {0A} and A).

Proof. =⇒ If A is a field, let I ⊴ A. Suppose that I ̸= {0A} and take x ̸= 0A ∈ I. We know that x ∈ A× because A
is a field. But on one hand x ∈ I so (x) ∈ I, and on the other hand (x) = A as we have shown in the previous
remark, so that I = A. Therefore, A has exactly two ideals {0A} and A, which are different because a field is
never the zero ring by definition.

⇐= If A has exactly two ideals, they must be {0A} and A and this implicitly implies that A is not reduced to zero.
Take x ̸= 0A ∈ A, then (x) is a nonzero ideal of A, so (x) = A. Again by the previous remark x ∈ A×, so the
proof is complete by arbitrariness of x ̸= 0A.
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A Recitations

9/1 Recitation

Example A.1. For n a positive integer, count the number of elements in Sn.

Solution. n!.

Example A.2. Let (G, ·) be a group and let x ∈ G. For k ≥ 1, put xk = x . . . x︸ ︷︷ ︸
k×

. Put x0 := 1 and for k < 0 put

xk := (x−1)−k. Finally let ⟨x⟩ := ⟨{x}⟩. These are standard notations to be always used later.

(1) Check that xa · xb = xa+b, ∀a, b ∈ Z.

(2) Check that ⟨x⟩ =
{
xk; k ∈ Z

}
.

Proof. The first equality is trivial but discussing each case separately. As for the second equality, we have that

⟨x⟩ = ⟨{x}⟩ = {1} ∪ {xϵ1
1 . . . xϵn

n ; n ∈ N∗, ϵi = ±1, xi ∈ {x}} (60)

= {1} ∪
{
xϵ1+...+ϵn ; n ∈ N∗, ϵi = ±1

}
=

{
xk; k ∈ Z

}
, (61)

so the proof is complete.

Example A.3. Let G be a group such that x2 = e for all x ∈ G.

(1) Check that G is commutative.

(2) Suppose that such a group G is a subgroup of GLn(R). Show that every element in G is diagonalizable with
eigenvalues ±1.

(3) Set Hn := {diag(ϵ1, . . . , ϵn); ϵi = ±1} ⊆ GLn(R). With the same assumption as above, show that Hn ≤ G.

(4) With the same assumptions as above, prove that there exists P ∈ GLn(R), such that for every M ∈ G,
PMP−1 ∈ Hn (this can be written as PGP−1 ⊆ Hn in short).

Proof. (1) ∀a, b ∈ G, we have that ab ∈ G. Therefore, (ab)2 = abab = e. Multiplying by a on the left and b on the
right on both sides of the equation, we can see that ba = a2bab2 = ab, so G is commutative.

(2) Since for each A ∈ G, A2 = I. This means that the minimal polynomial is λ2 − 1 which has two distinct roots,
so A is diagonalizable. Now suppose Av = λv. Multiplying by A on the left on both sides of the equation, we
have that v = A2v = λAv = λ2v. This implies that λ = ±1, so the proof is complete.

(3) The neutral element of Hn is I ∈ G. Take arbitrary A = diag(a1, . . . , an) ∈ Hn and B = diag(b1, . . . , bn) ∈ Hn.
Clearly AB = diag(a1b1, . . . , anbn) ∈ Hn because aibi = ±1, and A−1 = diag(a−1

1 , . . . , a−1
n ) ∈ Hn because

a−1
i = ±1. Hence we can conclude that Hn ≤ G.

(4) To be done...

9/8 Recitation

Example A.4. Let G ≤ Z and suppose that G ̸= {0}.

(1) Prove that the positive integer m := min(G ∩ N \ {0}) is well-defined.

(2) Prove that G = mZ.

Hence the only subgroups of Z are the groups mZ for m ∈ N.

