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2

mailto:cole@cs.nyu.edu


Class time. Mondays & Wednesdays 2:00–3:15pm, 201 WWH.

Office hours. TBA, 1119 WWH.

Programming language. Julia, with git version control and Github Classroom.

Grading. Final 40%, Midterm 30%, Homework each 5%.

Course materials.

• Overton, Numerical Computing with IEEE Floating Point Arithmetic, SIAM, 2001.

• Driscoll and Braun, Fundamentals of Numerical Computation, SIAM, 2017.

• Trefethen and Bau, Numerical Linear Algebra, SIAM, 1997.

• Suli and Mayers, An Introduction to Numerical Analysis, Cambridge, 2003.

0 Introduction

• Nonlinear Equations. Nonlinear equations, nonlinear equations of several variables, and systems of nonlinear
equations of several variables.

• Linear Algebra. Solving Ax⃗ = b⃗, eigenproblems Av⃗ = λv⃗, decompositions A = QR = USV ⊤, and optimiza-
tions y = argmin f(x).

• Interpolation and Approximation. Interpolants and approximation.

• Numerical Integration. Riemann integrals and quadratures.

• Fast Algorithms. Fast Fourier transform O(n log n) and Monte Carlos.

1/25 Lecture

1 IEEE Arithmetic

1.1 Computer Representation of Numbers

Fixed point and floating point representation. A fixed point representation specifies a fix number of bits
for the integer and fraction part. For instance, with specified format “XXXX.XXXX”, 7.5 becomes 0007.5000. A
floating point representation, on the other hand, is represented ±M × 2E , where M ∈ [1, 2) is called the mantissa
and E is called the exponent. For instance, 23 = (10111)2 = (1.0111)2 × 24, 0.125 = (0.001)2 = (1.0)2 × 2−3, etc. A
floating point number is one that can be stored exactly on a computer.

Single precision and double precision. A single precision number is 32 bits in total, which include 1 bit for
the sign, 8 bits for the exponent, and 23 bits for the mantissa. For instance,

5.5 = 1.011× 22 = ( 0︸︷︷︸
sign

|E = 00000010︸ ︷︷ ︸
exponent

|M = 101100 · · · 0︸ ︷︷ ︸
mantissa, 23 bits

). (1)

On the other hand, a double precision number is 64 bits in total, which include 1 bit for the sign, 11 bits for the
exponent, and 52 bits for the mantissa. Single precision and double precision are standardized by IEEE in the 1980s.
In Julia, x = 7.0 stores a Float64 type variable, and x = 7 stores a Int64 type variable (an 8-byte integer).

To represent negative exponent E, the assumption is that E is offset by 1023, that is,

x = ±M × 2E−1023. (2)

In Julia, bitstring(x) returns the IEEE representation of x.

3



1.2 Rounding

Rounding. For instance, (0.1)10 = (1.1001100)2 × 2−4, so the mantissa must be rounded and its approximation is
stored as a floating point number. The dafault rounding strategy is rounding to the nearest. The important thing is
the error made in rounding.

Absolute rounding error = |round(x)− x|, Relative rounding error =
|round(x)− x|

|x|
. (3)

IEEE standards. IEEE standard says that it must be the case that

round(a+ b) = round(a)
⊕
︸︷︷︸

IEEE floating point addition

round(b) = (a+ b)(1 + δ), (4)

where |δ| < ϵ = MachEp, where MachEp denotes the machine precision. Machine precision is the distance between
1 and the next floating point number. In double precision, that is,

ϵ = −(0|011 · · · 1|00 · · · 0) + (0|011 · · · 1|00 · · · 01) = 2−52. (5)

IEEE standard also says the following about relative accuracy of computations that

|round(a+ b)− (a+ b)|
|a+ b|

= |δ| < ϵ. (6)

1/30 Lecture

2 Solving Nonlinear Equations

We can find solutions to linear equations such as 3x + 7 = 2, but we cannot generally find solutions to nonlinear
equations such as cosx+ x2 − 7 = 5. This is a root finding problem. A sufficient condition for a solution f(x) = 0
(f is continuous) to exist is stated in the following theorem.

Theorem 2.1. If f is continuous on [a, b], and if f(a) · f(b) ≤ 0, then there exists x ∈ [a, b], such that f(x) = 0.

Proof. This is immediate from the Intermediate Value Theorem.

2.1 Bisection

Idea. We will make use of Theorem 2.1. Split the interval in two, test the condition of a sign change and repeat.

Let a0 = a, b0 = b, and from the original interval, let [al, bl] be the interval obtained after l splittings. Then,

bl − al =
b0 − a0

2l
=
L

2l
. (7)

Let xl =
al+bl

2 be the approximation of the solution to f(x) = 0 in the lth step. The question is, when do we stop the
splittings, and how many steps of this algorithm do we take? If we want |xl − x∗| < ϵ where x∗ is the true solution
f(x∗) = 0, then we choose l such that

|xl − x∗| ≤
bl − al

2
=

L

2l+1
< ϵ =⇒ 2l+1 >

L

ϵ
=⇒ l > 1 + log2

(
L

ϵ

)
. (8)

Convergence behavior. If el = |xl − x∗| represents the error in the lth step, then el+1 = 1
2el, meaning that the

absolute error goes down by a factor of 2 in each iteration. Therefore, we can see that the bisection method is not
efficient enough.
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2.2 Secant Method

Idea. Bisection only used the sign information. If we use the values, we can do better. The idea is to approximate
by a line with an initial guess, find the root of the line, update the guess and repeat. The secant line is

s(x) =
f(x1)− f(x0)

x1 − x0
(x− x0) + f(x0), (9)

which has the root

x = x1 − f(x1) ·
x1 − x0

f(x1)− f(x0)
. (10)

We take this root as x2 and repeat the process with x0 substituted by x1 and x1 substituted by x2. Let fk = f(xk)
for the sake of simplicity. The secant method generates a sequence of approximations to the root of f by

xk+1 = xk − fk ·
xk − xk−1

fk − fk−1
. (11)

The convergence properties will be revisited later in this course.

2.3 Newton’s Method

Idea. In addition to the values of the function, we can make use of both the value and the derivative of a function
f at a single point to form an approximation line, find its root, and update and iterate just as in the secant method.
The equation of the tangent line is

f(x) = f(x0) + f ′(x0)(x− x0), (12)

which has the root

x = x0 −
f(x0)

f ′(x0)
. (13)

We take this root as x1 and repeat the process with x0 substituted by x1. The Newton’s method generates a sequence
of approximations to the root of f by

xk+1 = xk −
f(xk)

f ′(xk)
. (14)

Note that (12) is the first-order Taylor approximation of f .

Convergence behavior. Let ek = |ξ − xk| be the absolute error, where ξ is the true root of f . Newton’s method
converges quadratically, meaning that ek+1 = Ae2k for some constant A. Note that the absolute error is very small,
for instance, initially 10−1. Then with only 5 iterations, the error will be near machine precision.

Theorem 2.2 (Theorem 1.8 from Suli and Mayers). Suppose that f is twice continuously differentiable on the
interval Iδ = [ξ − δ, ξ + δ], δ > 0, with f(ξ) = 0 and f ′(ξ) ̸= 0. Also, assume A > 0 such that∣∣∣∣f ′′(x)f ′(y)

∣∣∣∣ ≤ A, ∀x, y ∈ Iδ. (15)

If the initial guess satisfies |ξ − x0| ≤ h, with h ≤ min
(
δ, 1

A

)
, then the sequence {xk} defined by Newton’s method

(14) converges quadratically to ξ.

2/1 Lecture

Proof. By Taylor’s Theorem, we have that

f(ξ) = 0 = f(x0) + f ′(x0)(ξ − x0) +
f ′′(ξ0)

2
(ξ − x0)2, (16)

5



where ξ0 ∈ [ξ, x0] ⊆ Iδ. By Newton’s method, we have that

ξ − x1 = ξ − x0 +
f(x0)

f ′(x0)
= − f ′′(ξ0)

2f ′(x0)
(ξ − x0)2. (17)

Therefore, we can deduce that

|ξ − x1| ≤
1

2

∣∣∣∣f ′′(ξ0)f ′(x0)

∣∣∣∣ |ξ − x0|2 ≤ 1

2
A |ξ − x0|2 ≤

1

2
Ah · 1

A
=
h

2
. (18)

Repeating this step k times, we can thus show that

|ξ − xk| ≤
h

2k
=⇒ lim

k→∞
xk = ξ, (19)

proving convergence. Furthermore, since

|ξ − xk+1| ≤
1

2

∣∣∣∣f ′′(ξk)f ′(xk)

∣∣∣∣ |ξ − xk|2 , (20)

we can see that

lim
k→∞

|ξ − xk+1|
|ξ − xk|2

= lim
k→∞

∣∣∣∣f ′′(ξk)f ′(xk)

∣∣∣∣ = 1

2

∣∣∣∣f ′′(ξ)f ′(ξ)

∣∣∣∣ = const. (21)

This is exactly the definition of quadratic convergence.

Failures of Newton’s method.

• When Newton’s method fails to converge (quadratically), it is usually because f ′(ξ) = 0 at the root. In this
case, (15) may not hold, i.e., the quantity may not remain bounded.

• For some initial guesses, Newton’s method may fail to converge at all.

Rates of Convergence

For the convergent sequence ek = |xk − x∗|, we can consider the following limit

lim
k→∞

ek+1

eαk
= µ. (22)

For instance, Bisection method has α = 1 (i.e., linear convergence), Secant method has approximately α = 1.62, and
Newton’s method has α = 2 (i.e., quadratic convergence). For α = 1, we further define the order of convergence as
follows: For α = 1 and µ < 1, set ρ = − log10 µ as the asymptotic rate of convergence. As an illustration, if µ = 1/10,
this means that

ek+1

ek
≈ 1

10
, (23)

i.e., the error goes down by 10% every iteration. That is to say that xk gets one more correct digit every iteration,
and we can see that

ρ = − log10 µ = − log10
1

10
= 1. (24)

3 Solving Nonlinear Systems

A nonlinear system of equations in n variables x1, · · · , xn is given by

f1(x1, · · · , xn) = 0,
...

fn(x1, · · · , xn) = 0,

(25)

6



which can be condense into the notation

f⃗(x⃗) = 0⃗, (26)

where

f⃗ =

f1(x⃗)...
fn(x⃗)

 , x⃗ =
(
x1 · · · xn

)
. (27)

Note that:

• Bisection does not, in general, extend to higher dimensions, since sign changes do not necessarily indicate roots.

• The idea behind Secant method and Newton’s method directly extends to higher dimensions: Linearize (ap-
proximate by a linear function) and find the root of the approximant.

Vector and Matrix Norms

Definition 3.1. Suppose u⃗, v⃗, x⃗ ∈ Cn, then ∥·∥ is a norm on Cn if

(1) ∥x⃗∥ ≥ 0, and ∥x⃗∥ = 0 if and only if x⃗ = 0⃗.

(2) ∥αx⃗∥ = |α|∥x⃗∥ for α ∈ C.

(3) ∥u⃗+ v⃗∥ ≤ ∥u⃗∥+ ∥v⃗∥ (triangle inequality).

The most useful norm in Numerical Analysis is the l2-norm, defined as ∥u⃗∥2 =
√∑

i |ui|2. Other norms commonly
used include:

• l∞-norm: ∥u⃗∥∞ = maxi |ui|.

• l1-norm: ∥u⃗∥1 =
∑

i |ui|.

• lp-norm: ∥u⃗∥p = (
∑

i |ui|p)
1/p

.

Definition 3.2. Suppose A,B ∈ Cm×n, then ∥·∥ is a matrix norm if

(1) ∥A∥ ≥ 0, and ∥A∥ = 0 if and only if A = 0.

(2) ∥αA∥ = |α|∥A∥ for α ∈ C.

(3) ∥A+B∥ ≤ ∥A∥+ ∥B∥.

If ∥·∥ is any vector norm, then the induced matrix norm is defined as

∥A∥ = max
∥u⃗∥=1

∥Au⃗∥ = max
u⃗

∥Au⃗∥
∥u⃗∥

. (28)

2/6 Lecture

For instance, if ∥u⃗∥ = ∥u⃗∥1 =
∑n

i=1 |ui|, then the induced matrix norm on A ∈ Cm×n is

∥A∥1 = max
j=1,··· ,n

n∑
i=1

|Aij |. (29)
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To see this, note that

∥Au⃗∥1 =

∥∥∥∥∥∥
n∑

j=1

ujA⃗j

∥∥∥∥∥∥
1

≤
n∑

j=1

|uj |∥A⃗j∥1 ≤
(
max

j
∥A⃗j∥1

) n∑
j=1

|uj |

 =

(
max

j

n∑
i=1

|Aij |

)
∥u⃗∥1. (30)

Therefore, we have that

∥Au⃗∥1
∥u⃗∥1

≤ max
j

n∑
i=1

|Aij |. (31)

But taking u⃗ as a zero vector with only the jth entry as 1, we can see that ∥Au⃗∥1 ≥ ∥A⃗j∥1, so the equality must
hold for some u⃗. Therefore, we can conclude that

∥A∥1 = max
u⃗

∥Au⃗∥
∥u⃗∥

= max
j=1,··· ,n

n∑
i=1

|Aij |. (32)

Theorem 3.3. Let A ∈ Rm×n be a matrix. Then

∥A∥2 =
√
max

j
λj , (33)

where λj is the jth eigenvalue of A⊤A.

Proof. We have that

∥Au⃗∥2 = (Au⃗,Au⃗) = (Au⃗)
⊤
Au⃗ = u⃗⊤A⊤Au⃗. (34)

Note that A⊤A is real and symmetric, it is diagonalizable, so we can write

∥Au⃗∥2 = u⃗⊤P⊤DPu⃗, (35)

where D is a diagonal matrix of eigenvalues and P is orthogonal (i.e., P⊤ = P−1). Therefore, we can compute that

max
∥u⃗∥=1

∥Au⃗∥22 = max
∥u⃗∥=1

∥u⃗⊤P⊤DPu⃗∥22 = max
∥y⃗∥=1

∥y⃗⊤Dy⃗∥22 = max
∥y⃗∥=1

n∑
i=1

y2i λi = max
i
λi, (36)

where we can change y⃗ = Pu⃗ without changing the norm since P is diagonal, and the proof of the last equality is
left as an exercise.

Condition number

The condition number of the problem is the sensitivity of the “problem” at the solution. For instance, consider a
function y = f(x), the how sensitive is y to x?

• In an absolute sense, we can write that

|y − y′| = C(x)|x− x′|, (37)

where C(x) is the absolute condition number at x. Note that C(x) ≈ |f ′(x)| when x′ is close to x.

• In a relative sense, we can write that

|y′ − y|
|y|

= K(x)
|x′ − x|
|x|

, (38)

where K(x) is the relative condition number at x. Note that K(x) ≈
∣∣∣xf ′(x)

f(x)

∣∣∣ when x′ is close to x.
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Conditioning for matrix equations. Consider solving Ax⃗ = b⃗, where the input is b⃗ and the output is x⃗ = A−1⃗b.
Let ∥⃗b′ − b⃗∥ be small, and let x⃗′ = A−1⃗b′, x⃗ = A−1⃗b. Then we have that

∥x⃗′ − x⃗∥ = ∥A−1⃗b′ −A−1⃗b∥ ≤ ∥A−1∥ · ∥⃗b′ − b⃗∥, (39)

where ∥A−1∥ denotes the induced matrix norm, and in this case the absolute condition number of A at b⃗. However,
recall that the absolute condition number tells us nothing about the number of correct digits in the answer, so we
need the relative condition number, which can be computed as

∥x⃗′ − x⃗∥
∥x⃗∥

≤ ∥A−1∥ · ∥⃗b
′ − b⃗∥
∥x⃗∥

= ∥A−1∥ · ∥⃗b
′ − b⃗∥
∥⃗b∥

· ∥⃗b∥
∥x⃗∥

= ∥A−1∥ · ∥⃗b
′ − b⃗∥
∥⃗b∥

· ∥Ax⃗∥
∥x⃗∥

≤ ∥A−1∥∥A∥ · ∥⃗b
′ − b⃗∥
∥⃗b∥

, (40)

so that ∥A−1∥∥A∥ is the relative condition number of A at b⃗.

The Singular Value Decomposition

If A ∈ Rm×n with m ≥ n, then we can write

A = UΣV ⊤, (41)

where U ∈ Rm×m and V ∈ Rn×n are diagonal, and Σ ∈ Rm×n is a rectangular diagonal matrix.

2/8 Lecture

Recall that the Taylor series of a scalar-valued function of several variables is

f = f(x1, · · · , xn) = f(y⃗) +
∑
j

∂f

∂xj
(xj − yj) + higher order terms. (42)

3.1 Multivariable Vector-Valued Taylor Series

Consider the multivariable vector-valued function

f⃗(x⃗) =

f1(x1, · · · , xm)
...

fn(x1, · · · , xm)

 . (43)

Place the expansions back into f⃗ and collect the terms, we have that

f⃗(x⃗) =


f1(y⃗) +

∑n
k=1

∂f1(y⃗)
∂xk

(xk − yk) + · · ·
...

fn(y⃗) +
∑n

k=1
∂fn(y⃗)
∂xk

(xk − yk) + · · ·

 = f⃗(y⃗) +


∂f1(y⃗)
∂x1

· · · ∂f1(y⃗)
∂xm

...
...

∂fn(y⃗)
∂x1

· · · ∂fn(y⃗)
∂xm


 x1 − y1

...
xm − ym


= f⃗(y⃗) + J(y⃗)(x⃗− y⃗) + (x⃗− y⃗)⊤ · Q(y⃗)

2
· (x⃗− y⃗) + higher order terms, (44)

where J is called the Jacobian matrix, and Q is a tensor defined so that the ith entry of the second-order term

(x⃗− y⃗)⊤ · Q(y⃗)
2 · (x⃗− y⃗) is given by

1

2

∑
k,l

∂2fi(y⃗)

∂xk∂xl
(xk − yk)(xl − yl) =

1

2
(x⃗− y⃗)⊤Hi(y⃗)(x⃗− y⃗), (45)

and Hi is the Hessian for fi.
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3.2 Multivariate Newton’s Method

We want to solve a square system f⃗(x⃗) = 0⃗ (i.e., m = n). In general, determining whether there is one, none, or

multiple solutions is exceedingly difficult. However, if a approximate f⃗ at x⃗0 near the root ξ⃗, then we have

f⃗(x⃗) ≈ f⃗(x⃗0) + J(x⃗0)(x⃗− x⃗0), (46)

also known as the truncated multivariable Taylor series. Evaluting at x⃗i, we have that

f⃗(x⃗i) = 0⃗ ≈ f⃗(x⃗0) + J(x⃗0)(ξ⃗ − x⃗0) =⇒ −f⃗(x⃗0) ≈ J(x⃗0)(ξ⃗ − x⃗0) =⇒ ξ⃗ ≈ x⃗0 − J−1(x⃗0)f⃗(x⃗0). (47)

Therefore, the Newton iteration is

x⃗k+1 = x⃗k − J−1(x⃗k)f⃗(x⃗k). (48)

It can be shown that convergence is also quadratic, meaning that

∥x⃗k+1 − ξ⃗∥2 ≈ ∥x⃗k − ξ⃗∥22. (49)

Much like Newton’s method, quadratic convergence may suffer if we have a singular Jacobian J(x⃗k). Another
commonly seen form of the multivariate Newton’s method is

J(x⃗k)(x⃗k+1 − x⃗k) = f(x⃗k), (50)

which can be done by solving J(x⃗k)s⃗k = f(x⃗k) and setting x⃗k+1 = x⃗k + s⃗k in the iterative step. We will revise this
when we talk about optimization.

2/13 Lecture

4 Optimization

4.1 Single Variable Optimization

Recall that root finding solves f(x) = 0. If we instead want to maximize or minimize f , we want to look for x such
that f ′(x) = 0. Therefore, we can apply our root finding methods to the equation f ′(x) = 0 instead. Newton’s
method then becomes

xk+1 = xk −
f ′(xk)

f ′′(xk)
. (51)

However, note that for a general continuous function, f ′(x) = 0 does not necessarily imply a global optimum. It can
imply local optimums, or even non-optimal points (for instance, x = 0 for f(x) = x3). One (common) regime where
we can guarantee a minimum or maximum is when f is convex, defined as follows.

