
Machine Learning
Homework Collection

Disclaimer: The solutions are written by Yao Xiao and not guaranteed

to be correct. If this cause any infringement issues, please contact me

and I will delete relevant contents as soon as possible.

DS-GA-1003 - Spring 2023 1

Homework 1: Error Decomposition & Polynomial Regression

Due: Wednesday, February 1, 2023 at 11:59pm

Instructions: Your answers to the questions below, including plots and mathematical work,
should be submitted as a single PDF file. It’s preferred that you write your answers using
software that typesets mathematics (e.g., LaTeX, LyX, or MathJax via iPython), though if
you need to you may scan handwritten work. You may find the minted package convenient for
including source code in your LaTeX document. If you are using LyX, then the listings package
tends to work better. The last application is optional.

General considerations (10 Points)

For the first part of this assignment we will consider a synthetic prediction problem to develop
our intuition about the error decomposition. Consider the random variables x ∈ X = [0, 1]
distributed uniformly (x ∼ Unif([0, 1])) and y ∈ Y = R defined as a polynomial of degree 2
of x: there exists (a0, a1, a2) ∈ R3 such that the values of x and y are linked as y = g(x) =
a0 + a1x+ a2x

2. Note that this relation fixes the joint distribution PX×Y .

From the knowledge of a sample {xi, yi}Ni=1, we would like to predict the relation between x and
y, that is find a function f to make predictions ŷ = f(x). We note Hd, the set of polynomial
functions on R of degree d: Hd =

{
f : x 7→ b0 + b1x+ · · · bdxd; bk ∈ R, ∀k ∈ {0, · · · , d}

}
. We

will consider the hypothesis classes Hd varying d. We will minimize the squared loss ℓ(ŷ, y) =
1
2 (ŷ − y)2 to solve the regression problem.

1. (2 Points) Recall the definition of the expected risk R(f) of a predictor f . While this
cannot be computed in general note that here we defined PX×Y , which function f∗ is an
obvious Bayes predictor? Make sure to explain why the risk R(f∗) is minimum at f∗.

Solution. The function f∗ = g is an obvious Bayes predictor that achieves the minimal
risk 0 among all possible functions. To be more rigorous, we can compute that

R(g) = E(x,y)∼PX×Y [ℓ(g(x), y)] = E[ℓ(g(x), g(x))] = 0. (1)

Moreover, since the squared loss is non-negative, there cannot be a lower risk than R(g).

2. (2 Points) Using H2 as your hypothesis class, which function f∗
H2

is a risk minimizer in
H2? Recall the definition of the approximation error. What is the approximation error
achieved by f∗

H2
?

Solution. The function f∗
H2

= g is a risk minimizer in H2, since g is a Bayes predictor and is
indeed a member of H2. The approximation error achieved by f∗

H2
= g since f∗ = f∗

H2
= g,

i.e., the risk optimizer in this case is Bayes optimal.

3. (2 Points) Considering now Hd, with d > 2. Justify an inequality between R(f∗
H2

) and
R(f∗

Hd
). Which function f∗

Hd
is a risk minimizer in Hd? What is the approximation error

achieved by f∗
Hd

?

Solution. The following inequality always holds:

R(f∗
H2

) ≥ R(f∗
Hd

), ∀d > 2. (2)

https://github.com/gpoore/minted
https://en.wikibooks.org/wiki/LaTeX/Source_Code_Listings

DS-GA-1003 - Spring 2023 2

To see this, note that H2 ⊆ Hd for all d > 2. Therefore, a risk minimizer in H2 is also in
Hd, thus at least the same risk can be attained. A lower risk is also possible since a risk
minimizer in Hd is not necessarily in H2. Moreover, in this case, the function f∗

Hd
= g is

a risk minimizer in Hd for any d > 2, since g is a Bayes predictor and g ∈ H2 ⊆ Hd. The
approximation error achieved by f∗

Hd
= g since f∗ = f∗

Hd
= g, i.e., the risk optimizer in

this case is Bayes optimal.

4. (4 Points) For this question we assume a0 = 0. Considering H = {f : x 7→ b1x; b1 ∈ R},
which function f∗

H is a risk minimizer in H? What is the approximation error achieved by
f∗
H? In particular what is the approximation error achieved if furthermore a2 = 0 in the
definition of true underlying relation g(x) above?