Proof. (1) We recall the following theorems. S ⊆ N has a minimum if and only if S ̸= ∅; S ⊆ Z has a minimum
if and only if S ̸= ∅ and ∃x ∈ Z such that ∀s ∈ S, x ≤ s. By assumption, there exists y ∈ G \ {0} since 0 ∈ G
and G ̸= {0}. There are two cases. If y > 0, then y ∈ N, so we have found y ∈ G∩N \ {0}. Otherwise, −y ∈ N,
so we have found −y ∈ G ∩ N \ {0}. Therefore, G ∩ N \ {0} has a well-defined minimum.
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(2) We recall the Euclidean division lemma. Given two integers a and b with b ̸= 0, there exist unique integers q
and r such that a = bq + r and 0 ≤ r < |b|. Now take arbitrary x ∈ G, then we have that x = mq + r for some
(q, r) ∈ Z× [0, |m| − 1]. Note that m is the smallest positive integer in G ∩N \ {0}, so r = 0. This means that
x = mq for some q ∈ Z. Up till now we have checked that G ⊆ mZ. Now take arbitrary x ∈ mZ, there exists
y ∈ Z such that x = my. Now since m ∈ G and G is a group, clearly x ∈ G (add m ∈ G for y times). This has
shown that mZ ⊆ G, so we can conclude that G = mZ and the proof is complete.

Example A.5. Let A be a commutative group and a1, . . . , ar ∈ A. Show that ⟨a1, . . . , ar⟩ = {am1
1 . . . amr

r ; mi ∈ Z}.

Proof. ⊇ All ai’s belong to ⟨a1, . . . , ar⟩, and since ⟨a1, . . . , ar⟩ is stable under “multiplication” and inverse, clearly
am1
1 . . . amr

r ∈ ⟨a1, . . . , ar⟩, mi ∈ Z.

⊆ Denote H := {am1
1 . . . amr

r ; mi ∈ Z}. Each ai = a01 . . . a
1
i . . . a

0
r ∈ H, so {a1, . . . , ar} ⊆ H. Now we check that

H is a group. Clearly e = a01 . . . a
0
r ∈ H. Now take arbitrary x, y ∈ H and assuming that x = ax1

1 . . . axr
r and

y = ay1

1 . . . ayr
r , we can see that x · y = ax1+y1

1 . . . axr+yr
r ∈ H and x−1 = a−x1

1 . . . a−xr
r ∈ H. This proves that

H is a group, and in particular a group containing {a1, . . . , ar}. Note that ⟨a1, . . . , ar⟩ is the smallest group
containing {a1, . . . , ar}, so ⟨a1, . . . , ar⟩ ⊆ H.

Example A.6. Let G and G′ be two finite groups with the same cardinality n. Prove that if n = 2, 3, we have that
G′ ≃ G (i.e., G′ and G are isomorphic). Find a counterexample for n = 4.

Proof. For this question we make use of the Cayley table (Appendix B). If n = 2, we write the Cayley table for
G = {e, x} as

Te,x =

· e x
e e x
x x

(62)

We can see that the (2, 2)th entry of Te,x can only be e because each row or column must have distinct elements.
This means that the Cayley table for G′ = {e′, x′} will be of exactly the same form, so by Theorem B.4, G ≃ G′

when n = 2. Now if n = 3, we write the Cayley table for G = {e, x, y} as

Te,x,y =

· e x y
e e x y
x x
y y

(63)

We can see that the (2, 2)th entry of Te,x,y can only be y, because it cannot be x and the (2, 3)th entry that is in the
same column as it cannot be y. Therefore the (2, 3)th and the (3, 2)th entry must be e, and thus the (3, 3)th entry
must be x. The table is again uniquely determined, which means that the Cayley table for G′ = {e′, x′, y′} will be of
exactly the same form, so again by Theorem B.4, G ≃ G′ when n = 3. Now if n = 4, we can write the Cayley tables
for G = {e, x, y, z} and G′ = {e′, z′, y′, z′} respectively as

Te,x,y,z =

· e x y z
e e x y z
x x e z y
y y z e x
z z y x e

Te′,z′,y′,z′ =

· e x y z
e e x y z
x x y z e
y y z e x
z z e x y

(64)

These two Cayley tables are clearly not isomorphic. By the contrapositive of Theorem B.4, we can conclude that
G ̸≃ G′, and thus the above is a counterexample for the case n = 4.