Definition 4.1. f is convex on [a, b] if

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y), (52)

for all 0 ≤ α ≤ 1 and x, y ∈ [a, b].

Theorem 4.2. If f is convex on [a, b], then any local minimum of f is also a global minimum of f .

Proof. We prove by contradiction. Let x∗ be a local minimum of f , and x̃ ̸= x∗ be such that f(x̃) < f(x∗). Then,
since f is convex, we have that

f(αx∗ + (1− α)x̃) ≤ αf(x∗) + (1− α)f(x̃) < αf(x∗) + (1− α)f(x∗) = f(x∗). (53)

But since f is convex and x∗ is a local minimum of f , there exists some small neighborhood Bϵ(x
∗) around x∗, such

that f(x) ≥ f(x∗) for all x ∈ Bϵ(x
∗). Taking α = 1 − ϵ

2|x∗−x̃| (ϵ can be arbitrarily small so we can guarantee that

0 ≤ α ≤ 1), we observe that

|αx∗ + (1− α)x̃− x∗| = (1− α)|x∗ − x̃| = ϵ

2
< ϵ, (54)

so αx∗ + (1− α)x̃ ∈ Bϵ(x
∗). But (53) then leads to a contradiction, so the proof is complete.
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Theorem 4.3. If f is strictly convex, then there is only one local minimum.

Proof. Strictly convexity requires the inequality in (52) to be strict. The proof is trivial.

4.2 Multivariate Optimization

Multivariate Newton’s method. Now consider that we want to find

x⃗∗ = argmin
x⃗∈X

f(x⃗) = argmin
x⃗∈X

f(x1, x2, · · · , xn). (55)

Assume that f is smooth and strictly convex, then we can (hopefully) solve this using Newton’s method on the

system ∇⃗f = 0⃗, which is equivalent to ∂f/∂xi = 0 for all i = 1, · · · , n. Then Newton’s method says that

x⃗k+1 = x⃗k −


∂

∂x1

(
∂f(x⃗k)
∂x1

)
· · · ∂

∂xn

(
∂f(x⃗k)
∂x1

)
...

...
∂

∂x1

(
∂f(x⃗k)
∂xn

)
· · · ∂

∂xn

(
∂f(x⃗k)
∂xn

)


−1

∇⃗f(x⃗k)

= x⃗k −


∂2f(x⃗k)
∂x1∂x1

· · · ∂2f(x⃗k)
∂x1∂xn

...
...

∂2f(x⃗k)
∂xn∂x1

· · · ∂2f(x⃗k)
∂xn∂xn


−1

∇⃗f(x⃗k) = x⃗k −H−1(x⃗k)∇⃗f(x⃗k), (56)

where H denotes the Hessian matrix. There is one computational challenge with this: evaluating and inverting the
Hessian matrix are expensive, taking O(n2/2) and O(n3) time respectively. To avoid explicit construction of H, we
consider Quasi-Newton methods, and recall that the secant method is the most basic Quasi-Newton method.

Broyden’s Update. The goal is to form an approximation to H on each step of the multivariate Newton’s method
for optimization, and to be able to cheaply update this approximation. For instance, we want something like

x⃗1 = x⃗0 −H−1(x⃗0)∇⃗f(x⃗0), x⃗2 = x⃗1 −H−1(x⃗1)∇⃗f(x⃗1), H(x⃗1) = H(x⃗0) + something. (57)

Now consider the implied linear approximation from the multivariate Newton’s method for optimization, that is,

∇⃗f(x⃗k+1) ≈ 0⃗ ≈ ∇⃗f(x⃗k)︸ ︷︷ ︸
=:∇⃗fk

+H(x⃗k)︸ ︷︷ ︸
:=Hk

(x⃗k+1 − x⃗k)︸ ︷︷ ︸
=:s⃗k

=⇒ Hks⃗k ≈ −∇⃗fk. (58)

To continue the iteration, we want to update the approximate Hessian matrix to Hk+1. Similar to the secant method,
it should also be the case that

∇⃗fk+1 − ∇⃗fk ≈ Hk+1(x⃗k+1 − x⃗k) =⇒ Hk+1s⃗k ≈ ∇⃗fk+1 − ∇⃗fk. (59)

Of course this does not uniquely determine Hk+1 given s⃗k, ∇⃗fk+1, and ∇⃗fk are known. We need an extra constraint
that Hk+1 −Hk is of rank 1. This gives that

Hk+1 = Hk +
1

s⃗⊤k s⃗k

(
∇⃗fk+1 − ∇⃗fk −Hks⃗k

)
s⃗⊤k . (60)

Note that the form u⃗v⃗⊤ is the outer product u⃗ ⊗ v⃗, while the form u⃗⊤v⃗ is the inner product u⃗ · v⃗. Therefore, we
propose the corresponding algorithm as follows. First, we initialize H0 (finite differences, diagonal, etc.). Then, we

set x⃗1 = x⃗0 −H−1
0 ∇⃗f(x⃗0) and update to H1 based on (60). Iterate this step until the terminating condition is met.

Remark 4.4. Since we are interested only in H−1, there is actually a better way to update H−1
k+1 given H−1

k without
referring to Hk+1 or Hk. Note that the updated Hessian matrix is in the form

Hk+1 = Hk + u⃗v⃗⊤. (61)

Therefore, we can use the Sherman-Morrison-Woodbury formula, which states that

(A+ u⃗v⃗⊤)−1 = A−1 − A−1u⃗v⃗⊤A−1

1 + v⃗⊤A−1u⃗
. (62)
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2/15 Lecture

5 Numerical Linear Algebra

In infinite precision-exact arithmetic, solving linear systems comes down to a question of whether the system is
consistent or not. On the computer, however, the situation is different due to the round-off error and finite precision
calculations. We first make a few remarks on Julia. In Julia, the jth column of a matrix can be accessed by A[:,j].
A submatrix can be extracted as A[i1:i2,j1:j2]. To generate a matrix, one can do something like A=rand(5,4).
To compute the induced p-norm, one can use opnorm(A,p). Note that p=Inf is also an option.

5.1 Gaussian Elimination

We all know how Gaussian elimination works. Consider a 2× 2 matrix

A =

(
a11 a12
a21 a22

)
. (63)

Then Ax⃗ = b⃗ can be solved by eliminating a21, such that(
a11 a12
a21 a22

∣∣∣∣ b1
b2

)
∼
(
a11 a12
0 a22 − a12a21

a11

∣∣∣∣ b1
b2 − a12a21

a11

)
. (64)

This implies that

x2 =
b2 − a12a21

a11

a22 − a12a21

a11

, x1 =
b1 − a12x2

a11
. (65)

This process is called the backward substitution, but it can easily fail. For instance, if one or some of the denominators
evaluate to zero, then the process can no longer proceed. A successful algorithm would need to involve pivoting rows,
and we will return to this later. One question to consider for this moment is how expensive is Gaussian elimination.
To see this, we need to count the number of floating-point operations required to put A in echelon form. Consider
the following algorithm:

1: for columns j = 1, · · · , n− 1 do
2: for rows i = j + 1, · · · , n do
3: Compute val = aij/ajj ;
4: Compute rowi − val · rowj ;
5: Compute bi − val · bj ;
6: end for
7: end for

Within each inner loop, the first computation takes 1 operation, the second computation takes 2(n−j) computations,
and the third operation takes 2 flops. Therefore, the total number of floating-point operations can be computed as

n−1∑
j=1

n∑
i=j+1

(2(n− j) + 3) =

n−1∑
j=1

(n− j)(2(n− j) + 3) = Θ(n3). (66)

5.2 LU Factorization

Another way to think about Gaussian elimination is the LU factorization. Each row operation corresponds to a
matrix multiplication by an elementary lower triangular matrix on the left. For instance, consider the matrix

A =

1 2 3
4 5 6
7 8 0

 . (67)
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We can perform some elementary row operations on A such that 1 0 0
−4 1 0
−7 0 1


︸ ︷︷ ︸

L1

1 2 3
4 5 6
7 8 0


︸ ︷︷ ︸

A

=

1 2 3
0 −3 −6
0 −6 −21

 , (68)

1 0 0
0 1 0
0 −2 1


︸ ︷︷ ︸

L2

1 2 3
0 −3 −6
0 −6 −21


︸ ︷︷ ︸

L1A

=

1 2 3
0 −3 −6
0 0 −9


︸ ︷︷ ︸

U

. (69)

Therefore, we can see that L2L1A = U , which implies A = L−1
1 L−1

2 U . Note that L−1
1 L−1

2 is also lower triangular,

then solving Ax⃗ = b⃗ is equivalent to solving LUx⃗ = b⃗, where L is a lower triangular matrix and U is an upper
triangular matrix. To do this, we only need to solve Ly⃗ = b⃗ by forward substitution, and then solve Ux⃗ = y⃗ using
backward substitution. Each of these steps take O(n2) operations. However, the LU factorization step requires the
same number of operations as the Gaussian elimination, which is O(n3), thus dominating the runtime.

Gaussian elimination and LU factorization failure. We have to notice that Gaussian elimination and LU
factorization may fail if there is a zero or a small number in the pivot position. The solution is to interchange some
rows, resulting in a factorization of the form PA = LU , where P is a permutation (row exchanging) matrix. For
instance, let ϵ <MachEp, then consider (

ϵ 1
1 1

)(
x1
x2

)
=

(
1
2

)
. (70)

The exact solution to this linear system is

x1 = 1 +
ϵ

ϵ− 1
, x2 = 1− ϵ

ϵ+ 1
, (71)

and note that x1 and x2 are both approximately 1. Without pivoting, in floating point arithmetic, Gaussian elimi-
nation will give us (

ϵ 1
1 1

∣∣∣∣ 1
2

)
∼
(
ϵ 1
0 1− 1/ϵ

∣∣∣∣ 1
2− 1/ϵ

)
≈
(
ϵ 1
0 −1/ϵ

∣∣∣∣ 1
−1/ϵ

)
, (72)

which would further result in

x2 = 1, x1 =
1− 1

ϵ
= 0, (73)

throwing the wrong answer.

2/22 Lecture

Before discussing pivoted LU factorization, there is one special case where it can be shown that pivoting is not
necessary: x⃗⊤Ax⃗ > 0, i.e., A is a symmetric positive definite matrix. Note that this fact is one of the earliest results
in numerical analysis.

5.3 Cholesky Factorization

If A is a symmetric positive definite matrix, then we can write it as A = U⊤U , since then A⊤ = U⊤U as well. The
algorithm is straightforward. Set

U =


u11 u12 · · · u1n
0 u22 · · · u2n
...

...
. . .

...
0 0 · · · unn

 , (74)
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where ujj ̸= 1 for all j (in fact, this condition is not necessary). Then, we have that

U⊤U =


u11 0 · · · 0
u12 u22 · · · 0
...

...
. . .

...
u1n u2n · · · unn



u11 u12 · · · u1n
0 u22 · · · u2n
...

...
. . .

...
0 0 · · · unn

 =


u211 u11u12 · · · u11u1n

u12u11
∑2

i=1 u
2
i2 · · ·

∑2
i=1 ui2uin

...
...

. . .
...

u1nu11
∑2

i=1 uinui2 · · ·
∑n

i=1 u
2
in

 . (75)

Therefore, if we set A = U⊤U , we can iteratively compute u11 =
√
a11, u12 = a12/u11, and so on. The total cost

would be Θ(n3/3) for the Cholesky factorization algorithm.

5.4 Row Pivoting

When pivoting is necessary when doing an LU decomposition, we can effectively write

LmPm−1 · · ·L3P2L2P1L1A = U, (76)

where each Lj is a lower triangular matrix and each Pj is a permutation matrix. By the term “permutation matrix”,
we refer to some matrix P0 that can for instance interchange two rows, such that

P0A =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



− a⃗⊤1 −
− a⃗⊤2 −
− a⃗⊤3 −
− a⃗⊤4 −

 =


− a⃗⊤1 −
− a⃗⊤2 −
− a⃗⊤4 −
− a⃗⊤3 −

 . (77)

The question is, how to obtain an equivalent form of the factorization PA = LU , where P is the permutation matrix
resulting from all of the row swaps in the factorization (possibly reordering all rows), L is a lower triangular matrix,
and U is an upper triangular matrix. Moreover, note that since each Pj involves only a single row interchange (to
be distinguished from P ), we have that P−1

j = Pj = P⊤
j . As an example, suppose that L2P1L1A = U . We then take

L2 = L′
2 and L1 = P1L

′
1P1. This thus implies that

L′
2P1P1L

′
1P1A = U =⇒ L′

2L
′
1P1A = U =⇒ P1A = (L′

2L
′
1)

−1U. (78)

It can be easily shown that L′
1 = P1L1P1 and L′

2 = L2 are lower triangular, and therefore in the general case, all
permutation matrices can be “moved” to the right by the above argument (details omitted, but make heavy use of
the fact that Pj = P−1

j as above).

Gaussian elimination and LU factorization failure (revisited). Recall a previous example, in which we set
ϵ <MachEp and consider (

ϵ 1
1 1

)(
x1
x2

)
=

(
1
2

)
. (79)

The exact solution to this linear system is

x1 = 1 +
ϵ

ϵ− 1
, x2 = 1− ϵ

ϵ+ 1
, (80)

but Gaussian elimination without pivoting would result in

x2 = 1, x1 =
1− 1

ϵ
= 0. (81)

Now with row pivoting, we swap the first and second rows, so that(
1 1
ϵ 1

∣∣∣∣ 2
1

)
∼
(

1 1
0 1− ϵ

∣∣∣∣ 2
1− 2ϵ

)
≈
(

1 1
0 1

∣∣∣∣ 2
1

)
, (82)

resulting in the correct answer

x2 = 1, x1 =
2− 1

1
= 1. (83)
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5.5 Conditioning and Backward Stability

Recall from before that we computed the (relative) condition number of solving Ax⃗ = b⃗, which is

K(A) = ∥A∥∥A−1∥. (84)

Theorem 5.1 (Perturbations of A, x⃗). If A(x⃗+∆x⃗) = b⃗+∆b⃗, then

∥∆x⃗∥
∥x⃗∥

≤ K(A)
∥∆b⃗∥
∥⃗b∥

. (85)

If (A+∆A)(x⃗+∆x⃗) = b⃗, then

∥∆x⃗∥
∥x⃗∥

≤ K(A)
∥∆A∥
∥A∥

, as ∥∆A∥ → 0. (86)

Note that for any induced matrix norm, we have that

1 = ∥I∥ = ∥AA−1∥ ≤ ∥A∥∥A−1∥ = K(A), (87)

so a condition number of 1 is the best we can hope for. In that case, the relative perturbation of the solution has
the same size as that of the data. A condition number of size 10t indicates that in floating point arithmetic, roughly
t digits are lost (i.e., become incorrect) in computing the solution x⃗. Moreover, if K(A) > MachEp−1, then for
computational purposes the matrix A is singular.

Residual and backward error. Suppose that x̃ is the computed solution to the exact linear system Ax⃗ = b⃗, then
x̃ = x⃗ is unknown since the exact solution x⃗ is unknown. Define the residual as

r⃗ = b⃗−Ax̃, (88)

and note that x̃ solves the linear system Ax̃ = b⃗− r⃗, a perturbed linear system. The backward error is then ∥r⃗∥, which
the the perturbation from the original problem to the one that is solved exactly. However, note that small backward
error does not necessarily imply small ∥x̃ − x⃗∥. To see this, let h⃗ = x̃ − x⃗ and thus Ah⃗ = −r⃗. By Theorem 5.1, we
have that

∥x⃗− x̃∥
∥x⃗∥

≤ K(A)
∥r∥
∥b∥

. (89)

This says that the relative error can be much larger than the relative residual when the condition number K(A) is
large. In other words, when solving a linear system, all that can be expected is that the backward error be small,
but we cannot guarantee a bound on the error.

5.6 QR Factorization

For the moment, let A ∈ Rm×n with m ≥ n and rank(A) = n (i.e., n linearly independent columns). For a general

b⃗ ∈ Rm, the system Ax⃗ = b⃗ has no solution if m > n. We can, however, ask for the least-squares solution

x⃗∗ = argmin
x⃗
∥Ax⃗− b⃗∥2. (90)

In order to achieve this, we require that x⃗∗ satisfies the normal equations

A⊤(Ax⃗− b⃗) = 0⃗ =⇒ A⊤Ax⃗ = A⊤b⃗. (91)

To see this, let y⃗ ∈ Rn be any vector, then

∥A(x⃗+ y⃗)− b⃗∥22 = (Ax⃗+Ay⃗ − b⃗)⊤(Ax⃗+Ay⃗ − b⃗) = (Ax⃗− b⃗)⊤(Ax⃗− b⃗) + 2(Ay⃗)⊤(Ax⃗− b⃗) + (Ay⃗)⊤(Ay⃗)

= ∥Ax⃗− b⃗∥22 + 2y⊤A⊤(Ax⃗− b⃗) + ∥Ay⃗∥22 = ∥Ax⃗− b⃗∥22 + ∥Ay⃗∥22 ≥ ∥Ax⃗− b⃗∥22, (92)
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which completes the proof. Furthermore, if we can write A = QR with Q ∈ Rm×n orthogonal (i.e., Q⊤Q = I) and
R ∈ Rn×n upper triangular, the normal equations would become

R⊤Q⊤QRx⃗ = R⊤Q⊤b⃗ =⇒ R⊤Rx⃗ = R⊤Q⊤b⃗. (93)

Clearly R⊤ is non-singular, so this is equivalent to solving Rx⃗ = Q⊤b⃗. This is an n × n square triangular linear
system that can be easily solved by backward substitution, and has a solution x⃗ = R−1Q⊤b⃗, which is the desired
least-squares solution.

2/27 Lecture

There are in general two scenarios of QR factorization in the case m ≥ n and full rank n.

(I) Reduced QR factorization:

(II) Full QR factorization:

5.7 Gram-Schmidt (Triangular) Orthogonalization

In this section, consider the reduced QR factorization, i.e., factorization of Type (I).

The simple (and naive) way to compute Q is via the Gram-Schmidt process which creates an orthonormal basis for
the span of the columns of A, i.e., a⃗1, · · · , a⃗n ∈ Rm. Write

A =

 | | |
a⃗1 a⃗2 · · · a⃗n
| | |

 , Q =

 | | |
q⃗1 q⃗2 · · · q⃗n
| | |

 (94)

If A = QR, then since R is an upper triangular matrix, we have that
a⃗1 = r11q⃗1,
a⃗2 = r12q⃗1 + r22q⃗2,

...
a⃗n = r1nq⃗1 + · · ·+ rnnq⃗n.

(95)
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The Gram-Schmidt process says: turn a⃗1, · · · , a⃗n into q⃗1, · · · , q⃗n, so that Q can be a matrix with orthonormal columns
(i.e., an orthogonal matrix). The algorithm is then described as follows: on the jth step, set

v⃗j = a⃗j − (q⃗⊤1 a⃗j)q⃗1 − · · · − (q⃗⊤j−1a⃗j)q⃗j−1, q⃗j =
v⃗j
∥v⃗j∥

. (96)

Comparing with (95), this implies that

rij = q⃗i
⊤a⃗j , |rjj | =

∥∥∥∥∥a⃗j −
j−1∑
i=1

rij q⃗i

∥∥∥∥∥
2

, (97)

since we have that

rjj q⃗j = a⃗j − rij q⃗1 − · · · − rj−1,j q⃗j−1. (98)

The pseudocode of this classical Gram-Schmidt orthogonalization algorithm is shown as follows.

