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Abstract The Black-Scholes-Merton (BSM) model gives a theoretical estimate of the price of European-

style options, taking into account the impact of time and other risk factors. We derive the Black-Scholes

Merton equation and discuss two solutions [1] to it. One way is to directly solve the Black-Scholes-Merton

partial differential equation. The other way is to approach by changing the probability measure and

using risk-neutral pricing.
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1 Brownian Motion

1.1 Definition of Brownian Motion and the Filtration

Definition 1.1 Let (Ω,F ,P) be a probability space. For each ω ∈ Ω, suppose there is a continuous

function W (t), t ≥ 0 that satisfies W (0) = 0 and that depends on ω. Then W (t), t ≥ 0, is a Brownian

motion if for all 0 = t0 < t1 < ... < tm the increments

W (t1) = W (t1)−W (t0), W (t2)−W (t1), · · · , W (tm)−W (tm−1) (1.1)

are independent and each of these increments is normally distributed with expected value 0 and variance

ti+1 − ti for the ith increment.

Remark 1.2 One important property is that Brownian motion paths are nowhere differentiable.

The intuition is that, since the increments in (1.1) are independent and normally distributed with expected

value 0 and variance ti+1 − ti for the ith increment, the random variable

Z =
W (t+ h)−W (t)

h

has variance h−1, which as h → 0, becomes infinitely large.

In addition to the Brownian motion itself, we also need to denote the amount of information available

at each time. We do it with filtration.

Definition 1.3 Let (Ω,F ,P) be a probability space and define a Brownian motion W (t), t ≥ 0. A

filtration for the Brownian motion is a collection of σ-algebras F(t), t ≥ 0, satisfying:

(i) (Information accumulates) For 0 ≤ s < t, every set in F(s) is also in F(t).

(ii) (Adaptivity) For each t ≥ 0, the Brownian motion W (t) at time t is F(t)-measurable.
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(iii) (Independence of future increments) For 0 ≤ t < u, W (u)−W (t) is independent of F(t).

Let ∆(t), t ≥ 0 be a stochastic process. We say that ∆(t) is adapted to the filtration F(t) if for each

t ≥ 0 the random variable ∆(t) is F-measurable.

Theorem 1.4 Brownian motion is a martingale.

Proof Let 0 ≤ s ≤ t be given. Then

E(W (t)|F(s)) = E((W (t)−W (s)) +W (s)|F(s))

= E(W (t)−W (s)|F(s)) + E(W (s)|F(s)) = E(W (t)−W (s)) +W (s) = W (s).

1.2 Quadratic Variation

Definition 1.5 Let f(t) be a function defined for 0 ≤ t ≤ T . The quadratic variation of f up to

time T is

[f, f ](T ) = lim
∥Π∥→0

n−1∑
j=0

(f(tj+1)− f(tj))
2, (1.2)

where Π = {t0, t1, · · · , tn}, ∥Π∥ = max
0≤k≤n−1

(tk+1 − tk) and 0 = t0 < t1 < · · · < tn = T .

Remark 1.6 Suppose the function f has a continuous derivative. Then

n−1∑
j=0

(f(tj+1)− f(tj))
2 =

n−1∑
j=0

|f ′(t∗j )|2(tj+1 − tj)
2 ≤ ∥Π∥ ·

n−1∑
j=0

|f ′(tj∗)|2(tj+1 − tj),

and thus

[f, f ](T ) ≤ lim
∥Π∥→0

∥Π∥ ·
∫ T

0

|f ′(t)|2dt = 0

as long as we assume that
∫ T

0
|f ′(t)|2dt < ∞. However, Brownian motion is nowhere differentiable

(Remark 1.2). In fact, it has bounded nonzero quadratic variation, as is stated in the following theorem.

Theorem 1.7 Let W be a Brownian motion. Then [W,W ](T ) = T for T ≥ 0 almost surely.

Proof Let

Yj+1 =
W (tj+1)−W (tj)√

tj+1 − tj
.