9/15 Recitation

Example A.7. For G a group and x, y ∈ G, we denote by [x, y] the element [x, y] := xyx−1y−1 of G. It is called
the commutator of x and y. We denote by D(G) or [G,G] the commutator subgroup, also called the derived
subgroup of G, which is by definition generated by all the commutators in G, i.e.,

D(G) = [G,G] := ⟨[x, y]; x, y ∈ G⟩ . (65)
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(1) Let f ∈ Hom(G,G′), and suppose that S ⊆ G. Show that f(⟨S⟩) = ⟨f(S)⟩.

(2) Suppose that S is stable under conjugation, i.e., ιx(S) ⊆ S for any x ∈ G, prove that ⟨S⟩ ⊴ G.

(3) Prove that [G,G] ⊴ G.

(4) Prove that [G,G] = {e} if and only if G is commutative.

Proof. (1) ⊆ Take any y ∈ f(⟨S⟩), then there exists x ∈ ⟨S⟩ such that y = f(x). By Proposition 1.20, either
x = e or x =

∏n
i=1 s

ϵi
i for some n ∈ N, ϵi = ±1, and si ∈ S. In the former case, y = f(e) = e′ ∈ ⟨f(S)⟩.

In the latter case, since f is a group homomorphism, we have that y = f (
∏n

i=1 s
ϵi
i ) =

∏n
i=1 f(si)

ϵi .
This means that y ∈ ⟨f(S)⟩ because f(si) ∈ f(S) and ϵi = ±1 and we can apply the other direction of
Proposition 1.20.

⊇ Take any y ∈ ⟨f(S)⟩, then by Proposition 1.20, either y = e′ or y =
∏n

i=1 s
′
i
ϵi for some n ∈ N, ϵi = ±1,

and s′i ∈ f(S). In the former case, we note that f(e) = e′ = y so y ∈ f(⟨S⟩). In the latter case, there
exists s1, . . . , sn ∈ S, such that f(si) = s′i for any 1 ≤ i ≤ n. Since f is a group homomorphism, we have
that y =

∏n
i=1 f(si)

ϵi = f (
∏n

i=1 s
ϵi
i ). This means that y ∈ f(⟨S⟩) because si ∈ S and ϵi = ±1 and we can

apply the other direction of Proposition 1.20 to see that
∏n

i=1 s
ϵi
i ∈ ⟨S⟩.

(2) For any x ∈ G, we know that ιx ∈ Inn(G) ⊆ Hom(G,G), so ιx(⟨S⟩) = ⟨ιx(S)⟩ for any S ⊆ G as is shown in
the previous part. But since ιx(S) ⊆ S, we have that ⟨ιx(S)⟩ ⊆ ⟨S⟩, so ιx(⟨S⟩) ⊆ ⟨S⟩. This, by the alternative
definition, concludes that ⟨S⟩ ⊴ G.

(3) For any s ∈ [G,G], there exists x, y ∈ G such that s = xyx−1y−1. Then for any g ∈ G, we have that

gsg−1 = gxyx−1y−1g−1 = gx(g−1g)y(g−1g)x−1(g−1g)y−1g−1 = (gxg−1)(gyg−1)(gx−1g−1)(gy−1g−1)

= (gxg−1)︸ ︷︷ ︸
∈G

(gyg−1)︸ ︷︷ ︸
∈G

(gxg−1)−1(gyg−1)−1, (66)

so ιg(s) ∈ [G,G] for any s ∈ [G,G] and g ∈ G. In other words, ιg([G,G]) ⊆ [G,G] for any g ∈ G. By the
previous part, we can thus conclude that ⟨[G,G]⟩ ⊴ G.

(4) =⇒ If [G,G] = {e}, then for any x, y ∈ G, we have that xyx−1y−1 = e. In other words, xy = yx so that G is
commutative.

⇐= If G is commutative, then for any x, y ∈ G, we have that xyx−1y−1 = (xx−1)(yy−1) = e, so [G,G] = {e}.
The proof is thus complete.

Example A.8. Let K be a field. For 1 ≤ i ̸= j ≤ n and x ∈ K, set Ei,j(x) := In+xEi,j ∈ Mn(K), where Ei,j has all
entries equal to 0 except the entry in position (i, j) which is equal to 1. For t ∈ K∗, set dt = diag(t, In−1) ∈ Mn(K).