1: for j = 1 to n do
2: v⃗j ← a⃗j ;
3: for i = 1 to j − 1 do
4: rij ← q⃗⊤i a⃗j ;
5: v⃗j ← v⃗j − rij q⃗i; // round-off error can accumulate

6: end for
7: rjj ← ∥v⃗j∥2;
8: q⃗j ← v⃗j/rjj ;
9: end for

Unfortunately, this algorithm is numerically unstable. The updating step in the first equation of (96) will require
an iteration over i = 1, · · · , j − 1, potentially causing the the round-off error to accumulate. An alternative way to
think about the Gram-Schmidt orthogonalization algorithm is as follows. Define

Qj−1 =

 | | |
q⃗1 q⃗2 · · · q⃗j−1

| | |

 , (99)

and let Pj be the projector onto the subspace orthogonal to the columns of Qj−1, that is,

Pj = I −Qj−1Q
⊤
j−1. (100)

The classical Gram-Schmidt orthogonalization algorithm can then be written as

q⃗1 =
a⃗1
∥a⃗1∥

=
P1a⃗1
∥P1a⃗1∥

, · · · , q⃗j =
Pj a⃗j
∥Pj a⃗j∥

. (101)

This modified Gram-Schmidt algorithm is stable, and implicitly writes the projection in a different form

Pj = I −Qj−1Q
⊤
j−1 = (I − q⃗j−1q⃗

⊤
j−1)︸ ︷︷ ︸

P⊥q⃗j−1

(I − q⃗j−2q⃗
⊤
j−2)︸ ︷︷ ︸

P⊥q⃗j−2

· · · (I − q⃗1q⃗⊤1 )︸ ︷︷ ︸
P⊥q⃗1

. (102)

This is mathematically equivalent to (96), but numerically different. The pseudocode of this modified Gram-Schmidt
orthogonalization algorithm is shown as follows.

1: for i = 1 to n do
2: v⃗i ← a⃗i; // Θ(m)
3: end for
4: for i = 1 to n do
5: rii ← ∥v⃗i∥2; // m multiplications + m-1 additions + 1 square root

6: q⃗i ← v⃗i/rii; // m divisions

7: for j = i+ 1 to n do
8: rij ← q⃗⊤i v⃗j ; // m multiplications + m-1 additions

9: v⃗j ← v⃗j − rij q⃗i; // m multiplications + m subtractions
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10: end for
11: end for

This modified Gram-Schmidt algorithm is the one used in practice, since it is less sensitive to the effects of rounding
errors, and thus is a stable algorithm. The number of floating-point operations it need can be computed as

n∑
i=1

3m+

n∑
j=i+1

(4m− 1)

 ∼ n∑
i=1

n∑
j=i+1

4m ∼ Θ(2mn2). (103)

Therefore, this is a cubic algorithm (like Gaussian elimination, basically), and it is suited to reduced QR factorization,
i.e., factorization of Type (I).

5.8 Householder Reflection (Orthogonal) Triangularization

As we have seen previously, the Gram-Schmidt iteration applies a succession of elementary triangular matrices Rk

on the right of A, so that the resulting matrix

AR1R2 · · ·Rn︸ ︷︷ ︸
R̂−1

= Q̂ (104)

has orthonormal columns, i.e., is an orthogonal matrix. The product R̂ = R−1
n · · ·R−1

2 R−1
1 is an upper triangular

matrix, and thus A = Q̂R̂ is a reduced QR factorization of A, i.e., a factorization of Type (I).

In contrast, the Household method that we are going to introduce applies a succession of elementary matrices Qk on
the left of A, so that the resulting matrix

Qn · · ·Q2Q1︸ ︷︷ ︸
Q⊤

A = R (105)

is an upper triangular matrix. The product Q = Q⊤
1 Q

⊤
2 · · ·Q⊤

n is orthogonal, and thus A = QR would be a full QR
factorization of A, i.e., a factorization of Type (II).

As follows is an example of the Household method.
× × ×
× × ×
× × ×
× × ×
× × ×

 Q1−→


⋆ ⋆ ⋆
0 ⋆ ⋆
0 ⋆ ⋆
0 ⋆ ⋆
0 ⋆ ⋆

 Q2−→


× × ×

⋆ ⋆
0 ⋆
0 ⋆
0 ⋆

 Q3−→


× × ×
× ×

⋆
0
0

 . (106)

The question is, how can we construct orthogonal matrices Qk, so as to introduce zeros as indicated above? The
standard approach is as follows. Each Qk is chosen to be a matrix of the form

Qk =

(
Ik−1 0
0 F

)
, (107)
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where Ik−1 is the (k−1)×(k−1) identity matrix and F is an (m−k+1)×(m−k+1) orthogonal matrix. Multiplication
by F must introduce zeros in the kth column. The Householder algorithm chooses F to be a particular matrix called
a Household reflector. Suppose that at the beginning of Step k, the entries k, · · · ,m of the kth column are given
by x⃗ ∈ Rm−k+1. To introduce the correct zeros into the kth column, the Household reflector F should effect the
following map, such that

x⃗ =


×
×
×
...
×

 F−→ Fx⃗ =


∥x⃗∥
0
0
...
0

 = ∥x⃗∥e⃗1. (108)

The idea is that, the reflector F should reflect the space Rm−k+1 across the hyperplaneH orthogonal to v⃗ = ∥x⃗∥e⃗1−x⃗,
as is demonstrated in Figure 1.

Figure 1: An illustration of a Household reflector.

Recall that for any y⃗ ∈ Rp, the orthogonal projection of y⃗ onto a hyperplane H that is orthogonal to some vector
v⃗ ∈ Rp can be written as

P y⃗ =

(
I − v⃗v⃗⊤

v⃗⊤v⃗

)
y⃗ = y⃗ − v⃗

(
v⃗⊤y⃗

v⃗⊤v⃗

)
. (109)

Since a reflection would need to go twice the distance as a projection, the reflection would be written as

F y⃗ = y⃗ − 2v⃗

(
v⃗⊤y⃗

v⃗⊤v⃗

)
=

(
I − 2

v⃗v⃗⊤

v⃗⊤v⃗

)
y⃗. (110)

Hence, back to our case, the Householder reflector F and thus be selected as

F = I − 2
v⃗v⃗⊤

v⃗⊤v⃗
. (111)

3/1 Lecture

Note that one could also reflect x⃗ to −∥x⃗∥e⃗1 instead of reflecting to ∥x⃗∥e⃗1. However, we should always choose the
one that moves x⃗ a longer distance for the reason of numerical stability. This can be simply done. For instance, if
x1 ≥ 0 we can choose to reflect to −∥x⃗∥e⃗1, and otherwise we can choose to reflect to ∥x⃗∥e⃗1. Now that we have

Qn · · ·Q2Q1A = R, (112)

then it suffices to construct Q by Q = Q⊤
1 Q

⊤
2 · · ·Q⊤

n = Q1Q2 · · ·Qn (recall that Qk are orthogonal, and by construc-
tion symmetric). What would the algorithm be exactly, and what is the runtime?
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5.9 The Singular Value Decomposition

Let A ∈ Rm×n with m ≥ n and rank(A) = n. Then A can be factorized as

A = USV ⊤, (113)

where U ∈ Rm×n is orthogonal (i.e., with orthonormal columns), S ∈ Rn×n is diagonal with entries σ1 ≥ · · · ≥ σn ≥ 0,
and V ⊤ ∈ Rn×n is orthogonal as well. We can think of U and V ⊤ as rotation and reflection, and S as positive scaling.
Mathematically, the singular value decomposition can be computed by observing that A⊤A is positive semi-definite
and therefore can be written as

A⊤A = V S2V ⊤, (114)

according to eigen-decomposition. Then, by setting U = AV S−1, we will see that US = AV , and thus A = USV ⊤.
However, this is numerically more unstable than dealing with A directly since

K(A⊤A) = K2(A). (115)

Instead, observe (assuming m = n) that the matrix

H =

(
0 A⊤

A 0

)
∈ R2m×2m (116)

is orthogonal, and that if A = USV ⊤, we will be able to deduce that

H

(
V V
U −U

)
=

(
V V
U −U

)(
S 0
0 −S

)
. (117)

This does not involve matrix squaring, but deals with a 2m× 2m matrix instead of a m× n one. We will introduce
more on how to efficiently compute singular value decompositions later.

Pseudoinverse

Recall that for A ∈ Rm×n with m ≥ n and rank(A) = n, the solution to the least-squares problem must satisfy the
normal equations, that is,

A⊤Ax⃗ = A⊤b⃗ =⇒ x⃗ = (A⊤A)−1A⊤b⃗. (118)

The matrix (A⊤A)−1A⊤ is known as the pseudoinverse of A, which is commonly denoted by A+. Substituting A
with its singular value decomposition, we have that

A+ = (A⊤A)−1A⊤ = (V S2V ⊤)−1(USV ⊤)⊤ = V S−1S−1V −1V SU⊤ = V S−1U⊤. (119)

In the case that m > n, clearly A is not invertible, but with the pseudoinverse, we have that

A+A = V S−1U⊤USV ⊤ = V S−1SV ⊤ = V V ⊤ = I. (120)

Midterm Review

• Bisection: Linear convergence, absolute error goes down by half in each iteration.

• Secant method: Converges with α ≈ 1.62, using the update formula

xk+1 = xk − f(xk)
xk − xk−1

f(xk)− f(xk−1)
. (121)

• Newton’s method: Quadratic convergence, using the update formula

xk+1 = xk −
f(xk)

f ′(xk)
. (122)
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Note that Newton’s method may fail because the first derivative evaluates to zero. It may also fail to converge
for certain initial guesses. As for the multivariate version, the update step rule is

x⃗k+1 = x⃗k − J−1(x⃗k)f⃗(x⃗k), (123)

where the (i, j)th entry of the Jacobian matrix is Jij = ∂fi/∂xj (each row is an fi, each column is an xj).

• Asymptotic rate of convergence: Sometimes called order, defined as

ρ = − log10 µ. (124)

Note that this is defined only for α = 1, i.e., linear convergence.

• Induced matrix norms: The induced l1 norm of A satisfies

∥A∥1 = max
j=1,··· ,n

n∑
i=1

|Aij |. (125)

The induced l2 norm of A satisfies

∥A∥2 =
√

max
j=1,··· ,n

λj , (126)

where λj are the eigenvalues of A⊤A. In other words, the induced l2 norm of A is its largest singular value.
Moreover, note that the induced l2 norm of A−1 is the inverse of the smallest singular value of A.

• Condition number: The absolute condition number of A is ∥A−1∥, and relative ∥A−1∥ · ∥A∥. Moreover, note
that K(A⊤A) = K2(A).

• Convexity: f is convex on [a, b] if for any x, y ∈ [a, b] and α ∈ [0, 1],

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y). (127)

Moreover, f is convex if its Hessian matrix of second-order derivatives is positive semidefinite, i.e., symmetric
with all eigenvalues real and positive.

• Optimization: The update formula is

x⃗k+1 = x⃗k −H−1(x⃗k)∇⃗f(x⃗k). (128)

However, explicit Hessian matrices are expensive to compute, so we use the quasi-Newton method, such that

Hk+1 = Hk −
Hks⃗ks⃗

⊤
k Hk

s⃗⊤k Hks⃗k
+
y⃗ky⃗

⊤
k

y⃗⊤k s⃗k
, s⃗k = x⃗k+1 − x⃗k, y⃗k = ∇⃗f(x⃗k+1)− ∇⃗f(x⃗k). (129)

• Sherman-Morrison-Woodbury: It states that

(A+ u⃗v⃗⊤)−1 = A−1 − A−1u⃗v⃗⊤A−1

1 + v⃗⊤A−1u⃗
. (130)

With this formula, the update of Hessian matrix inverse can be written as

H−1
k+1 =

(
I − s⃗ky⃗

⊤
k

y⃗⊤k s⃗k

)
H−1

k

(
I − y⃗ks⃗

⊤
k

y⃗⊤k s⃗k

)
+
s⃗ks⃗

⊤
k

y⃗⊤k s⃗k
. (131)

• Real symmetric matrices: Such matrices can be diagonalized as A = P⊤DP , where D is a diagonal matrix
of eigenvalues and P is orthogonal, i.e., with orthonormal columns so that P⊤ = P−1.

• LU factorization: A = LU , where L is lower triangular and U is upper triangular. This is done similar to
Gaussian elimination, by multiplying elementary row operation matrices on the left of A.

• Cholesky factorization: If A is symmetric positive definite, then we can write A = U⊤U , where U is upper
(lower) triangular.

• Residual: The residual r⃗ = b⃗−Ax̃, where x̃ is the computed solution of Ax⃗ = b⃗.

• QR factorization: A ∈ Rm×n with m ≥ n and rank(A) = n. We want x⃗ that minimizes the l2 norm of the

residual, and this minimizer must satisfy the normal equations A⊤Ax⃗ = A⃗⊤b⃗. We can write A = QR, where Q
is orthogonal (i.e., Q⊤Q = I) and R is upper triangular.

• Singular value decomposition: A = USV ⊤, where U ∈ Rm×n is orthogonal, S ∈ Rn×n is diagonal with
entries as singular values, and V ∈ Rn×n also orthogonal.
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3/6 Lecture

6 Eigenvalue Problems

Recall that λ, v⃗ is an eigenvalue-eigenvector pair of a matrix A if Av⃗ = λv⃗. The direct computation would be via the
characteristic equations, that is,

p(λ) = det(A− λI) = 0. (132)

However, p would be a polynomial of degree n if A ∈ Rn×n. This is extremely expensive: forming p would cost
n! flops, and then a nonlinear root finding algorithm must be used to solve p(λ) = 0. Before introducing cheaper
computation methods, we first see its application in solving systems of linear initial value problems.

6.1 Solving Systems of Linear Initial Value Problems

Consider the initial value problem y⃗′ = Ay⃗, where we have that

y⃗(t) =

y1(t)...
yn(t)

 , y⃗′(t) =

y
′
1(t)
...

y′n(t)

 (133)

We will ignore the given initial value (t0, y⃗(t0)) for now. One solution to solve this problem is to diagonalize A,
such that A = PDP−1 with D being the diagonal matrix of eigenvalues and each column of P being an eigenvector
corresponding to the eigenvalue (with the same order). Then, we have that

y⃗′ = PDP−1y⃗ =⇒ P−1y⃗′ = DP−1y⃗. (134)

By denoting u⃗ = P−1y⃗, we have that u⃗′ = P−1y⃗′ (since this is taking derivative with respect to t), and thus the
above equation can be rewritten as

u⃗′ = Du⃗ =⇒


u′1 = λ1u1,

...
u′n = λnun.

(135)

This solves to

ui = cie
λit, u′i = λicie

λit, (136)

where ci can be easily determined by the given initial values (which we will ignore here). Changing the variables
back, we can obtain the solution by y⃗ = Pu⃗. Therefore, we can see that the problem of solving a system of linear
initial value problems can be reduced to finding eigenvalues and eigenvectors of A.

6.2 The Gerschgorin Theorems

Theorem 6.1 (Gerschgorin). Let n ≥ 2 and A ∈ Cn×n, then all eigenvalues of the matrix A must lie in the region
D =

⋃n
i=1Di, where each Di is the Gerschogorin disc defined as the closed circular region

Di = {z ∈ C; |z − aii| ≤ Ri} , Ri =
∑
j ̸=i

|aij |. (137)

Proof. Suppose that λ ∈ C and v⃗ ∈ Cn are an eigenvalue and the corresponding nonzero eigenvector of A, so that

(Av⃗)i =

n∑
j=1

aijvj = λvi. (138)
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Suppose that vk is the component of v⃗ that is largest (or one of the largest) in modulus. Then we have that

|λ− akk||vk| = |λvk − akkvk| =

∣∣∣∣∣∣
n∑

j=1

akjvj − akkvk

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∑
j ̸=k

akjvj

∣∣∣∣∣∣ ≤
∑
j ̸=k

|akj ||vj |. (139)

Dividing both sides by |vk|, we thus obtain that

|λ− akk| ≤
∑
j ̸=k

|akj |
|vj |
|vk|
≤
∑
j ̸=k

|akj | = Rk. (140)

Therefore, λ ∈ Dk assuming vk is the component of v⃗ that is largest (or one of the largest) in modulus. Hence, we
can guarantee that λ ∈

⋃n
i=1Di = D, so the proof is complete.

Theorem 6.2 (Gerschgorin’s second theorem). In the above scenario, if m disks are connected, then there are m
eigenvalues in that connected region.

We will note prove this theorem now, but revisit it in detail when discussing Jacobi’s method later.

6.3 The Power Method

We want to calculate the eigenvalue with the largest magnitude and its associated eigenvector (assuming that the
matrix A is diagonalizable). We start with a random vector w⃗, which must be a linear combination of the eigenvectors
of A, such that

w⃗ =

n∑
j=1

cj v⃗j . (141)

Applying A to w⃗, we will obtain that

Aw⃗ = A

 n∑
j=1

cj v⃗j

 =

n∑
j=1

cjAv⃗j =

n∑
j=1

cjλj v⃗j . (142)

Now, if we apply another A to this resulting vector, we can see that

A2w⃗ = A

 n∑
j=1

cjλj v⃗j

 =

n∑
j=1

cjλjAv⃗j =

n∑
j=1

cjλ
2
j v⃗j (143)

Therefore, for sufficiently large k, we will have that

Akw⃗ =

n∑
j=1

cjλ
k
j v⃗j , (144)

which will be dominated by c1λ
k
1 v⃗1, assuming that |λ1| > |λ2| > |λ3| > · · · (i.e., λ1 is the largest eigenvalue of A in

modulus). So eventually, if y⃗(k) = Akw⃗, then y⃗(k+1) = Ak+1w⃗ = Ay⃗(k) ≈ λ1y⃗(k). Now, normalizing iterants in every
step, we will have that

w⃗0 =
w⃗

∥w⃗∥
, w⃗1 =

Aw⃗0

∥Aw⃗0∥
, · · · , w⃗k =

Aw⃗k−1

∥Aw⃗k−1∥
. (145)

Under this normalization, the largest eigenvalue λ1 is approximately equal to

λ1 =
wk,i

w(k−1),i
, (146)

where wk,i represents the ith component of w⃗k. Furthermore, we can in fact obtain a better estimation of λ1 by

λ1 = ⟨Aw⃗k, w⃗k⟩ , (147)

since Aw⃗k ≈ λ1w⃗k, which means that w⃗⊤
k Aw⃗k = λ1w⃗

⊤
k w⃗k = λ1 given w⃗k is already normalized. Finally, the w⃗k’s will

approach v⃗1 as k →∞.
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Rate of convergence. If k is sufficiently large, then Akw⃗ = c1λ
k
1 v⃗1 (assuming c1 > 0). Then we can compute that

v⃗1 ≈
1

c1λk1
Akw⃗ =

1

c1λk1

n∑
j=1

cjλ
k
j v⃗j = v⃗1 +

c2
c1

(
λ2
λ1

)k

v⃗2 +
c3
c1

(
λ3
λ1

)k

v⃗3 + · · ·+
cn
c1

(
λn
λ1

)k

v⃗n. (148)

Since |λj | < |λ1| for j ≥ 2, we know that (λj/λ1)
k → 0 as k →∞. Since the power method normalizes the iterants w⃗k

in every step and we assume that the eigenvectors have unit norm, clearly w⃗k converges to v⃗1 as k →∞. Moreover,
we can see that

∥w⃗k − v⃗1∥ ≈
∣∣∣∣c2c1
∣∣∣∣ ∣∣∣∣λ2λ1

∣∣∣∣k + lower order terms ∼ O

(∣∣∣∣λ2λ1
∣∣∣∣k
)
, (149)

so that the rate of convergence of the power method depends on the gap in the eigenvalues, specifically the relative
size of λ2 to λ1. In other words, if |λ1| ≫ |λ2|, the power method converges fast but if |λ1| ≈ |λ2|, the convergence
would be very slow. We would need certain techniques to guarantee a sufficiently large gap between the eigenvalues.