We choose a large number n and take tj = jT/n, j = 0, 1, · · · , n. Then tj+1 − tj = T/n for all j and

(W (tj+1)−W (tj))
2 = TY 2

j+1/n. The Law of Large Numbers then implies that

n−1∑
j=0

Y 2
j+1

n
→ E(Y 2

j+1) as n → ∞,

where Yj+1 ∼ N(0, 1). Hence E(Y 2
j+1) = 1, then we have

n−1∑
j=0

(W (tj+1)−W (tj))
2 =

n−1∑
j=0

T
Y 2
j+1

n
→ T as ∥Π∥ → 0. (1.3)

This completes the proof. □

Remark 1.8 We write informally

dW (t)dW (t) = dt (1.4)



Final Y. Xiao, X. Zou, Y. Li: BLACK-SCHOLES-MERTON EQUATION 3

for the previous theorem, which indicates that Brownian motion accumulates quadratic variation at rate

one per unit time. However, this does not mean (W (tj+1)−W (tj))
2 ≈ tj+1 − tj . It is only when we sum

up both sides and apply the Law of Large Numbers to cancel errors that we get the correct statement.

Remark 1.9 Let Π = {t0, t1, · · · , tn} be a partition of [0, T ]. Since

lim
∥Π∥→0

∣∣∣∣∣∣
n−1∑
j=0

(W (tj+1)−W (tj))(tj+1 − tj)

∣∣∣∣∣∣ ≤ lim
∥Π∥→0

n−1∑
j=0

max
0≤k≤n−1

|W (tk+1)−W (tk)|(tj+1 − tj)

= lim
∥Π∥→0

max
0≤k≤n−1

|W (tk+1)−W (tk)| · T = 0,

lim
∥Π∥→0

n−1∑
j=0

(tj+1 − tj)
2 ≤ lim

∥Π∥→0

n−1∑
j=0

∥Π∥(tj+1 − tj) = lim
∥Π∥→0

∥Π∥ · T = 0,

we can conclude that

lim
∥Π∥→0

n−1∑
j=0

(tj+1 − tj)
2 = 0, lim

∥Π∥→0

n−1∑
j=0

(W (tj+1)−W (tj))(tj+1 − tj) = 0. (1.5)

Then, just as we capture (1.3) by writing (1.4), we can capture (1.5) by writing informally

dW (t)dt = 0, dtdt = 0. (1.6)

Such informal notations as in (1.4) and (1.6) in differential form will be rapidly reused in the following

sections to simplify computations and proofs.

2 Stochastic Calculus

If g(t) is a differentiable function, then we can define∫ T

0

∆(t)dg(t) =

∫ T

0

∆(t)g′(t)dt,

where the right-hand side is an ordinary (Lebesgue) integral with respect to time. However, this will not

work for an integral with respect to a Brownian motion, which is called an Itô’s integral, since Brownian

motion paths are nowhere differentiable. Our approach to make sense of an Itô’s integral is that we first

define the Itô’s integral for simple processes and then define that for a general integrand by taking the

limit of a sequence of simple processes.

2.1 Itô’s Integral

Definition 2.1 Let Π = {t0, t1, · · · , tn} be a partition of [0, T ]; i.e., 0 = t0 < t1 < · · · < tn = T .

Suppose there is a sequence of simple processes {∆n(t)} such that it is constant in t on each subinterval

[tj , tj+1), and that it converges to the continuously varying ∆(t) in L2 sense. Let W (t) be a Brownian

motion. The Itô’s integral of each simple process ∆n(t) with respect to W (t) is defined by, for each

tj ≤ t ≤ tk+1,

In(t) =

∫ t

0

∆n(u)dW (u) =

n−1∑
j=0

∆n(tj)(W (tj+1)−W (tj)) + ∆n(tk)(W (t)−W (tk)), (2.1)

and the Itô’s integral with respect to W (t) is defined by

I(t) =

∫ t

0

∆(t)dW (t) = lim
n→∞

∫ t

0

∆n(u)dW (u).
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Theorem 2.2 Let W (t) be a Brownian motion. Let T > 0, and let ∆(t), 0 ≤ t ≤ T , be an adapted

stochastic process. Then, the Itô’s integral I(t) =
∫ t

0
∆(u)dW (u) satisfies:

(i) (Continuity) As a function of the upper limit of integration t, the paths of I(t) are continuous.