(1) Check that Ei,j(x) ∈ SLn(K) and dt ∈ GLn(K).

(2) Prove that SL2(K) = ⟨{Ei,j(x); 1 ≤ i ̸= j ≤ 2, x ∈ K}⟩.

(3) Prove that SLn(K) = ⟨{Ei,j(x); 1 ≤ i ̸= j ≤ n, x ∈ K}⟩.

(4) Prove that GLn(K) = ⟨{Ei,j(x); 1 ≤ i ̸= j ≤ n, x ∈ K} ∪ {dt; t ∈ K∗}⟩.

Proof. (1) Note that Ei,j(x) can either be upper triangular or lower triangular with diagonal elements all 1 because
for i ̸= j. Therefore, det(Ei,j(x)) = 1 which means that Ei,j(x) ∈ SLn(K). On the other hand, dt is diagonal
with diagonal elements t, 1, . . . , 1, so that det(dt) = t ̸= 0 for t ̸= 0. This means that dt ∈ GLn(K).

(2) To be done...

(3) To be done...

(4) To be done...
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B Cayley Table

Let G be a finite group with r elements. To a numbering g1, . . . , gr of the elements of G, one can associate the
corresponding multiplication table of G, also known as the Cayley table.

Tg1,...,gr :=

· g1 g2 . . . gr−1 gr
g1 g21 g1 · g2 . . . g1 · gr−1 g1 · gr
g2 g2 · g1 g22 . . . g2 · gr−1 g2 · gr
...

...
...

. . .
...

...
gr−1 gr−1 · g1 gr−1 · g2 . . . g2r−1 gr−1 · gr
gr gr · g1 gr · g2 . . . gr · gr−1 g2r

(67)

In other words, the table is of size r× r, and the entry in position (i, j) contains the value gi · gj . Often one chooses
g1 = e, the neutral element, in the numbering of G.

Example B.1. We write the multiplication table of U5 =
{
1, u, u2, u3, u4

}
where u = exp(2iπ/5), the 5th root of

unity. Using the relation u5 = 1, we obtain

T1,u,u2,u3,u4 =

· 1 u u2 u3 u4

1 1 u u2 u3 u4

u u u2 u3 u4 1
u2 u2 u3 u4 1 u
u3 u3 u4 1 u u2

u4 u4 1 u u2 u3

(68)

Proposition B.2. Let G be a finite group with r elements and g1, . . . , gr be a numbering of the elements of G. Then
each row and each column of Tg1,...,gr contains distinct elements, which are exactly all elements of G in a possibly
different order.

Proof. We observe that for a fixed g ∈ G, the mapping lg : G → G such that x 7→ g · x is bijective with inverse
mapping lg−1 . The same holds for rg : x 7→ x · g such that x 7→ x · g, which is bijective with inverse mapping rg−1 .
This implies that the elements of the ith row are lgi(g1), . . . , lgi(gr) (from left to right), and the elements of the jth
column are rgi(g1), . . . , rgi(gr) (from top to bottom). The proof is thus complete.

Definition B.3. Let G and G′ be two finite groups of the same cardinality r, with respective elements numbering
g1, . . . , gr and g′1, . . . , g

′
r. We say that T := Tg1,...,gr and T ′ = Tg′

1,...,g
′
r
are isomorphic if for all i, j ∈ {1, . . . , r}, the

following holds: if the entry Ti,j = gi · gj is equal to gk (for some k ∈ {1, . . . , r}), then the entry T ′
i,j = g′i · g′j is equal

to g′k (for the same k). We denote this as T ′ ≃ T .

Theorem B.4. Let G and G′ be two finite groups, then they are isomorphic if and only if they have the same
cardinatlity, say r, and if there are numberings g1, . . . , gr of G and g′1, . . . , g

′
r of G′, such that Tg′

1,...,g
′
r
≃ Tg1,...,gr .