The power method with shift. If a matrix A has eigenvalues λ1, · · · , λn, then the matrix A − sI would have
eigenvalues λ1 − s, · · · , λn − s. The reason is, if v⃗ is an eigenvector of A corresponding to the eigenvalue λ, then

(A− sI)v⃗ = Av⃗ − sv⃗ = λv⃗ − sv⃗ = (λ− s)v⃗. (150)

Based on this observation, we can use the power method on A− sI instead of A, so that we can choose s to increase
the convergence rate. How to choose s? Under which conditions is the shifted power method useful?
Power method with shift allows for computing the most negative or the most positive eigenvalue.
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The inverse power method with shift. How do we compute eigenvalues in the middle, i.e., if λ1 > λ2 > · · · >
λn−1 > λn, then the power method with shift can compute either λ1 or λn. To compute λ2, · · · , λn−1, we would
need a different algorithm. The idea is to apply the power method to find eigenvalues of (A− sI)−1, which is called
the inverse power method with shift. If A has some eigenvalue λ, then A−1 has the eigenvalue λ−1. Furthermore,
(A− sI)−1 should have the eigenvalue (λ− s)−1. If we choose s properly to make (λ− s)−1 large, then the inverse
power method with shift can converge very rapidly.

Choose s close to λl so that (λl − s)−1 becomes very large in absolute value, while (λj − s)−1 for j ̸= l remains
bounded. This scheme is of course much more expensive since applying A−1 requires solving a linear system, which
takes Θ(n3) flops (versus Θ(n2) for the power method). The algorithm can be written as follows.

1: set w⃗0 to be random;
2: solve (A− sI)y⃗1 = w⃗0, which is equivalent to y⃗1 = (A− sI)w⃗0;
3: set w⃗1 = y⃗1/∥y⃗1∥;
4: proceed as in the power method;

The hard part is knowing what to choose for s, which would require estimates for the eigenvalues. Moreover, both
the power method with shift and the inverse power method with shift compute only one pair of eigenvalue and
eigenvector at a time.

6.4 The Jacobi Method

Can we compute all the eigenvalues and their corresponding eigenvectors at the same time? Note that if A were
diagonal, then we immediately know its eigenvalues, so the problem is how to make A diagonal. Recall the similarity
transform, which states that if B =M−1AM , then B is similar to A, i.e., they have the same eigenvalues.

Proof. Look at the characteristic polynomial, such that

ρB(λ) = det(B − λI) = det(M−1AM − λI) = det(M−1AM − λM−1M)

= det(M−1(A− λI)M) = det(M−1) det(A− λI) det(M) = ρA(λ). (151)
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Since eigenvalues are just the roots of the characteristic polynomials, the proof is complete.

Note that if M were chosen to be the matrix of eigenvectors of A, then A = MDM−1 with D being the diagonal
matrix of eigenvalues. Then, D =M−1AM would be the diagonalization of A.

Example 6.3. Let A be a real symmetric 2× 2 matrix, such that

A =

(
a b
b d

)
. (152)

Real symmetric matrices have real eigenvalues, and are in fact orthogonally diagonalizable, i.e., can be diagonalized
by orthogonal matrices. Note that all 2× 2 orthogonal matrices can be parametrized as

V =

(
cosϕ sinϕ
− sinϕ cosϕ

)
, (153)

i.e., 2× 2 rotation matrices. We thus want

V ⊤AV = V −1AV =

(
λ1 0
0 λ2

)
. (154)

By expanding the expression, we have that(
cosϕ − sinϕ
sinϕ cosϕ

)(
a b
b d

)(
cosϕ sinϕ
− sinϕ cosϕ

)
=

(
λ1 0
0 λ2

)
=⇒

(
cosϕ − sinϕ
sinϕ cosϕ

)(
a cosϕ− b sinϕ a sinϕ+ b cosϕ
b cosϕ− d sinϕ b sinϕ+ d cosϕ

)
=

(
λ1 0
0 λ2

)
. (155)

By comparing the diagonal entries, we have that

a sinϕ cosϕ+ b cos2 ϕ− b sin2 ϕ− d sinϕ cosϕ = 0, (156)

a sinϕ cosϕ− b sin2 ϕ+ b cos2 ϕ− d sinϕ cosϕ = 0. (157)

The two equations above are exactly the same. We rewrite any one of them to obtain that

(a− d) sinϕ cosϕ+ b(cos2 ϕ− sin2 ϕ) = 0 =⇒ a− d
2

sin 2ϕ+ b cos 2ϕ = 0. (158)

This implies that, when d− a ̸= 0, ϕ is given by

tan 2ϕ =
2b

d− a
=⇒ ϕ =

1

2
arctan

(
2b

d− a

)
. (159)

If d − a = 0, then clearly cos 2ϕ = 0 (as long as A is not diagonal, i.e., b ̸= 0). This would give ϕ = π/4. In C or
Fortran we use phi = atan(d-a,2b) / 2. Up till now, we have determined ϕ, such that

V ⊤AV = D =

(
λ1 0
0 λ2

)
. (160)
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The Jacobi method for an n× n matrix. Define

Rpq(ϕ) =





1
. . .

1

cosϕ sinϕ ← row p

1
. . .

1

− sinϕ cosϕ ← row q

1
1

1

↑ ↑
col p col q

(161)

Rpq(ϕ) can be used to set the (p, q)th and (q, p)th entries of a real symmetric matrix A to zero. Moreover, the
transformation Rpq(ϕ)⊤ARpq(ϕ) leaves all rows and columns unchanged except for the pth row and column and the
qth row and column of A. The algorithm is given as follows.

1: set A(0) = A;
2: k ← 0;
3: repeat
4: find the (p, q)th element in A(k) with maximum absolute value with p ̸= q;

5: compute ϕk = arctan
(
2a

(k)
pq /(a

(k)
qq − a(k)pp )

)
/2;

6: set A(k+1) = Rpq(ϕk)
⊤A(k)Rpq(ϕk);

7: k ← k + 1;

8: until all entries |a(k)ij | < ϵ, i ̸= j;

The reason this algorithm works is that

A(k) →

λ1 · · · 0
...

. . .
...

0 · · · λn

 as k →∞. (162)

To summarize, we apply a sequence of R(ϕk)’s to A that zero out all off-diagonal elements. Furthermore, this
sequence will converge to the matrix of eigenvectors.

Convergence of the Jacobi method. The question now is, do elements that are set to zero stay zero forever in
the Jacobi method? The answer is no. The idea behind convergence here is, every Jacobi rotation (i.e., applying R⊤

and R) moves the “mass” of the matrix from off-diagonal positions to diagonal positions. We first state a lemma.

Lemma 6.4. If R is an orthogonal transformation and A⊤ = A, then the Frobenius norms ∥A∥F = ∥R⊤AR∥F .

Proof. Recall that the Frobenius norm is defined as

∥A∥F =

∑
i,j

|aij |2
1/2

. (163)

Let B = R⊤AR, then A and B have the same eigenvalues, and B2 = (R⊤AR)(R⊤AR) = R⊤A2R, implying that A2

and B2 also have the same eigenvalues. Therefore, tr(A2) = tr(B2). However, note that

∥A∥2F = tr(A⊤A) = tr(A2) = tr(B2) = ∥B∥2F , (164)

so the proof is complete. The fact that ∥A∥2F = tr(A⊤A) is already prove in some previous Homework.
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Now we split the Frobenius norm into a diagonal piece and an off-diagonal piece, such that

S(A) =: ∥A∥2F =
∑
i,j

|aij |2 =
∑
i

|aii|2 +
∑
i̸=j

|aij |2 =: D(A) + L(A). (165)

Theorem 6.5. Let A(k) be the kth iterant in the Jacobi algorithm, then

lim
k→∞

L(A(k)) = 0, lim
k→∞

D(A(k)) = tr(A2). (166)

Proof. Let apq be the off-diagonal element of A with the largest absolute value. Let B = Rpq(ϕ)⊤ARpq(ϕ), a single
Jacobi rotation. Then we can compute that(

bpp bpq
bqp bqq

)
︸ ︷︷ ︸

B̃

=

(
cosϕ sinϕ
− sinϕ cosϕ

)⊤(
app apq
aqp aqq

)
︸ ︷︷ ︸

Ã

(
cosϕ sinϕ
− sinϕ cosϕ

)
, (167)

and do not forget that bpq = bqp = 0 by construction (i.e., taking the suitable ϕ value). But from the lemma, we see
that ∥B∥2F = ∥A∥2F , so that b2pp + b2qq = a2pp +2a2pq + a2qq. Now since S(A) = S(B) as in the previous lemma, we have
that D(A) + L(A) = D(B) + L(B). Also note that the diagonal entries of B are the same as those of A, except the
ones in rows p and q. Therefore, we can deduce that

D(B)−D(A) = (b2pp + b2qq)− (a2pp + a2qq) = 2a2pq =⇒ D(B) = D(A) + 2a2pq. (168)

Consequently, we also have that

L(B) = L(A)− 2a2pq. (169)

Now since apq was the largest off-diagonal element of A, we have that

L(A) ≤ n(n− 1)a2pq =⇒ a2pq ≥
L(A)

n(n− 1)
. (170)

Therefore, we can see that

L(B) = L(A)− 2a2pq ≥ L(A)−
2L(A)

n(n− 1)
= L(A)

(
1− 2

n(n− 1)

)
. (171)

Now we relabel the matrices such that A(0) = A and A(1) = B, then

L(A(1)) ≤ L(A(0))

(
1− 2

n(n− 1)

)
, L(A(2)) ≤ L(A(0))

(
1− 2

n(n− 1)

)2

, etc. (172)

After k iterations, we will thus obtain that

L(A(k)) ≤ L(A(0))

(
1− 2

n(n− 1)

)k

. (173)

This implies that L(A(k))→ 0 as k →∞. Moreover, since S(A(k)) = tr(A2), we can easily see that D(A(k))→ tr(A2)
as k →∞. This completes the proof.

Applying the Gerschgorin theorem. A(k) and A have the same eigenvalues, and L(A(k)) → 0 as k → ∞.
Therefore, the Gerschgorin disks of A(k) have radii going towards 0 as well. Therefore, the eigenvalues of A(k), and
thus of A, are the limit of the diagonal of A(k).
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Rate of convergence. We have shown that

L(A(k)) ≤ L(A(0))

(
1− 2

n(n− 1)

)k

. (174)

If n = 1000, then 1− 2
n(n−1) ≈ 0.99999799799 · · · . In this case, even if k = 10000,

(
1− 2

n(n−1)

)k
is just approximately

0.98, far from 0. However, real-life convergence is often much faster than indicated in the proof. One final remark:
the Jacobi method can be terminated when L(A(k)) < ϵ. Then we have that

A(k) = R(ϕk)
⊤ · · ·R(ϕ1)⊤︸ ︷︷ ︸

R⊤

AR(ϕ1) · · ·R(ϕk)︸ ︷︷ ︸
R

≈ diag. (175)

Then, A = RA(k)R⊤. We say that R diagonalizes A. Here R is the matrix in which each column is the approximate
of an eigenvector of A, and A(k) is approximately a diagonal matrix, whose diagonal entries are approximately the
eigenvalues of A (in the same order as the eigenvectors).

6.5 The QR Method

For general matrices, the QR method can be used to find all eigenvalues. We will examine the algorithm first, and
then analyze it. The QR algorithm is described as follows.

1: set A(0) = A;
2: k ← 1;
3: repeat
4: factorize A(k−1) = Q(k)R(k);
5: compute A(k) = R(k)Q(k);
6: k ← k + 1;
7: until the stopping criterion is met;

Under certain assumptions, A(k) would converge to some upper triangular matrix. Furthermore, we have that

A(k) = R(k)Q(k) = (Q(k))−1A(k−1)Q(k), (176)

so A(k) and A(k−1) have the same eigenvalues, implying that A(k) and A also have the same eigenvalues via iterations.
Three things must be done in order for this to be a usable and accelerated algorithm.

(1) First, reduce A to tridiagonal (i.e., the only nonzero entries must be on the main diagonal, the subdiagonal
right below that, and the subdiagonal right above that). This can also be called Hessenburg (i.e., both upper
Hessenburg and lower Hessenburg). We do this by using the Householder reflections.

(2) Apply to the shifted matrices A(k) − µ(k)I, with µ(k) an estimate of some λ.

(3) Use a deflation, i.e., decouple into smaller subproblems.
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6.6 Singular Value Decomposition (Revisited)

Assume that A is square, with m = n. This is no essential restriction, since we can bidiagonalize rectangular matrices
via Householder reflections, and thus reduce to the case of square matrices. Consider the 2m×2m symmetric matrix

H =

(
0 A⊤

A 0

)
. (177)

Recall that the singular value decomposition can be written as A = USV ⊤, where U and V are orthogonal and S is
diagonal. This implies that AV = US, and that U⊤A = SV ⊤ =⇒ A⊤U = V S. Therefore, we can see that(

0 A⊤

A 0

)(
V V
U −U

)
=

(
V V
U −U

)(
S 0
0 −S

)
, (178)

which amounts to an eigendecomposition of H. Thus, we can see that the singular values of A are the absolute values
of the eigenvalues of H, and the singular vectors can be extracted from the eigenvectors of H. How?
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7 Polynomial Interpolation

Since computers can only perform multiplications and additions, essentially the only type of functions that a computer
can evaluate is the family of polynomials. In general, n+1 unique points in the xy-plane uniquely defines a polynomial
of degree n, since it is equivalent to solving n+1 equations for n+1 unknowns (the coefficients a0, · · · , an). The point
of polynomial interpolation is that, most functions (e.g., triangular functions, solutions to differential equations) are
not polynomials, and do not have closed form solutions. However, most of the times, they can be locally approximated
by polynomials (just think of Taylor’s series). With this in mind, given (xj , yj)’s, j = 0, · · · , n with xj ∈ [a, b], how
do we compute the interpolant? Note that polynomial interpolation is at the core of Numerical Analysis.

7.1 Lagrange Interpolation

Given a nonnegative integer n, let Pn denote the family of all polynomials of degree at most n defined over R. We
restate the problem as follows. Suppose that xi, i = 0, · · · , n are distinct real numbers and yi, i = 0, · · · , n are real
numbers. We wish to find pn ∈ Pn, such that pn(xi) = yi for all i = 0, · · · , n. To prove that this problem has a
unique solution, we begin with a useful lemma.

Lemma 7.1. Suppose that n ≥ 1, then there exists polynomials Lk ∈ Pn, k = 0, · · · , n, such that

Lk(xi) = δik =

{
1, if i = k,

0, otherwise,
∀i, k = 0, · · · , n. (179)

Moreover,

pn(x) =

n∑
k=0

Lk(x)yk (180)

satisfies the interpolation conditions. In other words, pn ∈ Pn and pn(xi) = yi, i = 0, · · · , n.

Proof. For each fixed 0 ≤ k ≤ n, Lk is required to have n zeros, i.e., all xi’s except xk. Therefore, we can write it as

Lk(x) = Ck

n∏
i=0,i̸=k

(x− xi), (181)

where Ck ∈ R is a constant to be determined. Then by using Lk(xk) = 1, we can deduce that

1 = Ck

n∏
i=0,i̸=k

(xk − xi) =⇒ Ck =

n∏
i=0,i̸=k

1

xk − xi
. (182)

Therefore, we can conclude that

Lk(x) =

n∏
i=0,i̸=k

x− xi
xk − xi

. (183)

Since the function pn is defined as a linear combination of polynomials of degree at most n, it must itself also be a
polynomial of degree at most n, thus pn ∈ Pn. Moreover,

pn(xi) =

n∑
k=0

Lk(xi)yk =

n∑
k=0

δikyk = yi, ∀i = 0, · · · , n, (184)

so the proof is complete.

Theorem 7.2 (Lagrange’s interpolation theorem). Assume that n ≥ 0. Let xi, i = 0, · · · , n be distinct real numbers
and yi, i = 0, · · · , n be real. Then, there exists a unique polynomial pn ∈ Pn, such that

pn(xi) = yi, ∀i = 0, · · · , n. (185)
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Proof. For n = 0 the proof is trivial. Therefore we assume that n ≥ 1. The existence of the required polynomial
follows directly from the previous lemma, so it suffices to prove the uniqueness. Assume for contradiction that there
exists qn ∈ Pn different from pn as specified in the previous lemma, yet qn(xi) = yi for all i = 0, · · · , n. Then, clearly
pn − qn ∈ Pn, and pn − qn has n + 1 distinct roots x0, · · · , xn. However, a polynomial of degree at most n cannot
have more than n roots, unless it is constant zero. Therefore, pn ≡ qn, leading to a contradiction. Hence, we have
shown the uniqueness, and the proof is complete.
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Theorem 7.3. Suppose that n ≥ 0, and that f is a real-valued continuous function on the closed interval [a, b].
Moroever, assume that the (n+1)th order derivative of f exists and is also continuous on [a, b], i.e., f is n+1 times
continuously differentiable. Then, given x ∈ [a, b], there exists ξ = ξ(x) ∈ (a, b), such that

f(x)− pn(x) =
f (n+1)(ξ)

(n+ 1)!

n∏
i=0

(x− xi). (186)

Moreover, the error can be bounded such that

|f(x)− pn(x)| ≤
Mn+1

(n+ 1)!

n∏
i=0

|x− xi|, (187)

where Mn+1 = maxξ∈[a,b] |f (n+1)(ξ)|, the maximum value of the (n+ 1)th derivative of f in the given interval.

Proof. When x = xi for some i, i = 0, · · · , n, both sides of (186) are zero, and thus the equality is trivially satisfied.
Therefore, we assume that x ∈ [a, b] and x ̸= xi, i = 0, · · · , n. For such a value of x, let us consider the auxiliary
function t 7→ ϕ(t), defined on [a, b] such that

ϕ(t) = f(t)− pn(t)−
f(x)− pn(x)∏n

i=0(x− xi)

n∏
i=0

(t− xi). (188)

Clearly, ϕ(xi) = 0, i = 0, · · · , n and ϕ(x) = 0. Thus, ϕ vanishes at n + 2 points which are all distinct in [a, b].
Therefore, ϕ′(t) would vanish at n+ 1 distinct points in (a, b), one between each pair of consecutive points at which
ϕ vanishes1. Now we discuss the case n = 0 separately. If n = 0, there exists ξ = ξ(x) ∈ (a, b) such that ϕ′(ξ) = 0.
Therefore, we have that

0 = ϕ′(ξ) = f ′(ξ)− p′0(ξ)−
f(x)− p0(x)∏0

i=0(x− xi)
= f ′(ξ)− f(x)− p0(x)∏0

i=0(x− xi)
, (189)

since p0(x) = f(x0) which is a constant function, thus having zero derivative. Rewriting the equation above, we can
obtain the desired result for the case n = 0 that

f(x)− p0(x) = f ′(ξ)

0∏
i=0

(x− xi). (190)

For the case n ≥ 1, we iteratively apply Rolle’s theorem to obtain the desired result, similar to above. Now note that
f is n + 1 times continuously differentiable, so |f (n+1)| is bounded on the closed interval [a, b], being able to attain
its maximum value in that interval. The bound then follows trivially, and the proof is complete.

Convergence. An important theoretical question is whether or not a sequence (pn) of interpolation polynomials
for a continuous function f converges to f as n→∞. This question needs to be made more specific, as pn depends
on the distribution of the interpolation points xj , j = 0, · · · , n, not just on the value of n. Suppose, for instance,
that we agree to choose equally spaced points, such that

xj = a+
j

n
(b− a), j = 0, · · · , n. (191)

1This is a consequence of Rolle’s theorem, which we will not explicitly introduce here.
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The question of convergence then clearly depends on the behavior of Mn+1 as n increases. In particular, if

lim
n→∞

Mn+1

(n+ 1)!
max
x∈[a,b]

n∏
i=0

|x− xi| = 0, (192)

then by the previous theorem, we can guarantee that

lim
n→∞

max
x∈[a,b]

|f(x)− pn(x)| = 0. (193)

However, the numerator could have increased faster than the denominator as n → ∞, so the convergence is not
guaranteed. For instance, consider Runge’s function

f(x) =
1

1 + x2
. (194)

This function has singularities (in fact, poles) at x = ±i in the complex plane. The radius of convergence is only 1.
Even if it has the properties of infinite continuous differentiability (i.e., smoothness), it can cause the Runge effect,
i.e., when n is large, it oscillates a lot. Moreover, the numerical stability of evaluating pn in the basic Lagrange form
pn(x) =

∑n
k=0 Lk(x)yk can be unstable, i.e., have large condition number. It is very sensitive to overflow/underflow,

round-off error, etc.