(ii) (Adaptivity) For each t, I(t) is F(t)-measurable.

(iii) (Linearity) Suppose I(t) =
∫ t

0
∆(u)dW (u), J(t) =

∫ t

0
Γ(u)dW (u), and c is an arbitrary constant.

Then I(t)± J(t) =
∫ t

0
(∆(u)± Γ(u))dW (u) and cI(t) =

∫ t

0
c∆(u)dW (u).

(iv) (Martingale) I(t) is a martingale.

(v) (Itô isometry) E(I2(t)) = E
Ä∫ t

0
∆2(u)du

ä
.

(vi) (Quadratic variation) [I, I](t) =
∫ t

0
∆2(u)du.

Proof It suffices to prove the properties only for the Itô’s integral of a simple process, since these

properties can be inherited after simply taking limits in L2 sense. Properties (i)–(iii) are trivial, and we

only prove properties (iv)–(vi) explicity.

(Martingale) Let 0 ≤ s ≤ t ≤ T be given. Assume that there exists partition points tl < tk such

that s ∈ [tl, tl+1), t ∈ [tk, tk+1). Let Dj = W (tj+1)−W (tj) for 0 ≤ j ≤ k − 1 and Dk = W (t)−W (tk).

Thus we split the sum as

I(t) =

l−1∑
j=0

∆(tj)Dj +∆(tl)Dl +

k−1∑
j=l+1

∆(tj)Dj +∆(tk)Dk.

We investigate the four summands respectively. For the first summand, since tl ≤ s, for 0 ≤ j ≤ l−1,

∆(tj)Dj is F(s)-measurable. Hence, E(∆(tj)Dj |F(s)) = ∆(tj)Dj . For the second summand,

E(∆(tl)Dl|F(s)) = ∆(tl)(E(W (tl+1)|F(s))− E(W (tl)|F(s))) = ∆(tl)(W (s)−W (tl)).

The third and the fourth summands are similar. For l + 1 ≤ j ≤ k, by the “towering property,”

E(∆(tj)Dj |F(s)) = E(E(∆(tj)Dj |F(tj))|F(s))

= E(∆(tj)(E(W (tj+1)|F(tj))− E(W (tj)|F(tj)))|F(s)) = E(∆(tj)(W (tj)−W (tj))|F(s)) = 0.

Hence, combining the arguments, we can conclude that I(t) is a martingale because

E(I(t)|F(s)) =

l−1∑
j=0

∆(tj)Dj +∆(tl)(W (s)−W (tl)) = I(s).

(Itô isometry) By multinomial expansion, we obtain

I2(t) =

k∑
j=0

∆2(tj)D
2
j +

∑
0≤i<j≤k

∆(ti)∆(tj)DiDj .

Since D2
j is independent of F(tj) while ∆2(tj) is F(tj)-measurable,

E

Ñ
k∑

j=0

∆2(tj)D
2
j

é
=

k−1∑
j=0

E(∆2(tj))(tj+1 − tj) + E(∆2(tk))(t− tk) =

∫ t

0

E(∆2(u))du.

The last equation holds because ∆2(tj) is constant on each subinterval, so the Riemann sum is

exactly the corresponding Riemann integral. Also, since Dj is independent of F(tj) while ∆(ti)∆(tj)Di

is F(tj)-measurable, E(∆(ti)∆(tj)DiDj) = E(∆(ti)∆(tj)Di)E(∆(tj)) = 0. Hence, we can conclude that

E(I2(t)) =
∫ t

0

E(∆2(u))du+ 0 = E
Ç∫ t

0

∆2(u)du

å
.
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(Quadratic variation) Choose tj = s0 < s1 < · · · < sm = tj+1 as partition points and consider

m−1∑
i=0

(I(si+1)− I(si))
2 = ∆2(tj)

m−1∑
i=0

(W (si+1)−W (si))
2.