Proof. =⇒ If G and G′ are isomorphic, then there exists ϕ ∈ Iso(G,G′). Fix an arbitrary numbering g1, . . . , gr
of G, and set g′i = ϕ(gi). Then g′1, . . . , g

′
r is a numbering of G′, and we observe that if gi · gj = gk, then

g′i · g′j = ϕ(gi) · ϕ(gj) = ϕ(gi · gj) = ϕ(gk) = g′k. Hence Tg′
1,...,g

′
r
≃ Tg1,...,gr .

⇐= Assume that there are numberings g1, . . . , gr of G and g′1, . . . , g
′
r of G′, such that Tg′

1,...,g
′
r
≃ Tg1,...,gr . We define

the mapping ϕ : G → G′ such that ϕ(gi) = g′i for i = 1, . . . , r. Clearly ϕ is a bijection and for any i, j, take the
unique integer 1 ≤ k ≤ r such that gk = gi · gj , we can deduce that

ϕ(gi · gj) = ϕ(gk) = g′k = g′i · g′j = ϕ(gi) · ϕ(gj). (69)

Therefore, ϕ preserves multiplication and is thus a group homomorphism, and further since ϕ is a bijection, we
can conclude that ϕ is an isomorphism. G and G′ are thus isomorphic.
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C Order of an Element

Definition C.1. Let G be a group and x ∈ G. Set αx : Z → G, such that k 7→ xk. Note that αx ∈ Hom(Z, G),
and that Im(αx) = ⟨x⟩. We say that x has infinite order if Ker(αx) = {0}, and that x has finite order if
Ker(αx) ̸= {0}.

Proposition C.2. x has finite order if and only if ⟨x⟩ is finite.

Proof. ⇐= If x has infinite order, then Z ≃ ⟨x⟩ so that ⟨x⟩ is infinite. Taking its contrapositive statement, we can
see that the finiteness of ⟨x⟩ implies that x is of finite order.

=⇒ If x has finite order, then there exists a unique n ≥ 1, such that Ker(αx) = nZ because Ker(αx) is necessarily a

subgroup of Z. Moreover by the first isomorphism theorem (Theorem 1.75), we know that in this case Z
nZ

αx≃ ⟨x⟩.
Therefore, we can see that | ⟨x⟩ | =

∣∣ Z
nZ

∣∣ = n, indicating that ⟨x⟩ is finite.

Definition C.3. If x has finite order, then the order of x is n = | ⟨x⟩ |. It is also the unique n ≥ 1 such that
Ker(αx) = nZ. We denote by o(x) = n the order of x.

Remark C.4. By convention, o(x) = ∞ if x has infinite order. We also use the convention that the minimal element
of the empty set of N∗ is ∞.

Proposition C.5. We have that o(x) = min
{
k ∈ N∗; xk = e

}
.

Proof. Set Cx :=
{
k ∈ N∗; xk = e

}
, then by definition, we have that Cx = Ker(αx)∩N∗. If Ker(αx) ̸= {0}, then we

have that Cx = (o(x)Z)∩N∗, so clearly min(Cx) = o(x). If Ker(αx) = {0}, then Cx is empty and thus by convention
min(Cx) = ∞, where we note that in this case x has infinite order and thus o(x) = ∞ as well. The proof is thus
complete.

Example C.6. (1) The order of e is o(e) = 1.

(2) In Z
nZ , we have that o(1) = n. In Un, we have that o(exp(2iπ/n)) = n.

(3) The elements of C∗ of finite order are the elements of U∞. The elements of R∗ of finite order are the elements
{±1}, where o(1) = 1 and o(−1) = 2.

(4) The order of an r-cycle in Sn is r. Indeed, let the cycle be c = (a1, . . . , ar). Note that ck means applying c
for k times. Clearly k < r does not hold, since otherwise ak+1 = a1 which breaks the cycle. But k = r clearly
holds, since applying c for r times brings each ai around the cycle back to itself, and any other element remains
unchanged, so cr is clearly the identity mapping. Therefore, the order of any r-cycle in Sn is r.

Proposition C.7. Let G be a finite group and x ∈ G, then o(x) | |G|. In particular, x|G| = e.

Proof. We note that ⟨x⟩ ≤ G and o(x) = | ⟨x⟩ |. By the Lagrange’s theorem (Theorem 1.65), clearly o(x) | |G|. Then
|G| = ao(x) for some a ≥ 1, which implies that x|G| = (xo(x))a = ea = e. The proof is thus complete.