Cost. The cost of evaluating pn depends on the form it is written in. Suppose that we are evaluating pn using the
basic Lagrange form, the the number of flops can be counted as

pn(x) =

n∑
k=0

yk

n∏
i=0,i̸=k

x− xi
xk − xi︸ ︷︷ ︸

3︸ ︷︷ ︸
3n+(n−1)=4n−1︸ ︷︷ ︸

4n︸ ︷︷ ︸
(n+1)·4n+n=Θ(n2)

. (195)

Therefore, we will need overall Θ(n2) flops to evaluate pn in the basic Lagrange form. However, we can set

b0 = a0 + b1x, (196)

...

bn−2 = an−2 + bn−1x, (197)

bn−1 = an−1 + anx. (198)

In this way, we have that

pn(x) = b0 = a0 + b1x = a0 + (a1 + b2x)x = a0 + a1x+ b2x
2 = a0 + a1x+ (a2 + b3x)x

2

= a0 + a1x+ a2x
2 + b3x

3 = · · · = a0 + a1x+ · · ·+ an−1x
n−1 + anx

n. (199)

Evaluating each bi takes only 2 flops, so that the total number of flops would be Θ(2n). In this sense, we can see
that the Lagrange form is extremely inefficient. Both given the inefficiency and instability of the Lagrange form, we
seek for a better form of evaluating pn.

7.2 Barycentric Forms of Interpolation

The numerical stability of evaluating an interpolating polynomial can be fixed by rearranging its terms, yet not
changing what the actual interpolant is. As a motivation, we want to examine the Barycentric coordinates on a
triangle. Suppose we have △ABC and a point P inside the triangle. The Barycentric coordinates of P are then
given by P = αA+βB+ γC with α+β+ γ = 1, α, β, γ ≥ 0. For instance, the center of mass of the triangle is given
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by (α, β, γ) = (1/3, 1/3, 1/3). Now, the idea is to replace A, B, and C with functions that sum to 1. We can rewrite
the basic Lagrange form as

pn(x) =

n∑
k=0

yk

n∏
i=0,i̸=k

x− xi
xk − xi

=

n∑
k=0

yk

 n∏
j=0

(x− xj)

 1

x− xk

n∏
i=0,i̸=k

1

xk − xi

=

 n∏
j=0

(x− xj)

 n∑
k=0

yk
x− xk

n∏
i=0,i̸=k

1

xk − xi
=: ϕ(x)

n∑
k=0

yk
x− xk

wk. (200)

This is called the modified Lagrange form, or the first Barycentric formula. We can even simplify this form by
“dividing by 1”. The polynomial interpolation of the constant function 1 can be simply written as

1 = ϕ(x)

n∑
k=0

1

x− xk
wk. (201)

Thus, we can further simplify the modified Lagrange form as

pn(x) =
ϕ(x)

∑n
k=0

yk

x−xk
wk

ϕ(x)
∑n

k=0
1

x−xk
wk

=

∑n
k=0

wk

x−xk
yk∑n

k=0
wk

x−xk

. (202)

This is known as the second Barycentric formula. This form would be stable for any reasonable choices of xj ’s, but
we will not show it here. One should always use this form to do polynomial interpolation.

8 Function Approximation

Polynomial interpolation mainly has applications in function approximation, with respect to some norm. For func-
tions, some example norms include

∥f∥∞ = max
x∈[a,b]

|f(x)|, (l∞ norm)

∥f∥2 =

√∫ b

a

|f(x)|2dx, (l2 norm)

∥f∥1 =

∫ b

a

|f(x)|dx. (l1 norm)

Norms of functions satisfy the same properties as those in the finite dimensional vector case, such that

• ∥f∥ ≥ 0, and ∥f∥ = 0 if and only if f ≡ 0.

• ∥cf∥ = |c| ∥f∥.

• (triangle inequality) ∥f + g∥ ≤ ∥f∥+ ∥g∥.

For instance, the l2 norm of a function can be generalized by introducing a “weight” function w > 0, such that

∥f∥2,w =

√∫ b

a

|f(x)|2w(x)dx. (203)

Now as for function approximation, the problem is to find the polynomial pn of degree at most n that best approxi-
mates a function f in some function norm, in a sense that

min
pn∈Pn

∥pn − f∥ . (204)

Note that one should never think of pn here as an interpolation of f . From analysis, we know that continuous
functions f on some finite interval can be approximated arbitrarily well by a polynomial of “some” degree, which
is known as the Weierstrass approximation theorem, i.e., for any ϵ > 0, there exists a polynomial p, such that
∥f − p∥ < ϵ. Unfortunately, this theorem is helpless for numerical approximation since it does not tell you how to
find that p. In the numerical sense, restricting p ∈ Pn is much more interesting and useful.
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8.1 Chebyshev polynomials

Now we stick to the l∞ function norm. To pose the problem, for n ≥ 1, we want to find pn ∈ Pn, such that

∥f − pn∥∞ = min
q∈Pn

∥f − q∥∞ . (205)

In general, however, one cannot write down the minmax polynomial, i.e., the polynomial pn such that

∥f − pn∥∞ = min
q∈Pn

max
x∈[a,b]

|f(x)− q(x)|. (206)

However, we can explicitly write down the minmax polynomial approximation to the monomial f(x) = xn+1 on [0, 1].

Theorem 8.1. Let n ≥ 0, then ∥pn − f∥∞, with f(x) = xn+1, is minimized when

pn(x) = xn+1 − 1

2n
cos((n+ 1) arccosx). (207)

Note that pn above is indeed a polynomial of degree n. Moreover, Tn(x) = cos(n arccosx) is known as the Chebyshev
polynomial of degree n. These functions play a very important role in numerical analysis.

4/3 Lecture

Chebyshev polynomials satisfy the recursive relation

T0(x) = 1, T1(x) = x, Tn+1(x) = 2xTn(x)− Tn−1(x). (208)

This can be shown using trigonometric identities. Note that usually, we are only concerned with Chebyshev polyno-
mials for x ∈ [−1, 1]. Trivially, the zeros of Tn can be computed as

cos(n arccosx) = 0 =⇒ n arccosx =
π

2
(2m+ 1) =⇒ arccosx =

π

2n
(2m+ 1) =⇒ x = cos

(
(2m+ 1)π

2n

)
, (209)

for m = 0, 1, · · · , n− 1 since the roots repeat for m ≥ n. The roots on [−1, 1] can thus be ordered as

xj = − cos

(
(2j − 1)π

2n

)
, j = 1, · · · , n. (210)

Note that the angles are equispaced. Now with f(x) and pn(x) specified as in Theorem 8.1, we have that

|f(x)− pn(x)| = 2−n|Tn+1(x)| ≤ 2−n, x ∈ [−1, 1]. (211)

8.2 Approximation in the l2-Norm

Definition 8.2. Let V be a linear space over the field of real numbers. A real-valued function ⟨·, ·⟩ defined on V ×V
is called an inner product on V if it satisfies the following axioms.

• ⟨f + g, h⟩ = ⟨f, h⟩+ ⟨g, h⟩ for all f, g, h ∈ V .

• ⟨λf, g⟩ = λ ⟨f, g⟩ for all λ ∈ R and f, g ∈ V .

• ⟨f, g⟩ = ⟨g, f⟩ for all f, g ∈ V .

• ⟨f, f⟩ ≥ 0 for all f ∈ V , and ⟨f, f⟩ = 0 if and only if f = 0.

A linear space with an inner product is then called an inner product space.
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Suppose that V is an inner product space, and f, g ∈ V , then we say that f is orthogonal to g if ⟨f, g⟩ = 0. Moreover,
we define the induced l2-norm of f such that ∥f∥ =

√
⟨f, f⟩. Note that the induced norm (of course) satisfies the

triangle inequality, and furthermore it satisfies the Cauchy-Schwarz inequality, such that

| ⟨f, g⟩ | ≤ ∥f∥ ∥g∥ , ∀f, g ∈ V. (212)

Now we denote by L2
w(a, b) the set of all real-valued functions f defined on (a, b) such that w(x)|f(x)|2 is integrable

on (a, b). The set L2
w(a, b) is equipped with the inner product and the induced l2-norm. Note that when w(x) ≡ 1

on (a, b), we simply write L2(a, b). Now, the problem of best approximation in the l2-norm can be formulated as
follows. Given that f ∈ L2

w(a, b), find pn ∈ Pn, such that

∥f − pn∥2 = inf
q∈Pn

∥f − q∥2 . (213)

As an example, let n = 0 and f(x) = −2x2 on [−1, 1], where w(x) ≡ 1. We seek to find p0(x) = c that minimizes
∥f − p0∥2. Note that

∥f − p0∥22 =

∫ 1

−1

(−2x2 − c)2dx = 2c2 +
8c

3
+

8

5
. (214)

Taking its derivative with respect to c, we have that

d

dc
∥f − p0∥22 = 4c+

8

3
. (215)

We seek this derivative to be zero so that the objective would be minimized. Therefore, p0(x) = c = −2/3. Note that
the polynomial of best approximation from Pn to a function in the l2-norm can be vastly different from the minimax
approximation from Pn to the same function. Now to figure out a general approach, suppose that ϕj , j = 0, · · · , n
for a basis of Pn, n ≥ 0. We seek the polynomial of best approximation as the linear combination

pn(x) = γ0ϕ0(x) + · · ·+ γnϕn(x), (216)

where γ0, · · · , γn ∈ R are to be determined. Setting w(x) ≡ 1 for now, we then have that

∥f − pn∥22 =

∫ b

a

f(x)− n∑
j=0

γjϕj(x)

2

dx =

∫ b

a

f2(x)dx− 2

n∑
j=0

γj

∫ b

a

f(x)ϕj(x)dx+

∫ b

a

 n∑
j=0

γjϕj(x)

2

dx

=

∫ b

a

f2(x)dx− 2

n∑
j=0

γj

∫ b

a

f(x)ϕj(x)dx+

n∑
j=0

n∑
k=0

γjγk

∫ b

a

ϕj(x)ϕk(x)dx

= ⟨f, f⟩ − 2

n∑
j=0

γj ⟨f, ϕj⟩+
n∑

j=0

n∑
k=0

γjγk ⟨ϕj , ϕk⟩ . (217)

In order to minimize this objective, we require each partial derivative with respect to γl to be 0. We have that

∂

∂γl
∥f − pn∥22 = −2 ⟨f, ϕl⟩+ 2

n∑
k=0

γk ⟨ϕl, ϕk⟩ . (218)

Setting it to zero for each l = 0, · · · , n gives that

n∑
k=0

γk ⟨ϕl, ϕk⟩ = ⟨f, ϕl⟩ , (219)

and if we write this system of equations in the matrix form, we can see that
⟨ϕ0, ϕ0⟩ ⟨ϕ0, ϕ1⟩ · · · ⟨ϕ0, ϕn⟩
⟨ϕ1, ϕ0⟩ ⟨ϕ1, ϕ1⟩ · · · ⟨ϕ1, ϕn⟩

...
...

. . .
...

⟨ϕn, ϕ0⟩ ⟨ϕn, ϕ1⟩ · · · ⟨ϕn, ϕn⟩



γ0
γ1
...
γn

 =


⟨f, ϕ0⟩
⟨f, ϕ1⟩

...
⟨f, ϕn⟩

 . (220)

Therefore, once this linear system is solved, the polynomial of best l2-norm approximation to f would just be

pn(x) = γ0ϕ0(x) + · · ·+ γnϕn(x), (221)

as we have designed. Furthermore, if ϕ0, · · · , ϕn form an orthonormal basis, then ⟨ϕl, ϕk⟩ = δlk, and thus the
left-hand side of the above system becomes Iγ⃗ = γ⃗, so taking γl = ⟨f, ϕl⟩ for each l would suffice.
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8.3 Orthogonal Polynomials

From the analysis above, we can see that the approximation of f is equivalent to finding its orthogonal projection
onto Pn under the inner product

⟨f, g⟩ =
∫ b

a

f(x)g(x)w(x)dx, (222)

where w(x) is the weight function and in the above scenario w(x) ≡ 1. Recall that we have defined what orthogonal
polynomials are, that is, ⟨f, g⟩ = 0. As an example of finding a system of orthogonal polynomials, we consider finding
ϕ0, ϕ1, ϕ2 on [−1, 1] with weight function w(x) ≡ 1. First, set ϕ0(x) = 1, and let ϕ1(x) = x+ b. By ⟨ϕ0, ϕ1⟩ = 0, we
can deduce that ∫ 1

−1

1 · (x+ b)dx = 2b = 0 =⇒ b = 0. (223)

Therefore, we set ϕ1(x) = x. Now let ϕ2(x) = x2 + bx+ c, then two conditions must be satisfied, such that∫ 1

−1

ϕ0(x)ϕ2(x)dx =

∫ 1

−1

(x2 + bx+ c)dx =
2

3
+ 2c = 0 =⇒ c = −1

3
, (224)∫ 2

−1

ϕ1(x)ϕ2(x)dx =

∫ 1

−1

(x3 + bx2 + cx)dx =
2

3
b = 0 =⇒ b = 0. (225)

Therefore, we set ϕ2(x) = x2 − 1/3. Now by construction, 1, x, and x2 − 1/3 are orthogonal on [−1, 1]. We could do
the same steps for ϕ3(x), ϕ4(x), · · · . The resulting polynomials are known as Legendre polynomials. They form an
orthogonal basis for all L2(−1, 1) under the inner product

⟨f, g⟩ =
∫ 1

−1

f(x)g(x)dx. (226)

Recall that we say f ∈ L2(−1, 1) if and only if
∫ 1

−1
|f(x)|2dx < ∞, i.e., ∥f∥22 < ∞. Legendre polynomials can also

be constructed in another way, i.e., via the Gram-Schmidt process. We start with ϕ0(x) = 1 and ϕ1(x) = x, which
are automatically orthogonal. Then we set m2(x) = x2, which is linearly independent from ϕ0 and ϕ1. Now by
Gram-Schmidt process, we take

ϕ2(x) = m2(x)−
⟨m2, ϕ0⟩
⟨ϕ0, ϕ0⟩

ϕ0(x)−
⟨m2, ϕ1⟩
⟨ϕ1, ϕ1⟩

ϕ1(x) = x2 − 1

3
, (227)

where the result is exactly the same as before. So in general, we compute

ϕn(x) = mn(x)−
n−1∑
l=0

⟨mn, ϕl⟩
⟨ϕl, ϕl⟩

ϕl(x) = xn −
n−1∑
l=0

ϕl(x)

∥ϕl∥22

∫ 1

−1

xnϕl(x)dx. (228)

These polynomials can be scaled to any interval, and moreover, we can easily add weight function (as long as ϕ0 and
ϕ1 are chosen properly). Now, we examine the Chebyshev polynomials. We know that for m ̸= n,∫ π

0

cos(mt) cos(nt)dt = 0, (229)

and by substituting t = a cosx, we have that dt = dx/
√
1− x2, which means∫ 1

−1

cos(m arccosx) cos(n arccosx)
dx√
1− x2

= 0 =⇒
∫ 1

−1

Tm(x)Tn(x)
1√

1− x2
dx = 0, m ̸= n. (230)

Therefore, we can conclude that the Chebyshev polynomials T0, T1, T2, · · · are orthogonal on [−1, 1] with respect to
the weight function w(x) = 1/

√
1− x2.
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Theorem 8.3. If f ∈ L2
w(a, b), there is a unique polynomial pn of degree n, such that

∥f − pn∥2,w = min
q∈Pn

∥f − q∥2,w , (231)

where we recall that

∥f∥22,w =

∫ b

a

|f(x)|2w(x)dx. (232)

Proof. The Gram-Schmidt process solve directly for the coefficients of the associated orthogonal polynomial expansion
to compute the approximation. Therefore, existence and uniqueness both follows from the Gram-Schmidt process.

There are some famous sets of orthogonal polynomials. For instance, Legendre polynomials on (−1, 1) with w(x) ≡ 1,
Chebyshev polynomials on (−1, 1) with w(x) = 1/

√
1− x2, Laguerre polynomials on (0,∞) with w(x) = e−x, and

Hermite polynomials on (−∞,∞) with w(x) = e−x2

. Now, let us take an explicit example to elaborate on how to
compute best l2-norm polynomial approximation. Consider f(x) = sinx on (0, π) with weight function w(x) ≡ 1.
Recall that the first three Legendre polynomials on (−1, 1) are

ϕ0(x) = 1, ϕ1(x) = x, ϕ2(x) = x2 − 1

3
. (233)

To define these functions on (0, π), we substitute t = x+1
2 π, which means x = 2t/π − 1. The shifted orthogonal

polynomials would then be

ϕ̃0(t) = 1, ϕ̃1(t) =
2

π

(
t− π

2

)
, ϕ̃2(t) =

4

π2

(
t2 − πt+ π2

6

)
. (234)

The best approximation is given by the projection of f onto the linear space spanned by ϕ̃0, ϕ̃1, ϕ̃2, such that

p2(t) =
⟨f, ϕ̃0⟩
⟨ϕ̃0, ϕ̃0⟩

ϕ̃0(t) +
⟨f, ϕ̃1⟩
⟨ϕ̃1, ϕ̃1⟩

ϕ̃1(t) +
⟨f, ϕ̃2⟩
⟨ϕ̃2, ϕ̃2⟩

ϕ̃2(t). (235)

9 Numerical Integration

Almost no integral can be computed analytically, they must be evaluated numerically. For instance, we have the
Gaussian error function

erf(x) =
2√
π

∫ x

0

e−t2dt. (236)

Moreover, numerical integration has wide applications in ODEs for initial value problems, for instance, y′(t) = f(t),
y(0) = y0. The analytical solution would be

y(t) = y0 +

∫ t

0

f(τ)dτ, (237)

but the integral may need to be evaluated numerically. In fact, all numerical methods for solving such initial value
problems are based on numerically approximating the integral.

4/10 Lecture

9.1 Newton-Cotes Formulae

Let f be a real-valued function, defined and continuous on the closed real interval [a, b], and suppose we have to
evaluate the integral ∫ b

a

f(x)dx. (238)
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Since polynomials are easy to integrate, the idea, roughly speaking, is to approximate the function f by its Lagrange
interpolation polynomial pn of degree n, and integrate pn instead. Therefore, we have that∫ b

a

f(x)dx ≈
∫ b

a

pn(x)dx. (239)

This can be done with arbitrarily high degree interpolation, but remember that the interpolating polynomial may
suffer from Runge’s phenomenon. Now to be more specific, let xi, i = 0, · · · , n denote the interpolation points. For
the sake of simplicity, we shall assume that these are equispaced, i.e., xi = a+ ih where h = (b−a)/n. The Lagrange
interpolation polynomial of degree n for the function f , with these interpolation points, is of the form

pn(x) =

n∑
k=0

Lk(x)f(xk), (240)

where

Lk(x) =

n∏
i=0,i̸=k

x− xi
xk − xi

. (241)

Inserting this expression of pn into our approximate integration, we have that∫ b

a

f(x)dx ≈
∫ b

a

n∑
k=0

Lk(x)f(xk)dx =

n∑
k=0

(∫ b

a

Lk(x)dx

)
︸ ︷︷ ︸

=:wk

f(xk) =

n∑
k=0

wkf(xk). (242)

The values wk, k = 0, · · · , n are referred to as the quadrature weights, while the interpolation points xk, k = 0, · · · , n
are called the quadrature nodes. The numerical quadrature rule as stated above, with equispaced quadrature points,
is called the Newton-Cotes formula of order n. Here are a few remarks. Firstly, the quadrature weights wk depends
only on the locations of the quadrature nodes, but not on the function itself. Secondly, using large n may result in
inaccurate approximation by the interpolating polynomial due to the Runge phenomenon. The remedy would be to
use smaller n (i.e., lower order interpolations), but repeat multiple times and glue the results together.