Since Brownian motion accumulates quadratic variation at rate one per unit time, then on each subin-

terval [tj , tj+1], the Itô integral accumulates quadratic variation at rate ∆2(tj) per unit time. Bringing

m → ∞, we obtain

lim
m→∞

m−1∑
i=0

(I(si+1)− I(si))
2 =

∫ tj+1

tj

∆2(u)du.

Adding up all the pieces, we obtain the quadratic variation of an Itô’s integral

[I, I](t) =

∫ t

0

∆2(u)du.

Now, we want to further extend the Itô’s integral with respect to more general stochastic processes

than Brownian motions. The stochastics processes we are interested in is called the Itô processes.

Definition 2.3 Let W (t), t ≥ 0, be a Brownian motion, and let F(t), t ≥ 0, be an associated

filtration. An Itô process is a stochastic process of the form

X(t) = X(0) +

∫ t

0

∆(u)dW (u) +

∫ t

0

Θ(u)du, (2.2)

where X(0) is nonrandom and ∆(u) and Θ(u) are adapted stochastics processes. We assume finiteness

conditions for both integrals.

Definition 2.4 Let X(t), t ≥ 0, be an Itô process as described in Definition (2.2) and let Γ(t),

t ≥ 0, be an adapted process. We define the Itô’s integral with respect to an Itô process as∫ t

0

Γ(u)dX(u) =

∫ t

0

Γ(u)∆(u)dW (u) +

∫ t

0

Γ(u)Θ(u)du.

2.2 Itô-Doeblin’s Formula

Theorem 2.5 (Itô-Doeblin’s Formula for an Itô process) Let X(t), t ≥ 0, be an Itô process as

defined in (2.2), and let f(t, x) be a function for which the partial derivatives ft(t, x), fx(t, x), and

fxx(t, x) are defined and continuous. Then, for every T ≥ 0,

f(T,X(T )) = f(0, X(0)) +

∫ T

0

ft(t,X(t))dt+

∫ T

0

fx(t,X(t))∆(t)dW (t) +
1

2

∫ T

0

fxx(t,X(t))∆2(t)dt.

Proof Fix T > 0, and let Π = {t0, t1, · · · , tn} be a partition of [0, T ]. Let ∥Π∥ denote the length

of the longest subinterval. Then, bring ∥Π∥ → 0 and apply Taylor’s formula, we obtain

f(T,X(T ))− f(0, X(0))

= lim
∥Π∥→0

n−1∑
j=0

ft(tj , X(tj))(tj+1 − tj) + lim
∥Π∥→0

n−1∑
j=0

fx(tj , X(tj))(X(tj+1)−X(tj))

+ lim
∥Π∥→0

n−1∑
j=0

1

2
ftt(tj , X(tj))(tj+1 − tj)

2 + lim
∥Π∥→0

n−1∑
j=0

1

2
fxx(tj , X(tj))(X(tj+1)−X(tj))

2

+ lim
∥Π∥→0

n−1∑
j=0

ftx(tj , X(tj))(tj+1 − tj)(X(tj+1)−X(tj)) + higher order terms.
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We informally write in differential form, and denote f for f(t,X(t)), fx for fx(t,X(t)), etc. By (1.4)

and (1.6), recall that dW (t)dW (t) = dt, dtdt = 0, and dtdW (t) = 0, and we obtain

df = ftdt+ fxdX(t) +
1

2
fttdtdt+

1

2
fxxdX(t)dX(t) + ftxdtdX(t) + higher order terms

= ftdt+ fx(∆(t)dW (t) + Θ(t)dt) +
1

2
fxx(∆(t)dW (t) + Θ(t)dt)2 + ftxdt(∆(t)dW (t) + Θ(t)dt)

= ftdt+ fx∆(t)dW (t) + fxΘ(t)dt+
1

2
fxx∆

2(t)dt. (2.3)

which is exactly our desired result in differential form. □

3 Black-Scholes-Merton Equation

The key idea behind the Black-Scholes-Merton model is to hedge the option by buying and selling

the underlying asset in the right way to eliminate risk. We are going to derive the Black-Scholes-Merton

equation for the price of an option on an asset modeled as a geometric Brownian motion.