D Chinese Remainder Theorem and its Applications

Theorem D.1 (Chinese remainder theorem (CFT)). If a and b are two coprime positive integers, then we have that

Z
abZ

≃ Z
aZ

× Z
bZ

. (70)
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Proof. Consider the mapping f : Z → Z
aZ × Z

bZ , such that x 7→ (xa, xb). Clearly f ∈ Hom
(
Z, Z

aZ × Z
bZ
)
. Moreover, we

claim that x ∈ Ker(f) if and only if ab | x. Indeed, if x ∈ Ker(f), then xa = 0
a
and xb = 0

b
. This necessarily means

that a | x and b | x, so that ab | x since a and b are assumed to be coprime. On the other hand, if ab | x, then clearly

a | x and b | x, and thus xa = 0
a
and xb = 0

b
. In other words, x ∈ Ker(f), thus the claim has been validated. Note

that Ker(f) is a subgroup of Z, so that it is of the form nZ for some unique n. By the claim, clearly Ker(f) = abZ.
Using the first isomorphism theorem (Theorem 1.75), we thus have that

Z
abZ

f→ Z
aZ

× Z
bZ

, (71)

is injective. Moreover, since both sides have cardinality ab, this is actually bijective. Therefore, we can conclude that

Z
abZ

≃ Z
aZ

× Z
bZ

, (72)

and the proof is complete.

Theorem D.2. Let A be a finitely generated commutative group, then there exists a unique m ∈ N, a unique r ∈ N,
and a unique sequence of positive integers (d1, . . . , dr) at least equal to 2 with di | di+1, such that

A ≃ Zm × Z
d1Z

× . . .× Z
drZ

. (73)

Here by convention, (1) A ≃ Z
d1Z × . . .× Z

drZ if m = 0, (2) A ≃ Zm if r = 0, and (3) A ≃ {0} if m = r = 0.

Proof. To be done...

Remark D.3. The di’s above are called the elementary divisors.

Theorem D.4. Let A be a finite commutative group, then there exists a unique r ∈ N∗ and a unique sequence of
positive integers (d1, . . . , dr) with di | di+1, such that

A ≃ Z
d1Z

× . . .× Z
drZ

. (74)

If a finite commuative group is written under this form, we say that it is under standard form.

Remark D.5. The method to put a product
∏s

i=1
Z

niZ under standard form is to use the Chinese remainder theorem

to decompose each Z
niZ as much as possible. For this, write the decomposition of ni into prime powers, such that

ni = p
a1,i

1,i × . . .× p
aki

,i

ki,i
. (75)

Then by the Chinese remainder theorem (Theorem D.1), we have that

Z
niZ

≃ Z
p
a1,i

1,i Z
× . . .× Z

p
aki

,i

ki,i
Z
. (76)

One then needs to pair again these elementary pieces by the Chinese remainder theorem in order to obtain the
standard form. For this, one makes a table in which each row corresponds to a given prime, and justifies the table to
the right by adding 1’s on the lefft if necessary. The product of the entries in each column of the table would then
give the elementary divisors dj .

Example D.6. (1) Z
nZ is already in standard form and n is the unique elementary divisor.

(2) Consider A ≃ Z
15Z × Z

50Z . Decomposing the product as much as possible using the Chinese remainder theorem,
we get that

A ≃
(

Z
3Z

× Z
5Z

)
×

(
Z
2Z

× Z
52Z

)
. (77)
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Therefore, for prime 2, we have powers 0 and 1; for prime 3, we have powers 1 and 0; and for prime 5, we
have powers 1 and 2. Taking the smallest powers for the first divisor, we have 20 × 30 × 51 = 5, and taking
the following powers for the second divisor, we have that 21 × 31 × 52 = 150. Therefore, applying the Chinese
remainder theorem (Theorem D.1), we can obtain the standard form as

A ≃ Z
5Z

×
(

Z
2Z

× Z
3Z

× Z
52Z

)
≃ Z

5Z
× Z

150Z
. (78)
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