Now, based on the Newton-Cotes formula, we introduce the following simple rule called the Trapezium rule. Take
n = 1, so that x0 = a and x1 = b. Then we can compute that

p1(x) = L0(x)f(a) + L1(x)f(b) =
x− b
a− b

f(a) +
x− a
b− a

f(b) =
(b− x)f(a) + (x− a)f(b)

b− a
. (243)

Integrating p1(x) from a to b then yields∫ b

a

f(x)dx ≈
∫ b

a

p1(x)dx =
(b− a)(f(a) + f(b))

2
. (244)

The reason why this is called the Trapezium rule is that, the expression is the area of the trapezium (t̄ı x́ıng) with
vertices (a, 0), (b, 0), (a, f(a)), (b, f(b)).

9.2 Error Estimates

Our next task is to estimate the size of error in the numerical integration formula, Newton-Cotes formula. The error
is defined by

En(f) =

∫ b

a

f(x)dx−
n∑

k=0

wkf(xk). (245)

Theorem 9.1. Let n ≥ 1. Suppose that f is a real-valued function, defined and n+1 times continuously differentiable
on the interval [a, b], i.e., f (n+1) exists and is continuous on [a, b]. Then,

|En(f)| ≤
Mn+1

(n+ 1)!

∫ b

a

|πn+1(x)|dx, (246)
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where

Mn+1 = max
ξ∈[a,b]

|f (n+1)(ξ)|, πn+1(x) =

n∏
i=0

(x− xi). (247)

Proof. Recalling the the definition of the quadrature weights wk, we can write the error as

En(f) =

∫ b

a

f(x)dx−
∫ b

a

(
n∑

k=0

Lk(x)f(xk)

)
dx =

∫ b

a

(f(x)− pn(x))dx. (248)

Therefore, by the bound on the interpolation error (187), we can obtain that

|En(f)| ≤
∫ b

a

|f(x)− pn(x)|dx ≤
Mn+1

(n+ 1)!

∫ b

a

|πn+1(x)|dx, (249)

as desired, so the proof is complete.

Applying this theorem to the Trapezium rule, i.e., when n = 1, we can see that

|E1(f)| ≤
M2

2

∫ b

a

|(x− a)(x− b)|dx =
M2

2

∫ b

a

(x− a)(b− x)dx =
(b− a)3

12
M2, (250)

where M2 = maxξ∈[a,b] |f ′′(ξ)|.

9.3 Composite Formulae

We shall consider only some very simple quadrature rules, for instance the composite Trapezium rule. Higher orders
include the composite Simpsons rule, which can be derived from Simpsons rule by taking n = 2 in the Newton-Cotes
formula, but we will not discuss here. Now, suppose that f is a function, defined and continuous on [a, b]. In order to
construct an approximation to its integral over [a, b], we divide the interval into m equal subintervals, each of width
h = (b− a)/m, so that ∫ b

a

f(x)dx =

m∑
i=1

∫ xi

xi−1

f(x)dx, (251)

where xi = a+ ih = a+ i(b− a)/m, i = 0, · · · ,m. Each of these integrals is then evaluated by the Trapezium rule,
such that ∫ b

a

f(x)dx =

m∑
i=1

∫ xi

xi−1

f(x)dx ≈
m∑
i=1

h(f(xi−1) + f(xi))

2
= h

(
f(x0)

2
+

m−1∑
i=1

f(xi) +
f(xm)

2

)
. (252)

This is called the composite Trapezium rule. As for the error, we can estimate it using the error bound for the normal
Trapezium rule on each subinterval. To this end, we define

E1(f) =

m∑
i=1

(∫ xi

xi−1

f(x)dx− h(f(xi−1) + f(xi))

2

)
. (253)

Then, we can apply (250) to obtain that

|E1(f)| ≤
m∑
i=1

(xi − xi−1)
3

12

(
max

ξ∈[xi−1,xi]
|f ′′(ξ)|

)
≤ ((b− a)/m)3

12

m∑
i=1

max
ξ∈[a,b]

|f ′′(ξ)| = (b− a)2

12m2
M2, (254)

where M2 = maxξ∈[a,b] |f ′′(ξ)|. This error is 1/m2 of the error bound of the normal Trapezium rule. In other words,
it is an O(h) error bound where h is the subinterval width.
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9.4 The Euler-Maclaurin Expansion

We have seen that the error in the composite Trapezium rule is bounded by a term involving 1/m2, where m is the
number of subdivisions of the interval [a, b]. The Euler-Maclaurin expansion that we are going to introduce expresses
this error as a series in powers of 1/m2, making it possible to improve accuracy via extrapolation methods. We need
the following theorem as a preparation.

Theorem 9.2. Suppose that the function g is defined and continuous on the interval [−1, 1] and has a continuous
derivative of order 2k over this interval. Then,∫ 1

−1

g(t)dt− (g(−1) + g(1)) =

∫ 1

−1

−tg′(t)dt =
k∑

r=1

q2r(1)
(
g(2r−1)(1)− g(2r−1)(−1)

)
−
∫ 1

−1

q2k(t)g
(2k)(t)dt, (255)

where qr, r = 1, 2, · · · is a sequence of polynomials, such that (1) qr is of degree r, (2) q′r+1 = qr, (3) qr is odd if r is
odd and even if r is even, (4) qr(1) = qr(−1) = 0 for r ≥ 3 odd, and (5) q1(t) = −t.

Proof. The first equality follows from integration by parts. Then, note that q1(t) = −t and by repeatedly applying
integration by parts in the other direction, we can compute that∫ 1

−1

−tg′(t)dt =
∫ 1

−1

q1(t)g
′(t)dt = g′(t)q2(t)

∣∣∣∣1
t=−1

−
∫ 1

−1

q2(t)g
′′(t)dt

= (g′(t)q2(t)− g′′(t)q3(t))
∣∣∣∣1
t=−1

+

∫ 1

−1

q3(t)g
′′′(t)dt

= · · ·

=
(
g′(t)q2(t)− g′′(t)q3(t) + · · ·+ g(2k−1)(t)q2k(t)

) ∣∣∣∣1
t=−1

−
∫ 1

−1

q2k(t)g
(2k)(t)dt. (256)

Since that qr(1) = qr(−1) = 0 for r ≥ 3 odd, we can simplify the above expression as∫ 1

−1

−tg′(t)dt =
(
g′(t)q2(t) + g′′′(t)q4(t) + · · ·+ g(2k−1)(t)q2k(t)

) ∣∣∣∣1
t=−1

−
∫ 1

−1

q2k(t)g
(2k)(t)dt

=

(
k∑

r=1

g(2r−1)(t)q2r(t)

)∣∣∣∣1
t=−1

−
∫ 1

−1

q2k(t)g
(2k)(t)dt

=

k∑
r=1

(
g(2r−1)(1)q2r(1)− g(2r−1)(−1)q2r(−1)

)
−
∫ 1

−1

q2k(t)g
(2k)(t)dt. (257)

Since q2r is even (because 2r is even), we have that q2r(−1) = q2r(1), and thus we can obtain that∫ 1

−1

−tg′(t)dt =
k∑

r=1

q2r(1)
(
g(2r−1)(1)− g(2r−1)(−1)

)
−
∫ 1

−1

q2k(t)g
(2k)(t)dt, (258)

concluding the second equality, so the proof is complete.

Theorem 9.3 (Euler-Maclaurin expansion). Suppose that the real-valued function f is defined and continuous on
the interval [a, b] and has a continuous derivative of order 2k on this interval. Consider the subdivision of [a, b] into
m ≥ 1 closed intervals [xi−1, xi], i = 1, · · · ,m, where xi = a+ ih, i = 0, · · · ,m, and h = (b−a)/m. Writing T (m) for

the result of approximating the integral I =
∫ b

a
f(x)dx by the composite Trapezium rule with these aforementioned

m subintervals, we have that

I − T (m) =

k∑
r=1

crh
2r
(
f (2r−1)(b)− f (2r−1)(a)

)
−
(
h

2

)2k m∑
i=1

∫ xi

xi−1

q2k(t)f
(2k)(x)dx, (259)

where t = t(x) = −1 + 2(x− xi−1)/h for x ∈ [xi−1, xi], i = 1, · · · ,m, and cr = 2−2rq2r(1) for r = 1, · · · , k.
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Proof. We express the integral as a sum over the m subintervals [xi−1, xi], i = 1, · · · ,m. In each interval [xi−1, xi],
we make change of variable such that x = xi−1 + h(t+ 1)/2, so that∫ xi

xi−1

f(x)dx =

∫ 1

−1

f

(
xi−1 +

h(t+ 1)

2

)
hdt

2
=
h

2

∫ 1

−1

g(t)dt, (260)

where g(t) = f(x) = f(xi−1 + h(t+ 1)/2). Now using the previous theorem, we can write that∫ 1

−1

g(t)dt =

k∑
r=1

q2r(1)
(
g(2r−1)(1)− g(2r−1)(−1)

)
−
∫ 1

−1

q2k(t)g
(2k)(t)dt+ g(−1) + g(1). (261)

Note that for each l = 1, 2, · · · , 2k, we have that

g(l)(t) =

(
h

2

)l

f (l)(x),
dx

dt
=
h

2
=⇒ dt =

2dx

h
. (262)

Therefore, we can rewrite the above expression as∫ 1

−1

g(t)dt =
k∑

r=1

q2r(1)

(
h

2

)2r−1 (
f (2r−1)(xi)− f (2r−1)(xi−1)

)
−
∫ xi

xi−1

q2k(t)

(
h

2

)2k

f (2k)(x)
2dx

h
+ f(xi−1) + f(xi)

=

k∑
r=1

2crh
2r−1

(
f (2r−1)(xi)− f (2r−1)(xi−1)

)
−
(
h

2

)2k−1 ∫ xi

xi−1

q2k(t)f
(2k)(x)dx+ f(xi−1) + f(xi).

(263)

Therefore, we have that∫ xi

xi−1

f(x)dx =
h

2

∫ 1

−1

g(t)dt

=

k∑
r=1

crh
2r
(
f (2r−1)(xi)− f (2r−1)(xi−1)

)
−
(
h

2

)2k ∫ xi

xi−1

q2k(t)f
(2k)(x)dx+

h(f(xi−1) + f(xi))

2
. (264)

Summing up over all the subintervals, the first summand in the above expression sums up to

m∑
i=1

(
k∑

r=1

crh
2r
(
f (2r−1)(xi)− f (2r−1)(xi−1)

))

=

k∑
r=1

crh
2r

m∑
i=1

(
f (2r−1)(xi)− f (2r−1)(xi−1)

)
=

k∑
r=1

crh
2r
(
f (2r−1)(b)− f (2r−1)(a)

)
. (265)

Therefore, we have that

I =

∫ b

a

f(x)dx =

m∑
i=1

∫ xi

xi−1

f(x)dx

=

k∑
r=1

crh
2r
(
f (2r−1)(b)− f (2r−1)(a)

)
+

(
h

2

)2k m∑
i=1

∫ xi

xi−1

q2k(t)f
(2k)(x)dx+

m∑
i=1

h(f(xi−1) + f(xi))

2︸ ︷︷ ︸
composite Trapezium T (m)

. (266)

Consequently, we can conclude that

I − T (m) =

k∑
r=1

crh
2r
(
f (2r−1)(b)− f (2r−1)(a)

)
−
(
h

2

)2k m∑
i=1

∫ xi

xi−1

q2k(t)f
(2k)(x)dx, (267)

where for each subinterval [xi−1, xi], we have defined x = xi−1 + h(t + 1)/2 =⇒ t = t(x) = −1 + 2(x − xi−1)/h,
thus the proof is complete.
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We note that the coefficients cr are actually given by

cr =
q2r(1)

22r
= − B2r

(2r)!
, (268)

where B2r are the Bernoulli numbers with even index, determined from the Taylor expansion such that

x

2
coth

(x
2

)
=

∞∑
r=0

B2rx
2r

(2r)!
. (269)

The calculation of B2r was the output of arguably the first “computer program” written by Ada Lovelace and Charles
Babbage. We provide the first few values of cr here as

c1 = − 1

12
, c2 =

1

720
, c3 = − 1

30240
, c4 =

1

1209600
, · · · (270)

Implications of Euler-Maclaurin. If f ∈ C∞[a, b] and periodic with f (j)(a) = f (j)(b) (think of Fourier se-
ries, cosmx, sinmx, etc.), then this error |I − T (m)| decays superalgebraically as n → ∞. We say that ϵn → 0
superalgebraically as n→∞ if

lim
n→∞

ϵn
hpn

= 0, ∀p > 0, (271)

which means that ϵn → 0 faster than any power of h. For this reason, the composite Trapezium rule is very important
in various numerical fields.

9.5 Clenshaw-Curtis Quadrature

This is a special case of Newton-Cotes formula, where we interpolate f at Chebyshev nodes and integrate each
Chebyshev polynomial. More specifically, we approximate∫ 1

−1

f(x)dx ≈
∫ 1

−1

pn(x)dx, (272)

where pn is the Lagrange interpolant expressed in Chebyshev polynomials

pn(x) =

n∑
j=0

ajTj(x), (273)

where aj are coefficients. Then, we have that∫ 1

−1

f(x)dx ≈
n∑

j=0

aj

∫ 1

−1

Tj(x)dx =

n∑
j=0

aj

∫ 1

−1

cos(j arccosx)dx =

n∑
j=0

aj

∫ π

0

cos(jθ) sin θdθ

=

n∑
j=0

aj
1 + cos(jπ)

1− j2
=

n/2∑
i=0

a2i
1 + cos(2iπ)

1− (2i)2
=

n/2∑
i=0

2a2i
1− 4i2

. (274)

We will return to a “fast” method for computing ai’s when we talk about the discrete Fourier transform, but for
now, you can imagine computing them with the composite Trapezium rule since f(cos θ) sin θ is a periodic function.
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9.6 Extrapolation Methods

In general the calculation of the higher order derivatives involved in the Euler-Maclaurin expansion is not possible.
However, the existence of the expansion allows us to eliminate successive terms by repeated calculation of the
Trapezium rule approximation. For instance, the case k = 2 in the Euler-Maclaurin expansion can be written as∫ b

a

f(x)dx− T (m) = c1h
2 (f ′(b)− f ′(a)) +O(h4). (275)
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This would also mean that ∫ b

a

f(x)dx− T (2m) = c1
h2

4
(f ′(b)− f ′(a)) +O(h4). (276)

Thus, we can eliminate the h2 term via subtracting four times the second equation from the first one, such that

−3
∫ b

a

f(x)dx− T (m) + 4T (2m) = O(h4) =⇒
∫ b

a

f(x)dx =
4T (2m)− T (m)

3
+O(h4). (277)

The same elimination process could be used for any two values of m, but the advantage of using m and 2m is that
in the computation of T (2m), half of the required values of f(xi) are already known from T (m), so we do not have
to compute them again. This process of eliminating the term in h2 from the expression of the error is known as
Richardson extrapolation or h2 extrapolation. It is easy to extend the process to higher-order terms. For instance,∫ b

a

f(x)dx− T (m) = c1h
2 (f ′(b)− f ′(a)) + c2h

4 (f ′′′(b)− f ′′′(a)) + c3h
6
(
f (5)(b)− f (5)(a)

)
+O(h8), (278)∫ b

a

f(x)dx− T (2m) = c1
h2

4
(f ′(b)− f ′(a)) + c2

h4

16
(f ′′′(b)− f ′′′(a)) + c3

h6

64

(
f (5)(b)− f (5)(a)

)
+O(h8). (279)

Eliminating the h2 term, we will obtain that

− 3

∫ b

a

f(x)dx− T (m) + 4T (2m) = c2
3h4

4
(f ′′′(b)− f ′′′(a)) + c3

15h6

16

(
f (5)(b)− f (5)(a)

)
+O(h8)

=⇒
∫ b

a

f(x)dx− 4T (2m)− T (m)

3︸ ︷︷ ︸
=:T1(m)

= −c2
h4

4
(f ′′′(b)− f ′′′(a))− c3

5h6

16

(
f (5)(b)− f (5)(a)

)
+O(h8). (280)

Computing also with 2m, we can obtain a second equation such that∫ b

a

f(x)dx− T1(2m) = −c2
h4

64
(f ′′′(b)− f ′′′(a))− c3

5h6

1024

(
f (5)(b)− f (5)(a)

)
+O(h8). (281)

Eliminating the h4 term, we will obtain that

− 15

∫ b

a

f(x)dx− T1(m) + 16T1(2m) = −c3
15h6

64

(
f (5)(b)− f (5)(a)

)
+O(h8)

=⇒
∫ b

a

f(x)dx− 16T1(2m)− T1(m)

15︸ ︷︷ ︸
=:T2(m)

= c3
h6

64

(
f (5)(b)− f (5)(a)

)
+O(h8). (282)

We can again repeat this process, i.e., compute with 2m and eliminate the h6 term, but we will not explicit do it
here. We observe that

T1(m) =
4T (2m)− T (m)

3
, T2(m) =

16T1(2m)− T1(m)

15
, · · · (283)

By adopting the notational convention T0(m) = T (m), we can thus recursively obtain that

Tk(m) =
4kTk−1(2m)− Tk−1(m)

4k − 1
, (284)

which will approximate
∫ b

a
f(x)dx to accuracy O(h2k+2), as long as f (2k+2) exists and is continuous on the interval

[a, b]. This extrapolation process is also known as the Romberg integration method.

9.7 Construction of Gauss Quadrature Rules

Before we were all talking about the Newton-Cotes family of formulae for numerical integration. But now, we are
going to introduce another family of numerical integration rules, namely Gauss quadrature formulae.
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Suppose that the function f is defined on the closed interval [a, b] and that it is continuous and differentiable on this
interval. Also suppose that w is a weight function, defined, positive, continuous, and integrable on (a, b). We wish
to construct quadrature formulae for the approximate evaluation of the integral∫ b

a

w(x)f(x)dx. (285)

For a nonnegative integer n, let xi, i = 0, · · · , n be n + 1 points in the interval [a, b], where we will determine the
precise location of these points later. The Hermite interpolation polynomial of degree 2n + 1 for the function f is
given by the expression

p2n+1(x) =

n∑
k=0

Hk(x)f(xk) +

n∑
k=0

Kk(x)f
′(xk), (286)

where

Hk(x) = L2
k(x)(1− 2L′

k(xk)(x− xk)), (287)

Kk(x) = L2
k(x)(x− xk), (288)

Lk(x) =

n∏
i=0,i̸=k

x− xi
xk − xi

∈ Pn. (289)

If n = 0, we let L0(x) = 1 and thus H0(x) = 1 and K0(x) = x− x0. Now, we can deduce that∫ b

a

w(x)f(x)dx ≈
∫ b

a

w(x)p2n+1(x)dx =

n∑
k=0

Wkf(xk) +

n∑
k=0

Vkf
′(xk), (290)

where

Wk =

∫ b

a

w(x)Hk(x)dx, Vk =

∫ b

a

w(x)Kk(x)dx. (291)

There is an obvious advantage in choosing the points xk in such a way that all the coefficients Vk are zero, so that
the derivative values f ′(xk) need not be computed. Recalling the form of the polynomial Kk and inserting it into
the definition for Vk, we have that

Vk =

∫ b

a

w(x)L2
k(x)(x− xk)dx = Cn

∫ b

a

w(x)πn+1(x)Lk(x)dx, (292)

where

πn+1(x) =

n∏
i=0

(x− xi), (293)

Cn =

{∏n
i=0,i̸=k(xk − xi)−1, if n ≥ 1,

1, if n = 0.
(294)

Since πn+1 is a polynomial of degree n + 1 while Lk is of degree n for each 0 ≤ k ≤ n, then each Vk would be
zero if the polynomial πn+1 is orthogonal to every polynomial of lower degree with respect to the weight function
w. Therefore, we can construct the desired quadrature formula with Vk = 0, k = 0, · · · , n by choosing the points
xk, k = 0, · · · , n to be the zeros of the polynomial of degree n + 1 in a system of orthogonal polynomials over the
interval (a, b) with respect to w. In this case,

Wk =

∫ b

a

w(x)Hk(x)dx =

∫ b

a

w(x)L2
k(x)(1− 2L′

k(xk)(x− xk))

=

∫ b

a

w(x)L2
k(x)dx− 2L′

k(xk)Vk =

∫ b

a

w(x)L2
k(x)dx. (295)
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Therefore, the desired quadrature formula would become∫ b

a

f(x)dx ≈
n∑

k=0

Wkf(xk), (296)

where the quadrature weights are

Wk =

∫ b

a

w(x)L2
k(x)dx, (297)

and the quadrature points xk, k = 0, · · · , n are chosen as the zeros of the polynomial of degree n+ 1 from a system
of orthogonal polynomial over the interval (a, b) with respect to the weight function w. The quadrature formula for
numerical integration as above is known as the Gauss quadrature rule. Note that when f is a polynomial of degree
2n+1 or less, the Gauss quadrature rule gives the exact result. Also recall that the system of orthogonal polynomials
can be constructed via Gram-Schmidt orthogonalization, as in Section 8.3.
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10 The Discrete Fourier Transform

We must first agree on what discrete Fourier transform means. The simple response is to give a formula, such as

Fk =
1

N

N
2∑

n=−N
2 +1

fn exp

(
− i2πnk

N

)
, (298)

and state that this holds for k equal to any N consecutive integers. This is indeed the definition that we shall use,
but we are also interested in its relation with the Fourier transform. In the course of this section, we will arrive at
the DFT along the following paths: (1) approximation to the Fourier transform of a function; (2) approximation to
the Fourier coefficients of a function; (3) trigonometric approximation; and (4) the Fourier transform of a spike train.