Definition 3.1 Let W (t), t ≥ 0 be a Brownian motion. Let α and σ > 0 be constants. We define

the geometric Brownian motion S(t), t ≥ 0, as

S(t) = S(0) exp

Å
σW (t) +

Å
α− 1

2
σ2

ã
t

ã
, (3.1)

where S(0) is nonrandom and positive.

3.1 Computations on the Portfolio and the Option Values

Consider an agent who at each time t has a portfolio valued at X(t), which invests in:

• a money account paying a constant rate of interest r; and

• a stock modeled by the geometric Brownian motion S(t) as defined in (3.1). Rewrite as

S(t) = S(0) exp

Ç∫ t

0

σdW (t) +

∫ t

0

Å
α− 1

2
σ2

ã
dt

å
.

Let S(t) = f(X(t)) with f(x) = S(0)ex. Apply Itô-Doeblin formula in differential form (2.3), then

dS(t) = S(0)eX(t)σdW (t) + S(0)eX(t)

Å
α− 1

2
σ2

ã
dt+

1

2
S(0)eX(t)σ2dt

= σS(t)dW (t) + αS(t)dt. (3.2)

Now suppose at each time t the investor holds ∆(t) shares of stock, which is random but adapted to

the filtration associated with the Brownian motion W (t), t ≥ 0. We can compute the following:

• the capital gain on the stock position: ∆(t)dS(t);

• the interest earnings on the cash position: r(X(t)−∆(t)dS(t))dt; and thus

• the portfolio value:

dX(t) = ∆(t)dS(t) + r(X(t)−∆(t)dS(t))dt = rX(t)dt+∆(t)(α− r)S(t)dt+∆(t)σS(t)dW (t).

To determine the present value of a stream of payments that is to be received in the future, we shall

often consider the discounted stock price e−rtS(t) and the discounted portfolio value e−rtX(t). Apply

the Itô-Doeblin formula with f(t, x) = e−rtx, we obtain

d(e−rtS(t)) = −re−rtS(t)dt+ e−rtdS(t) = (α− r)e−rtS(t)dt+ σe−rtS(t)dW (t), (3.3)

d(e−rtX(t)) = −re−rtX(t)dt+ e−rtdX(t) = ∆(t)(α− r)e−rtS(t)dt+∆(t)σe−rtS(t)dW (t)
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= ∆(t)d(e−rtS(t)). (3.4)

We also consider a European call option that pays (S(T )−K)+ at time T . The strike price K ≥ 0.

Let c(t, x) denote the value of the call at time t if the stock price at that time is S(t) = x. Our goal is

to find a profitable c(t, x). By the Itô-Doeblin formula, we obtain

dc(t, S(t)) = ct(t, S(t))dt+ cx(t, S(t))dS(t) +
1

2
cxx(t, S(t))dS(t)dS(t)

= ct(t, S(t))dt+ αS(t)cx(t, S(t))dt+ σS(t)cx(t, S(t))dW (t) +
1

2
σ2S2(t)cxx(t, S(t))dt

=

Å
ct(t, S(t)) + αS(t)cx(t, S(t)) +

1

2
σ2S2(t)cxx(t, S(t))

ã
dt+ σS(t)cx(t, S(t))dW (t).

Then, by the Itô-Doeblin formula with f(t, x) = e−rtx, we obtain the discounted option price

d(e−rtc(t, S(t))) = −re−rtc(t, S(t))dt+ e−rtdc(t, S(t))

= −re−rtc(t, S(t))dt+ e−rtct(t, S(t))dt+ αe−rtS(t)cx(t, S(t))dt

+ σe−rtS(t)cx(t, S(t))dW (t) +
1

2
σ2e−rtS2(t)cxx(t, S(t))dt

= e−rt(−rc(t, S(t)) + ct(t, S(t)) + αS(t)cx(t, S(t)) +
1

2
σ2S2(t)cxx(t, S(t)))dt

+ e−rtσS(t)cx(t, S(t))dW (t). (3.5)

3.2 Black-Scholes-Merton Equation

A (short option) hedging portfolio starts with some initial capital X(0) and invests in the stock and

money market account so that the portfolio value X(t) at each time t ∈ [0, T ] agrees with the value of

call c(t, S(t)). Hence, d(e−rtX(t)) = d(e−rtc(t, S(t))) suffices since the initial values X(0) = c(0, S(0)).

Thus by (3.4) and (3.5), we require

∆(t)(α− r)S(t)dt+∆(t)σS(t)dW (t)

=

Å
−rc(t, S(t)) + ct(t, S(t)) + αS(t)cx(t, S(t)) +

1

2
σ2S2(t)cxx(t, S(t))

ã
dt+ σS(t)cx(t, S(t))dW (t)

=⇒


∆(t)σS(t) = σS(t)cx(t, S(t)),

∆(t)(α− r)S(t) = −rc(t, S(t)) + ct(t, S(t)) + αS(t)cx(t, S(t)) +
1

2
σ2S2(t)cxx(t, S(t)).

(A)

(B)

From (A) we have ∆(t) = cx(t, S(t)), and by substituting into (B), we obtain the Black-Scholes-

Merton partial differential equation:

ct(t, x) + rxcx(t, x) +
1

2
σ2x2cxx(t, x) = rc(t, x), t ∈ [0, T ), x ∈ [0,∞), (3.6)

with terminal condition and boundary conditions

TC: c(T, x) = (x−K)+, x ∈ [0,∞), (3.7)

BC: c(t, 0) = 0, lim
x→∞

Ä
c(t, x)−

Ä
x− e−r(T−t)K

ää
= 0, t ∈ [0, T ). (3.8)

The corresponding solution [2] to Black-Scholes-Merton equation (3.6) with terminal condition (3.7)

and boundary conditions (3.8) is

c(t, x) = xN (d+(T − t, x))−Ke−r(T−t)N (d−(T − t, x)), t ∈ [0, T ), x ∈ [0,∞), (3.9)
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where N is the cumulative standard normal distribution, and

d±(τ, x) =
1

σ
√
τ

Å
log

x

K
+

Å
r ± σ2

2

ã
r

ã
.

4 Risk-Neutral Pricing

In this section, we will use the risk-neutral probability measure to obtain the solution (3.9) to Black-

Scholes-Merton Equation. The idea is to find a new probability measure P̃ such that V (T ) is a martingale

under P̃, and V (t) = Ẽ(V (T )|F(s)) for all 0 ≤ t ≤ T .

4.1 Change of Probability Measure

Definition 4.1 Let (Ω,F ,P) be a probability space, let P̃ be another probability measure on (Ω,F)

that is equivalent to P, and let Z be an almost surely positive random variable with E(Z) = 1. Suppose

P̃(A) =

∫
A

Z(ω)dP(ω) for all A ∈ F , Ẽ(X) = E(XZ). (4.1)

Then Z is called the Radon-Nikodým derivative of P̃ with respect to P, and we write Z = dP̃/dP.

Given the filtration F(t), 0 ≤ t ≤ T , we can further define the Radon-Nikodým derivative process

Z(t) = E(Z|F(t)), 0 ≤ t ≤ T . Notice that the Radon-Nikodým derivative process is a martingale because

by the “towering property,” E(Z(t)|F(s)) = E(E(Z|F(t))|F(s)) = E(Z|F(s)) = Z(s).

4.2 Girsanov’s Theorem

In order to recognize a Brownian motion, we state the following theorem without an explicit proof.

Theorem 4.2 (Lévy, one dimension) Let M(t), t ≥ 0, be a martingale relative to a filtration F(t),

t ≥ 0. Assume that M(0) = 0, M(t) has continuous paths, and [M,M ](t) = t for all t ≥ 0. Then M(t)

is a Brownian motion.

Now we investigate the change of a Brownian motion under the change of probability measure.