10.1 DFT Approximation to the Fourier Transform

For the moment, we assume that f is defined on (−∞,∞) and has some known properties, one of which is that f is
absolutely integrable on the real line, such that ∫ ∞

−∞
|f(x)|dx <∞. (299)

Then we may define a function f̂(ω) by

f̂(ω) =

∫ ∞

−∞
f(x) exp (−i2πωx) dx, (300)

where −∞ < ω <∞ and i =
√
−1. The function f̂ is called the Fourier transform of f and is uniquely determined

by the equation above. The transform f̂ is said to be defined in the frequency domain (transform domain), while
the input function f is said to be defined in the spatial domain (spacial coordinate) or in the time domain (time-

dependent). Of tremendous importance is the fact that there is an inverse relation between f and f̂ given by

f(x) =

∫ ∞

−∞
f̂(ω) exp (i2πωx) dω, (301)

also known as the inverse Fourier transform of f̂(ω).

We begin by looking at the kernel of the Fourier transform, i.e., exp (−i2πωx) = cos(2πωx) − i sin(2πωx). For a
fixed value of ω, the kernel consists of waves with period (wavelength) of 1/ω, measured in the units of x (either
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length or time). These waves are called modes. On the other hand, the inverse Fourier transform can be regarded
as a recipe for assembling the function f as a combination of modes of all frequencies −∞ < ω < ∞. The mode
associated with a particular frequency ω has a certain weight in this combination, and the weight is given by f̂(ω).
This process of assembling a function from all of the various modes is often called synthesis, and the complete set of
values of f̂ is often called the spectrum of f since it gives the entire “frequency content” of the function or signal f .

With this capsule account of the Fourier transform, next we see how the DFT emerges as a natural approximation.
First a practical observation is needed: when a function is given, either it already has well-defined boundaries, or
it is assumed zero outside some finite interval for the sake of computation. For now we assume that f(x) = 0 for
|x| > A/2, then the Fourier transform with limited extent is given by

f̂(ω) =

∫ ∞

−∞
f(x) exp (−i2πωx) dx =

∫ A/2

−A/2

f(x) exp (−i2πωx) dx. (302)

We wish to approximate this integral numerically, so we divide the interval of integration [−A/2, A/2] into N
subintervals of length ∆x = A/N . Assume that N is even, then let the grid points be denoted as

x−N/2 = −A
2
, x−N/2+1 = −A

2
+ ∆x, · · · , x0 = 0, · · · , xN/2 =

A

2
. (303)

Now assume that the function f is known at the grid points. Letting the integrand be g(x) = f(x) exp (−i2πωx), we
may apply the Trapezium rule to this integral, which leads to the approximation∫ A/2

−A/2

g(x)dx ≈ ∆x

2

g(−A
2

)
+ 2

N
2 −1∑

n=−N
2 +1

g(xn) + g

(
A

2

) . (304)

For now we will add the requirement that g(−A/2) = g(A/2), an assumption that will be the subject of great scrutiny
later. With this assumption, the Trapezium rule may be rewritten as

f̂(ω) =

∫ A/2

−A/2

g(x)dx ≈ ∆x

N
2∑

n=−N
2 +1

g(xn) =
A

N

N
2∑

n=−N
2 +1

f(xn) exp (−i2πωxn) . (305)

Now, since N values of f are used in the Trapezium rule approximation, we also want to choose N values for ω at
which to approximate f̂ . Closely related to the spatial or temporal domain [−A/2, A/2] for x is a frequency domain
which we will denote by [−Ω/2,Ω/2], also equipped with N equally spaced grid points. Imagine all modes (sines and
consines) that have an integer number of periods on [−A/2, A/2] and fit exactly on the interval. Of these waves, we
consider the one with the largest possible period. This is often called the one-mode or the fundamental mode, having
period A and thus frequency 1/A. This will be used as the fundamental unit of frequency ∆ω = 1/A, thus Ω = N/A.

Reciprocity relations. From the observations above, we can conclude that

AΩ = N, ∆x∆ω =
A

N
· 1
A

=
1

N
. (306)

These are two reciprocity relations, not independent but both are useful. With these reciprocity relations established,
we can now return to the Trapezium rule approximation and extract the DFT in short order. For simplicity, denote
fn = f(xn), for n = −N/2+ 1,−N/2+ 2, · · · , N/2− 1, N/2. Then, agreeing to approximate f̂ at the frequency grid
points ωk = k∆ω = k/A, we note that

xnωk = (n∆x)(k∆ω) = nk ·∆x∆ω =
nk

N
. (307)

The sum in the Trapezium rule then becomes

f̂

(
k

A

)
= f̂(ωk) ≈

A

N

N
2∑

n=−N
2 +1

f(xn) exp (−i2πωkxn) =
A

N

N
2∑

n=−N
2 +1

fn exp

(
− i2πnk

N

)

= A · 1
N

N
2∑

n=−N
2 +1

fn exp

(
− i2πnk

N

)
︸ ︷︷ ︸

=:Fk

, k ∈
[
−N

2
+ 1,

N

2

]
∩ Z. (308)
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Given the set of N sample values fn, the DFT consists of N coefficients Fk. In addition to identifying the DFT, we
can conclude that the approximations to the Fourier transform f̂(ωk) are given by f̂(ωk) = AFk. This approximation
and the errors it entails will be investigated later. Next we will officially introduce the DFT.

10.2 The DFT-IDFT Pair

For convenience, we will adopt the notation

ωN = exp

(
i2π

N

)
= cos

(
2π

N

)
+ i sin

(
2π

N

)
, (309)

so that ω−nk
N = exp (−i2πnk/N), and ωnk

N = exp (i2πnk/N).

Definition 10.1 (Discrete Fourier transform). Let N be an even positive integer and let fn be a sequence of N
complex numbers where n = −N/2 + 1, · · · , N/2. Then its discrete Fourier transform is another sequence of N
complex numbers given by

Fk =
1

N

N
2∑

n=−N
2 +1

fnω
−nk
N , k = −N

2
+ 1, · · · , N

2
. (310)

Analogously if N is odd, the range of n will be −(N − 1)/2, · · · , (N − 1)/2, and the sum will be in this range as well.

An alternate form of the DFT can be as follows. Let N be a positive integer and let fn be a sequence of N complex
numbers where n = 0, · · · , N − 1. Then its discrete Fourier transform is another sequence of N complex numbers
given by

Fk =
1

N

N−1∑
n=0

fnω
−nk
N , k = 0, · · · , N − 1. (311)

This is equivalent to the original form, and is independent of the parity (even or odd) of N . Moreover, note that the
DFT can be split into the real and imaginary parts. We can compute that

Fk =
1

N

N
2∑

−N
2 +1

fnω
−nk
N =

1

N

N
2∑

−N
2 +1

(Re(fn) + iIm(fn))

(
cos

(
2πnk

N

)
− i sin

(
2πnk

N

))

=
1

N

N
2∑

−N
2 +1

(
Re(fn) cos

(
2πnk

N

)
+ Im(fn) sin

(
2πnk

N

))

+
i

N

N
2∑

−N
2 +1

(
Im(fn) cos

(
2πnk

N

)
− Re(fn) sin

(
2πnk

N

))
. (312)

Inverse discrete Fourier transform (IDFT). Let N be an even positive integer and let Fk be a sequence of N
complex numbers, where k = −N/2 + 1, · · · , N/2. Then its inverse discrete Fourier transform is another sequence
of N complex numbers, given by

fn =

N/2∑
k=−N/2+1

Fkω
nk
N , n = −N

2
+ 1, · · · , N

2
. (313)

Note that this definition confers periodicity on the sequence fn, i.e., fn = fn+N . We denote D(fn) to mean the DFT
of the sequence fn and D(fn)k to mean the kth element of the DFT. We also denote D−1(Fk) to mean the IDFT of
the sequence Fk and D−1(Fk)n to mean the nth element of the IDFT. Therefore, we have that

D(fn)k = Fk, D−1(Fk)n = fn, D
(
D−1(Fk)

)
k
= Fk, D−1 (D(fn))n = fn. (314)
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To verify the last two equations, we must first develop the orthogonality property of the complex exponential. We
introduce the notion of modular Kronecker delta, such that

δ̂N (k) =

{
1, if k = 0 or an integer multiple of N,

0, otherwise.
(315)

Theorem 10.2. Let j and k be integers and let N be a positive integer. Then

N−1∑
n=0

exp

(
i2πnj

N

)
exp

(
− i2πnk

N

)
= Nδ̂N (j − k) =

{
N, if j = k or j − k is an integer multiple of N,

0, otherwise.
(316)

Given the theorem (of orthogonality) above, we can see that

D−1 (D(fn)k)n =

N
2∑

k=−N
2 +1

Fkω
nk
N =

N
2∑

k=−N
2 +1

 1

N

N
2∑

j=−N
2 +1

fjω
−jk
N

ωnk
N =

1

N

N
2∑

j=−N
2 +1

fj

N
2∑

k=−N
2 +1

ω
k(n−j)
N

=
1

N

N
2∑

j=−N
2 +1

fj

N
2∑

k=−N
2 +1

ω
k(n−j)
N =

1

N

N
2∑

j=−N
2 +1

fj

N
2∑

k=−N
2 +1

exp

(
i2πk(n− j)

N

)
︸ ︷︷ ︸

=Nδ̂N (n−j)

=

N
2∑

j=−N
2 +1

fj δ̂N (n− j) = fn, ∀k =⇒ D−1 (D(fn))n = fn. (317)

It is equally easy to show the other side round, i.e., D
(
D−1(Fk)

)
k
= Fk.

10.3 DFT Approximations to Fourier Series Coefficients

As closely as the DFT is related to the Fourier transform, it may be argued that it holds even more kinship to the
coefficients of the Fourier series.

Definition 10.3 (Fourier series). Let f be a function that is A-periodic, then the Fourier series associated with f
is the trigonometric series

f(x) ∼
∞∑

k=−∞

ck exp

(
i2πkx

A

)
, (318)

where the coefficients ck are given by

ck =
1

A

∫ A/2

−A/2

f(x) exp

(
− i2πkx

A

)
dx. (319)

We have a similar orthogonality relation∫ A/2

−A/2

exp

(
i2πjx

A

)
exp

(
− i2πkx

A

)
dx = Aδ(j − k) =

{
A, if j = k,

0, otherwise,
(320)

which follows from direct integration. To find the coefficients ck, we assume that the A-periodic function f is the
sum of its Fourier series, so that

f(x) =

∞∑
j=−∞

cj exp

(
i2πjx

A

)
, (321)
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then we can find that

1

A

∫ A/2

−A/2

f(x) exp

(
− i2πkx

A

)
dx =

1

A

∫ A/2

−A/2

∞∑
j=−∞

cj exp

(
i2π(j − k)x

A

)
dx

=
1

A

∞∑
j=−∞

cj ·
∫ A/2

−A/2

exp

(
i2π(j − k)x

A

)
dx︸ ︷︷ ︸

=Aδ(j−k)

=
1

A

∞∑
j=−∞

cjAδ(j − k) = ck. (322)

Fourier Series for real-valued f . Let f be a real-valued function that is A-periodic. Then the Fourier series
associated with f is the trigonometric series

f(x) ∼ a0
2

+

∞∑
k=1

ak cos

(
2πkx

A

)
+

∞∑
k=1

bk sin

(
2πkx

A

)
, (323)

where the coefficients are given by

ak =
2

A

∫ A/2

−A/2

f(x) cos

(
2πkx

A

)
dx, k = 0, 1, 2, · · · , (324)

bk =
2

A

∫ A
2

−A
2

f(x) sin

(
2πkx

A

)
dx, k = 1, 2, · · · . (325)

Approximating Fourier coefficients. Let g(x) = f(x) exp (−i2πkx/A) be the integrand and apply the Trapez-
ium rule. We will have the approximation that

ck =
1

A

∫ A/2

−A/2

g(x)dx ≈ 1

A
· ∆x

2

g(−A
2

)
+ 2

N
2 −1∑

n=−N
2 +1

g(xn) + g

(
N

2

) . (326)

Note that for this choice of g, dictated by the convergence properties of the Fourier series, we can guarantee that
g(−A/2) = g(A/2) without making this unnecessary assumption. Therefore, the above approximation can be
rewritten as

ck ≈
∆x

A

N
2∑

n=−N
2 +1

g(xn) =
1

N

N
2∑

n=−N
2 +1

f(xn) exp

(
− i2πkxn

A

)
=

1

N

N
2∑

n=−N
2 +1

f(xn) exp

(
− i2πnk

N

)
. (327)

Denoting fn = f(xn), this simplifies to

ck ≈
1

N

N
2∑

n=−N
2 +1

fnω
−nk
N = D(fn)k, k = −N

2
+ 1, · · · , N

2
. (328)

10.4 DFT from Trigonometric Approximation

The derivations shown so far have evolved from the problem of approximating either the Fourier series coefficients or
the Fourier transform of a particular function. Another way to uncover the DFT follows by considering the problem
of approximating (or fitting) a set of data with a function known as a trigonometric polynomial. The goal is to find
a linear combination of sines and cosines that best approximates a given dataset.

Suppose that we are given N data pairs that we will denote (xn, fn), where n = −(N − 1)/2, · · · , (N − 1)/2. Note
that this derivation is one instance in which it is more convenient to work with N odd. The xn’s are real and are
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assumed to be equally spaced in the interval [−A/2, A/2]. That is, xn = n∆x with ∆x = A/N . The fn’s may be
complex-valued. We seek the best possible approximation of the data using the N -term trigonometric polynomial
ψN , given by

ψN (x) =

N−1
2∑

k=−N−1
2

αk exp

(
i2πkx

A

)
. (329)

We will use the least squares criterion here, that is, we seek to choose the coefficients αk to minimize the discrete
least squares error

E =

N−1
2∑

n=−N−1
2

|fn − ψN (xn)|2 = (fn − ψN (xn)) (fn − ψN (xn))
∗
. (330)

Therefore, we desire that

∂E

∂αk
=

N−1
2∑

n=−N−1
2

exp

(
− i2πnk

N

)fn − N−1
2∑

p=−N−1
2

αp exp

(
i2πnp

N

) = 0. (331)

Proper rearrangement of terms gives that

N−1
2∑

n=−N−1
2

fn exp

(
− i2πnk

N

)
=

N−1
2∑

n=−N−1
2

N−1
2∑

p=−N−1
2

αp exp

(
i2πn(p− k)

N

)
. (332)

Use previous results, we can obtain that

N−1
2∑

n=−N−1
2

fnω
−nk
N =

N−1
2∑

p=−N−1
2

αp

N−1
2∑

n=−N−1
2

ω
(p−k)n
N︸ ︷︷ ︸

=Nδ̂N (p−k)

=

N−1
2∑

p=−N−1
2

αpNδ̂N (p− k) = Nαk. (333)

Bringing this choice of αk into the expression of the error, we thus have that

E =

N−1
2∑

n=−N−1
2

|fn|2 −

N−1
2∑

n=−N−1
2

fnψ
∗
N (xn)

︸ ︷︷ ︸
N

∑
n |αn|2

−

N−1
2∑

n=−N−1
2

f∗nψN (xn)

︸ ︷︷ ︸
N

∑
n |αn|2

+

N−1
2∑

n=−N−1
2

|ψN (xn)|2

︸ ︷︷ ︸
N

∑
n |αn|2

=

N−1
2∑

n=−N−1
2

|fn|2 −N

N−1
2∑

n=−N−1
2

|αn|2

=

N−1
2∑

n=−N−1
2

|fn|2 −
N

N2

N−1
2∑

n=−N−1
2

N−1
2∑

p=−N−1
2

N−1
2∑

m=−N−1
2

(
fpf

∗
m exp

(
i2πn(m− p)

N

))

=

N−1
2∑

n=−N−1
2

|fn|2 −
1

N

N−1
2∑

p=−N−1
2

N−1
2∑

m=−N−1
2

fpf
∗
m

N−1
2∑

n=−N−1
2

exp

(
i2πn(m− p)

N

)
︸ ︷︷ ︸

=Nδ̂N (m−p)

=

N−1
2∑

n=−N−1
2

|fn|2 −

N−1
2∑

p=−N−1
2

N−1
2∑

m=−N−1
2

fpf
∗
mδ̂N (m− p) =

N−1
2∑

n=−N−1
2

|fn|2 −

N−1
2∑

m=−N−1
2

|fm|2 = 0. (334)

Since the sum of squares of the individual errors at the grid points is zero, it necessarily follows that the individual
errors at each grid point must be zero. In other words, ψN is not only the (discrete) least squares approximation
of the data, but also an interpolating function. Moreover, with E = 0 being known now, we have the intermidiate
result that

N−1
2∑

n=−N−1
2

|fn|2 = N

N−1
2∑

n=−N−1
2

|αn|2, (335)

which is a fundamental property of the DFT known as Parseval’s relation.
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4/19 Lecture

No class.

4/24 Lecture

10.5 Fast Fourier Transform

Recall that the goal is to compute the DFT of a (possibly complex) sequence xn which has length N and is assumed
to have period N . As we have noted many times, there are several commonly used forms of the DFT. The FFT can
be developed for any of these forms, but a specific choice must be made for the sake of exposition. For this part, we
will use the definition in which both indices n and k belong to the set {0, · · · , N − 1}, and

Xk =

N−1∑
n=0

xnω
−nk
N , ωN = exp

(
i2π

N

)
. (336)

Note that we are dispending the 1/N scaling factor, which can always be included at the end of the calculation if
needed. We begin with the cases where N = 2M for some natural number M , and split xn into its even and odd
sequences yn = x2n and zn = x2n+1. Then

Xk =

N
2 −1∑
n=0

(
ynω

−2nk
N + znω

−(2n+1)k
N

)
. (337)

We note that

ω−2nk
N = exp

(
− i4πnk

N

)
= exp

(
− i2πnk
N/2

)
= ω−nk

N/2 , (338)

or more generally, ω−pq
N = ω−p

N/q for p, q ∈ R. Therefore, the expression of Xk can be rewritten as

Xk =

N
2 −1∑
n=0

ynω
−nk
N/2︸ ︷︷ ︸

DFT of length N/2

+ω−k
N

N
2 −1∑
n=0

znω
−nk
N/2︸ ︷︷ ︸

DFT of length N/2

. (339)

And now, if we stand back, we see that the original DFT has been expressed as a simple combination of the DFT of
the sequence yn and the DFT of the sequence zn, both of length N/2, denoted by Yk and Zk, respectively. Then

Xk = Yk + ω−k
N Zk, Xk+N

2
= Yk+N

2
+ ω

−(k+N
2 )

N Xk+N
2
. (340)

Note that

ω
−(k+N

2 )
N = exp

(
− i2πk + iπN

N

)
= exp

(
− i2πk

N

)
exp (−iπ) = − exp

(
− i2πk

N

)
= −ωk

N , (341)

so that

Xk+N
2
= Yk+N

2
− ω−k

N Xk+N
2
= Yk − ω−k

N Zk. (342)

These is often called the combined formula or butterfly relations. They give a recipe for combining two DFTs of
length N/2 (corresponding to the even and odd subsequences of the original sequence) to form the DFT of the
original sequence. It is worthwhile to note the savings that have already been achieved. Computing the sequence Xk

explicitly from its definition costs approximately N2 complex multiplications and N2 complex additions. However
with the splitting method, the DFT requires only 2(N/2)2 = N2/2 multiplications and 2(N/2)2 = N2/2 additions,
which is a factor-of-two savings.
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However, we are not finished yet. We just assumed that the DFT sequences Yk and Zk would be computed as
matrix-vector products. However, a full FFT algorithm results when the splitting idea is applied to the computation
of Yk and Zk. In a divide-and-conquer spirit, it is then repeated on and on for M = log2N steps, and eventually the
original problem of computing a DFT of length N will be replaced by computing N DFTs of length 1 (this actually
has nothing to be done; the DFT of a sequence of length 1 is just itself).

On the first level, we combine two problems of size N/2 into one problem of size N . This will take N butterflies. On
the second level, we combine two problems of size N/4 into one problem of size N/2, and this happens twice. They
will take 2 ·N/2 = N butterflies. We iterate until the last level, where we combine two problems of size 1 into one
problem of size 2, and this happens N/2 times since there are N problems of size 1 on the last level. They will take
N/2 · 2 = N butterflies. Overall, each level takes N butterflies, and there are log2N levels in total, so the whole
process takes N log2N butterflies.

Now note that each two butterflies take one complex multiplication and two complex additions. This is because

Xk, Xk+N
2
= Yk ± ω−k

N Zk, (343)

so one complex multiplication can serve two butterflies. Therefore, the total operation count of an N -point complex
DFT would involve N log2N complex additions and N log2N/2 complex multiplications. Therefore, FFT achieves
O(N logN) computational complexity, achieving an O(N/ logN) computational savings over the evaluation of DFT
by definition.

4/26 Lecture

10.6 Spectral Differentiation

A common numerical technique is to differentiate some sampled function y(x) via FFTs. Equivalently, one dif-
ferentiates an approximate Fourier series (or a trigonometric interpolation). These are also known as the spectral
differentiation methods. Consider one dimension here for simplicity, one has a periodic function y(x) with period L
that one conceptually expands as a Fourier series

y(x) =

∞∑
k=−∞

Yk exp

(
i2πkx

L

)
, (344)

for the Fourier coefficients

Yk =
1

L

∫ L

0

exp

(
− i2πkx

L

)
y(x)dx. (345)

Differentiation is performed term-by-term in the Fourier domain, and multiplication by some function c(x) is done
by transforming back to space domain. For instance,

d

dx
y(x) =

∞∑
k=−∞

(
i2πk

L
· Yk
)
exp

(
i2πkx

L

)
. (346)

To implement this on a computer, one consider the DFT and IDFT

Yk =
1

N

N−1∑
n=0

yn exp

(
− i2πnk

N

)
, yn =

N−1∑
k=0

Yk exp

(
i2πnk

N

)
. (347)

Since we have FFT that costs Θ(N logN) operations, we can quickly transform back and forth between the spacial
domain (where multiplications are easy) and the Fourier domain (where derivatives are easy). Now in order to
compute derivatives like y′(x), we need to do more than expressing yn. We need to use the IDFT expression to define
a continuous interpolation between the samples yn and then differentiate this interpolation. This is often called a
trigonometric interpolation. However, it is not unique. We note that

exp

(
i2πnk

N

)
= exp

(
i2πnk

N

)
exp (i2πnm)︸ ︷︷ ︸
=1, for m,n∈Z

= exp

(
i2π(k +mN)n

N

)
, (348)
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so that

N−1∑
k=0

Yk exp

(
i2π(k +mN)n

N

)
(349)

for any integer m still gives the same samples yn, essentially just oscillating m extra times in between the sample
points. This has no effect on yn but has a huge effect on the derivatives.

We define a more arbitrary interpolated function y(x) by substituting n = Nx/L into the IDFT and allowing any
aliasing integer mk for each Yk, such that

y(x) =

N−1∑
k=0

Yk exp

(
i2π(k +mkN)x

L

)
, (350)

but still limit to N frequency components. Regardless of mk, this gives the same sample points yn = y(nL/N), but
changing mk modifies y(x) between the samples. In order to uniquely determine mk, we wish to oscillate as little
as possible between the sample points yn. One way to express this idea is to assume that y(x) is bandlimited to
frequencies |k +mkN | ≤ N/2. If 0 ≤ k < N/2, then |k +mkN | is minimized when mk = 0. If N/2 < k < N , then
|k +mkN | is minimized when mk = −1. If k = N/2, we split between mk = 0 and mk = −1. This results in the
unique minimal-oscillation trigonometric interpolation of order N , such that

y(x) = Y0 +
∑

0<k<N/2

(
Yk exp

(
i2πkx

L

)
+ YN−k exp

(
− i2πkx

L

))
+ YN/2 cos

(
πNx

L

)
, (351)

where the N/2 (called the Nyquist) term is absent for odd N .

First derivative. We consider how to compute the derivatives y′n = y′(nL/N) and y′′n = y′′(nL/N) at the sample
points, using FFTs to compute the trigonometric interpolation coefficients. The first derivative of y(x) is

y′(x) =
∑

0<k<N/2

i2πk

L

(
Yk exp

(
i2πkx

L

)
− YN−k exp

(
− i2πkx

L

))
− πN

L
YN/2 sin

(
πNx

L

)
. (352)

When we evaluate this at the sample points x = nL/N , we obtain

y′n = y

(
nL

N

)
=

∑
0<k<N/2

i2πk

L

(
Yk exp

(
i2πnk

N

)
− YN−k exp

(
− i2πnk

N

))
=:

N−1∑
k=0

Y ′
k exp

(
i
2πnk

N

)
, (353)

where the YN/2 term has vanished since sin(nπ) = 0. The resulting procedure is as follows.

1: Given yn for 0 ≤ n < N , use an FFT to compute Yk for 0 ≤ k < N ;
2: Multiply Yk by i2πk/L for k < N/2, by i2π(k −N)/L for k > N/2, and by zero for k = N/2 to obtain Y ′

k;
3: Compute y′n from Y ′

k via an inverse FFT;

Second derivative. On the other hand, the second derivativeof y(x) is

y′′(x) = −
∑

0<k<N/2

(
2πk

L

)2(
Yk exp

(
i2πkx

L

)
+ YN−k exp

(
− i2πkx

L

))
−
(
πN

L

)2

YN/2 cos

(
πNx

L

)
, (354)

which at the sample points gives that

y′′n = y′′
(
nL

N

)
= −

∑
0<k<N/2

(
2πk

L

)2(
Yk exp

(
i2πnk

N

)
+ YN−k exp

(
− i2πnk

N

))
−
(
πN

L

)2

YN/2(−1)n

=:

n−1∑
k=0

Y ′′
k exp

(
i2πnk

N

)
, (355)

where the YN/2 term has not vanished. The resulting procedure is the same as that for computing the first derivative,
except that the step to obtain Y ′′

k needs to be slightly modified according to the expression above. In fact, all other
derivatives can be obtained in a similar way.

52



10.7 Spectral Integration

To be done...

5/1 Lecture

10.8 Convolution

The discrete convolution theorem is among the most important properties of the DFT. It underlies essentially all of
the Fourier transform-based signal processing done today, and by itself accounts for much of the utility of the DFT.
We begin by defining the notion of discrete convolution. Given two N -periodic sequences fn and gn defined for the
indices n = −N/2+ 1, · · · , N/2, their discrete (cyclic) convolution, denoted fn ∗ gn, is another sequence hn given by

hn = fn ∗ gn =

N
2∑

j=−N
2 +1

fjgn−j , n = −N
2

+ 1, · · · , N
2
. (356)

Notice that hn is also an N -periodic sequence. Now it is easy to see that the convolution is commutative, i.e.,
fn ∗ gn = gn ∗ fn. Moreover, a scalar multiple can be passed through, such that (αfn) ∗ gn = α(fn ∗ gn) = fn ∗ (αgn).
Further insight into discrete convolution might be offered by considering a shifting property of the (Kronecker) δ
sequence. For a fixed integer n0, we can easily see that

fn ∗ δ(n− n0) =
N
2∑

j=−N
2 +1

fjδ(n− n0 − j) = fn−n0
. (357)

Note that we may view the convolution of two sequences as a filtering operation in which one of the sequences is the
input data and the other is a filter. We now arrive at one of the most important of the DFT properties.

Theorem 10.4 (Discrete convolution theorem). Let fn and gn be periodic sequences of length N whose DFTs are
Fk and Gk. Then the DFT of the convolution hn = fn ∗ gn is

Hk = D(fn ∗ gn)k = NFkGk. (358)

That is, the DFT of the convolution is the pointwise product of the DFTs. This is often expressed by saying that
convolution in the spatial (or time) domain corresponds to multiplication in the frequency domain.

Proof. We begin by writing fn and gn−j as the IDFTs of their DFTs. By the modulation property, we know that

gn−j = D−1(Gkω
−jk
N ). Hence, we can write that

fn ∗ gn =

N
2∑

j=−N
2 +1

fjgn−j =

N
2∑

j=−N
2 +1

 N
2∑

p=−N
2 +1

Fpω
jp
N

 N
2∑

k=−N
2 +1

Gkω
(n−j)k
N


=

N
2∑

k=−N
2 +1

Gkω
nk
N

N
2∑

p=−N
2 +1

Fp

N
2∑

j=−N
2 +1

ωjp−jk
N︸ ︷︷ ︸

=Nδ̂N (p−k)

=

N
2∑

k=−N
2 +1

NFkGkω
nk
N . (359)

This shows that fn ∗ gn is the IDFT of NFkGk. Stated differently, we conclude that

fn ∗ gn = D−1(NFkGk)n, D(fn ∗ gn)k = NFkGk, (360)

as desired, so the proof is complete.
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Frequency convolution. Just as the DFT of a convolution of two sequences is the product of their DFTs, it can
be shown that the DFT of the product of two sequences is the convolution of their DFTs, i.e., D(fngn)k = Fk ∗Gk.
To see this, we consider the inverse transform of the convolution and write

D−1(Fk ∗Gk)n =

N
2∑

k=−N
2 +1

 N
2∑

j=−N
2 +1

FjGk−j

ωnk
N =

N
2∑

j=−N
2 +1

Fj

N
2∑

k=−N
2 +1

Gk−jω
nk
N

=

N
2∑

j=−N
2 +1

Fjω
nj
N

N
2∑

k=−N
2 +1

Gk−jω
n(k−j)
N︸ ︷︷ ︸

=gn

= gn

N
2∑

j=−N
2 +1

Fjω
nj
N︸ ︷︷ ︸

=fn

= fngn. (361)

Two important properties. We will introduce two important properties of DFT, the modulation property and
the shift property. The shift property can be expressed as

D(fn−j)k = ω−jk
N Fk, D−1(ω−jk

N Fk)n = fn−j . (362)

The modulation property can be expressed as

D−1(Fk−j)n = ωnj
N fn, D(ωnj

N fn)k = Fk−j . (363)

10.9 Digital Signal Processing

For our purposes, a digital signal is a sequence of numbers occurring at regular intervals, often obtained by recording
some fluctuating voltage or current in an electronic device that measures some physical quantity. As a motivating
example, consider a signal consisting of N = 24 samples such that

fn = cos(2πn∆x) +
1

2
cos(10πn∆x) +

1

3
cos(12πn∆x), n = −11,−10, · · · , 12, ∆x =

1

24
. (364)

Suppose that a new sequence gn is formed by computing a five-point weighted running average of fn. Assuming fn
is 24-periodic, we let

gn =
1

8
fn−2 +

1

4
fn−1 +

1

4
fn +

1

4
fn+1 +

1

8
fn+2, n = −11,−10, · · · , 12. (365)

Here, gn will be much smoother than fn. Note that the process of forming the five-point weighted running average
may be expressed as a cyclic convolution

gn = fn ∗ hn =

12∑
j=−11

fjhn−j , (366)

where hn is the sequence

0, 0, 0, 0, 0, 0, 0, 0, 0︸ ︷︷ ︸
9 zeros

,
1

8
,
1

4
,
1

4
,
1

4
,
1

8
, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0︸ ︷︷ ︸

10 zeros

. (367)

Recall that D(fn ∗ hn)k = NFkHk. Here, hn is called the filter. Note that computing the filtered output by
convolution method is an O(N2) operation, since we need to pointwise multiply to sequence of length N . Using
FFTs, however, we need two DFTs and one IDFT, all on some sequence of length N , thus taking O(N logN) time.
The pointwise product only takes N operations, dominated by O(N logN). Thus, the use of FFT greatly improves
the efficiency of digital filtering of signals.
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5/3 Lecture

11 Iterative Methods

11.1 Krylov Subspace

Let A be an n × n invertible matrix and suppose we want to solve Ax⃗ = b⃗, but we only knew A via matrix-vector
products, i.e., a mapping v⃗ → Av⃗. Let us consider the sequence of vectors b⃗, A⃗b, · · · , An−1⃗b, Anb⃗, · · · . If we consider
the first n + 1 of them, then we are guaranteed for these vectors to be linearly dependent since our space is only
n-dimensional. Therefore, there exist coefficients α0, · · · , αn (not all zero), such that

α0⃗b+ α1Ab⃗+ · · ·+ αn−1A
n−1⃗b+ αnA

nb⃗ = 0⃗. (368)

Let k be the smallest integer such that αk ̸= 0, then since A−1 exists, we can write that

A−1⃗b = − 1

αk

(
αk+1⃗b+ · · ·+ αnA

n−k−1⃗b
)
. (369)

This is also known as the weak Cayley-Hamilton theorem. This shows that x⃗ = A−1⃗b can be computed by only
matrix-vector products, giving the idea to search for fast solutions from Krylov subspaces.

Definition 11.1. Let A be a matrix and c⃗ a vector. The rth Krylov subspace, denoted by Kr(A, c⃗), is the vector
space spanned by

c⃗, Ac⃗, · · · , Ar−1c⃗. (370)

Usually, though not necessarily, we set c⃗ to be the right-hand side in the linear system Ax⃗ = b⃗.

11.2 Generalized Minimum Residual Method (GMRES)

The GMRES is a Krylov subspace method that computes the rth step the best least squares solution x⃗r from the
Krylov subspace Kr(A, b⃗). That is, the GMRES method successively solves the following least squares problems.

Step 1 min
x⃗1∈K1(A,⃗b)

∥⃗b−Ax⃗1∥2, (371)

Step 2 min
x⃗2∈K2(A,⃗b)

∥⃗b−Ax⃗2∥2, (372)

...
...

Step r min
x⃗r∈Kr(A,⃗b)

∥⃗b−Ax⃗r∥2. (373)

These problems may seem to be awkward to solve at first because we do not know how to find the least squares
solution over Krylov subspaces. However, if the columns of Qr form an orthonormal basis for Kr(A, b⃗), then we can
equivalently write the GMRES method as

Step 1 min
c⃗∈R
∥⃗b−AQ1c⃗∥2, x⃗1 = Q1c⃗, (374)

Step 2 min
c⃗∈R2
∥⃗b−AQ2c⃗∥2, x⃗2 = Q2c⃗, (375)

...
...

...

Step r min
c⃗∈Rr
∥⃗b−AQr c⃗∥2, x⃗r = Qr c⃗. (376)
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Therefore, the rth GMRES step should find the least squares solution to AQr c⃗ = b⃗. We do this by using the QR
factorization of AQr, i.e., AQr = Q̃rR̃r. Thus, we can rewrite GMRES again as the following steps.

Step 1 Solve R̃1c⃗ = Q̃⊤
1 b⃗, Q̃1R̃1 = AQ1, x⃗1 = Q1c⃗, (377)

Step 2 Solve R̃2c⃗ = Q̃⊤
2 b⃗, Q̃2R̃2 = AQ2, x⃗2 = Q2c⃗, (378)

...
...

...

Step r Solve R̃r c⃗ = Q̃⊤
r b⃗, Q̃rR̃r = AQr, x⃗r = Qr c⃗. (379)

Convergence of GMRES. We begin with two observations. Let r⃗n denote the residual, then GMRES converges
monotonically, i.e., ∥r⃗n+1∥ ≤ ∥r⃗n∥. The reason is that ∥r⃗n∥ is as small as possible for the subspace Kn, so by
enlarging Kn to Kn+1, we can only decrease the residual norm or at worst leave it unchanged. Suppose that A is an
m×m matrix, then the second observation is that after m steps, the GMRES must converge, at least in the absence
of rounding errors, ∥r⃗m∥ = 0. This is because Km = Rm, and in special cases the convergence would arrive even
earlier.

Now we would like to know how many iterations of GMRES do we require to achieve a particular tolerance. A useful
exercise is to translate the GMRES minimization problem to an external problem in polynomial approximation. By
doing this, we are able to understand the convergence better from intuition on polynomials. A simple derivation
shows that

min
x⃗r∈Kr(A,⃗b)

∥⃗b−Ax⃗r∥2 = min
c⃗∈Rr
∥⃗b− (c1Ab⃗+ c2A

2⃗b+ · · ·+ crA
r b⃗)∥2 = min

p∈Pr,p(0)=1
∥p(A)⃗b∥2. (380)

Theorem 11.2. Let A be a diagonalizable matrix such that A = V −1ΛV . Then

min
x⃗r∈Kr(A,⃗b)

∥⃗b−Ax⃗r∥2 ≤ ∥V ∥2∥V −1∥2︸ ︷︷ ︸
=K(V )

∥⃗b∥2 min
p∈Pr,p(0)=1

sup
z∈diag(Λ)

|p(z)|. (381)

Proof. The proof is simple by observing that

∥p(A)∥2 ≤ ∥V ∥2∥p(Λ)∥2∥V −1∥2 = K(V ) sup
z∈diag(Λ)

|p(z)|, (382)

and details will be ignored here.

Here we can expect rapid convergence of GMRES if the eigenvector matrix of A is well conditioned (so that K(V )
is small), or if the eigenvalues of A are clustered and far from the origin (so that properly normalized degree n
polynomials can be found whose size on the spectrum of A, i.e., diag(Λ) decreases quickly with n).

Topics Recap

• Floating point arithmetic

• Solving nonlinear equations (bisection, secant, and Newton; their convergence rates)

• Solving systems of nonlinear equations (multivariate Newton)

• Numerical linear algebra (vector and matrix norms; condition number and SVD; optimization methods, con-
vexity, and quasi-Newton methods)

• Solving Ax⃗ = b⃗ (Gaussian elimination, LU factorization, and Cholesky decomposition; their flop counts O(n3);
pivoting in the cases where LU factorization may fail)

• QR decomposition (least-squares problems; Gram-Schmidt process; Householder reflections)

• Eigenvalues and eigenvectors (inverse power method with shift; Jacobi’s method symmetric; QR algorithm will
not appear in final)
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• Krylov methods (Krylov subspace; GMRES just a least-squares problem)

• Function approximation (interpolation in Lagrange form and the Runge phenomenon; minimax approximation;
Chebyshev interpolation, Chebyshev polynomials and computing their roots; 2-norm approximation; orthogonal
polynomials)

• Numerical integration (Trapezoidal rule and its order of approximation; Gaussian quadrature; Clenshaw-Curtis
quadrature and its concept; Richardson extrapolation)

• Fourier analysis (DFT and IDFT; FFT, its splitting, and its complexity; spectral differentiation and integration;
convolutions using the FFT)

Last Modified: May 10, 2023.
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