Theorem 4.3 (Girsanov, one dimension) Let W (t), 0 ≤ t ≤ T , be a Brownian motion on a

probability space (Ω,F ,P), and let F(t), 0 ≤ t ≤ T , be a filtration for this Brownian motion. Let Θ(t),

0 ≤ t ≤ T , be an adapted process. Define

Z(t) = exp

Ç
−
∫ t

0

Θ(u)dW (u)− 1

2

∫ t

0

Θ2(u)du

å
, W̃ (t) = W (t) +

∫ t

0

Θ(u)du,

and assume that E
Ä∫ T

0
Θ2(u)Z2(u)du

ä
< ∞. Set Z = Z(T ). Then E(Z) = 1 and under the probability

measure P̃ given by (4.1), the process W̃ (t), 0 ≤ t ≤ T , is a Brownian motion.

Proof We use Lévy’s Theorem (Theorem 4.2). We have

W̃ (0) = W (0) +

∫ 0

0

Θ(u)du = 0,

dW̃ (t)dW̃ (t) = (dW (t) + Θ(t)dt)2 = dW (t)dW (t) + 2Θ(t)dW (t)dt+Θ2(t)dtdt = dt.

Thus it remains to prove that W̃ (t) is a martingale under P̃ to apply Lévy’s Theorem. We first

observe that Z(t) is a martingale under P. Apply the Itô-Doeblin formula with f(x) = ex and with

X(t) = −
∫ t

0

Θ(u)dW (u)− 1

2

∫ t

0

Θ2(u)du,
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we obtain

dZ(t) = df(X(t)) = eX(t)(−Θ(t)dW (t)− 1

2
Θ2(t)dt) +

1

2
eX(t)Θ2(t)dt = −Θ(t)Z(t)dW (t).

Hence, Z(t) is an Itô integral by definition, and thus a martingale. In particular, E(Z) = E(Z(T )) =

Z(0) = 1. Since Z = Z(T ), we obtain Z(t) = E(Z(T )|F(t)) = E(Z|F(t)), 0 ≤ t ≤ T . This shows that

Z(t), 0 ≤ t ≤ T is a Radon-Nikodym derivative process. Next we prove that W̃ (t)Z(t) is a martingale

under P. To see this, we first state the Itô’s product rule.

Corollary 4.4 (Itô’s product rule) Let X(t) and Y (t) be Itô processes. Then

d(X(t)Y (t)) = X(t)dY (t) + Y (t)dX(t) + dX(t)dY (t).

This corollary can be verified by applying the Itô-Doeblin formula with f(x, y) = xy. Applying this

Itô’s product rule, we obtain

d(W̃ (t)Z(t)) = W̃ (t)dZ(t) + Z(t)dW̃ (t) + dW̃ (t)dZ(t)

= −W̃ (t)Θ(t)Z(t)dW (t) + Z(t)dW (t) + Z(t)Θ(t)dt+ (dW (t) + Θ(t)dt)(−Θ(t)Z(t)dW (t))

= (−W̃ (t)Θ(t) + 1)Z(t)dW (t).

Since the previous expression has no dt term, the process W̃ (t)Z(t) is a martingale under P. Now let

0 ≤ s ≤ t ≤ T be given. By the partial-averaging property of conditional expectations, we obtain

Ẽ(W̃ (t)|F(s)) =
1

Z(s)
E(W̃ (t)Z(t)|F(s)) =

1

Z(s)
Z(s)E(W̃ (t)|F(s)) = W̃ (s).

This shows that W̃ (t) is a martingale under P̃. The proof is complete. □

4.3 Stock and Pricing Under the Risk-Neutral Measure

Let W (t), 0 ≤ t ≤ T , be a Brownian motion on a probability space (Ω,F ,P), and let F(t), 0 ≤ t ≤ T ,

be a filtration for this Brownian motion. Here T is a fixed final time, S(t) is the stock price, D(t) is the

discounted process, α(t) is the mean rate of return, σ(t) is the volatility, and R(t) is the interest rate.

Then we obtain the discounted stock process

d(D(t)S(t)) = (α(t)−R(t))D(t)S(t)dt+ σ(t)D(t)S(t)dW (t) = σ(t)D(t)S(t)(Θ(t)dt+ dW (t)). (4.2)

Define dW̃ (t) =
α(t)−R(t)

σ(t)
dt + dW (t), so (4.2) reduces to d(D(t)S(t)) = σ(t)D(t)S(t)dW̃ (t). By

Girsanov’s Theorem (Theorem 4.3), W̃ (t) is a Brownian motion under measure P̃, and thus a martingale

under measure P̃. Thus, in a generalized form of Definition 3.1, the stock modeled under the risk-neutral

measure is the generalized geometric Brownian motion

S(t) = S(0) exp

Ç∫ t

0

σ(s)dW̃ (s) +

∫ t

0

Å
R(s)− 1

2
σ2(s)

ã
ds

å
. (4.3)

Now let X(t) and V (t) represent portfolio value and the payoff respectively at time t. Suppose the

investor hold ∆(t) shares of stock at time t, then similar to (3.4), we shall obtain

d(D(t)X(t)) = ∆(t)d(D(t)S(t)) = ∆(t)σ(t)D(t)S(t)dW̃ (t).

We shall require X(t) = V (t) almost surely for all 0 ≤ t ≤ T in order to hedge a short position. Also

use the fact that D(t)X(t) is a martingale under P̃, we obtain the general form of the risk-neutral pricing

formula for the continuous-time model as

D(t)V (t) = D(t)X(t) = Ẽ(D(T )X(T )|F(t)) = Ẽ(D(T )V (T )|F(t)), 0 ≤ t ≤ T. (4.4)
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4.4 Deriving the Black-Scholes-Merton formula

To obtain the Black-Scholes-Merton price of a European call, we assume constant volatility σ and

constant interest rate r. Set the payoff to be V (T ) = (S(T ) −K)+ and D(t) = e−rt. Then from (4.3),

we shall obtain

S(T ) = S(t) exp

Å
σ(W̃ (T )− W̃ (t)) +

Å
r − 1

2
σ2

ã
τ

ã
= S(t) exp

Å
−σ

√
τY +

Å
r − 1

2
σ2

ã
τ

ã
,

where Y is the standard normal random variable

Y = −W̃ (T )− W̃ (t)√
T − t

, τ is the “time to expiration” T − t.

Let c(t, x) denote the value of the call at time t if the stock price at that time is S(t) = x. Therefore,

(4.4) holds with

c(t, x) = Ẽ
Ç
e−rτ

Å
x exp

Å
−σ

√
τY +

Å
r − 1

2
σ2

ã
τ

ã
−K

ã+å
=

1√
2π

∫ ∞

−∞
e−rτ

Å
x exp

Å
−σ

√
τY +

Å
r − 1

2
σ2

ã
τ

ã
−K

ã+
e−

1
2y

2

dy, (4.5)

where the integrand is positive if and only if

y < d−(τ, x) =
1

σ
√
τ

Å
log

x

K
+

Å
r − 1

2
σ2

ã
τ

ã
Hence, (4.5) becomes

c(t, x) =
1√
2π

∫ d−(τ,x)

−∞
x exp

Å
−y2

2
− σ

√
τY − σ2τ

2

ã
dy − 1√

2π

∫ d−(τ,x)

−∞
K exp

Å
−y2

2
− rτ

ã
dy

=
x√
2π

∫ d−(τ,x)

−∞
exp

Å
−1

2
(y + σ

√
τ)2
ã
dy − e−rτKN (d−(τ, x))

=
x√
2π

∫ d−(τ,x)+σ
√
τ

−∞
exp

Å
−z2

2

ã
dz − e−rτKN (d−(τ, x))

= xN (d+(τ, x))− e−rτKN (d−(τ, x)),

where N is the cumulative standard normal distribution, and

d+(τ, x) = d−(τ, x) + σ
√
τ =

1

σ
√
τ

Å
log

x

K
+

Å
r +

1

2
σ2

ã
τ

ã
.

This is exactly the same result as we obtained in (3.9).
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