Solution. We can compute the risk of f ∈ H as

R(f) = E(x,y)∼PX×Y [ℓ(f(x), y)] = Ex∼Unif([0,1])[ℓ(b1x, a1x+ a2x
2)]

=

∫ 1

0

1

2

(
(a1 − b1)x+ a2x

2
)2 · 1dx =

∫ 1

0

a22x
4 + (a1 − b1)

2x2 + 2a2(a1 − b1)x
3

2
dx

=
a22x

5

10

∣∣∣∣1
0

+
(a1 − b1)

2x3

6

∣∣∣∣1
0

+
a2(a1 − b1)x

4

4

∣∣∣∣1
0

=
a22
10

+
(a1 − b1)

2

6
+

a2(a1 − b1)

4

=
10b21 − (15a2 + 20a1)b1 + (6a22 + 10a21 + 15a1a2)

60

=
1

6

((
b1 −

3a2 + 4a1
4

)2

+
6a22 + 10a21 + 15a1a2

10
− 9a22 + 16a21 + 24a1a2

16

)

=
1

6

((
b1 −

3a2 + 4a1
4

)2

+
3a22
80

)
=

1

6

(
b1 −

3a2 + 4a1
4

)2

+
a22
160

≥ a22
160

, (3)

and the equality holds if and only if b1 = 3a2+4a1

4 . Therefore, the risk minimizer in H is

f∗
H : x 7→ 3a2 + 4a1

4
· x, (4)

and the corresponding approximation error can be computed as

Approximation Error = R(f∗
H)−R(f∗) =

a22
160

− 0 =
a22
160

. (5)

If furthermore we assume that a2 = 0, the approximation error will be 0.

Polynomial regression as linear least squares (5 Points)
In practice, PX×Y is usually unknown and we use the empirical risk minimizer (ERM). We will
reformulate the problem as a d-dimensional linear regression problem. First note that functions
in Hd are parametrized by a vector b = [b0, b1, · · · bd]⊤, we will use the notation fb. Similarly we
will note a ∈ R3 the vector parametrizing g(x) = fa(x). We will also gather data points from
the training sample in the following matrix and vector:

X =

1 x1 · · · xd

1

1 x2 · · · xd
2

...
...

...
...

1 xN · · · xd
N

 , y = [y1, y2, · · · , yN]⊤. (6)

DS-GA-1003 - Spring 2023 3

These notations allow us to take advantage of the very effective linear algebra formalism. X is
called the design matrix.

5. (2 Points) Show that the empirical risk minimizer (ERM) b̂ is given by the following

minimization b̂ = argmin
b

∥Xb− y∥22.

Proof. We can first compute the empirical risk as

R̂N (f) =
1

N

N∑
i=1

ℓ(f(xi), yi) =
1

2N

N∑
i=1

(f(xi)− yi)
2 =

1

2N

N∑
i=1

 d∑
j=0

bjx
j
i − yi

2

=
1

2N

N∑
i=1

(
[1, xi, · · · , xd

i] · [b0, b1, · · · , bd]⊤ − yi
)2

=
1

2N
∥Xb− y∥22 . (7)

Therefore, the empirical risk minimizer b is given by

b̂ = argmin
b

R̂N (f) = argmin
b

∥Xb− y∥22 , (8)

and the proof is complete.

6. (3 Points) If N > d and X is full rank, show that b̂ = (X⊤X)−1X⊤y. (Hint: you should
take the gradients of the loss above with respect to b1). Why do we need to use the
conditions N > d and X full rank?

Proof. We can first rewrite the form of b̂ as

b̂ = argmin
b

∥Xb− y∥22 = argmin
b

(
(Xb− y)⊤(Xb− y)

)
= argmin

b

(
b⊤X⊤Xb− y⊤Xb− b⊤X⊤y + y⊤y

)
= argmin

b

(
b⊤X⊤Xb− 2y⊤Xb+ y⊤y

)
:= argmin

b
fb. (9)

To obtain the minimum, we require the gradient to be zero, that is,

∇bfb = 0 =⇒ ∇b

(
b⊤X⊤Xb− 2y⊤Xb+ y⊤y

)
= 0

=⇒
(
X⊤X + (X⊤X)⊤

)
b− 2

(
y⊤X

)⊤
= 0

=⇒ X⊤Xb = X⊤y =⇒ b̂ = (X⊤X)−1X⊤y. (10)

Note that the conditions N > d and X full rank are necessary. If any of them is violated,
then there will be infinitely many solutions to the linear equation Xb = y which lead
to zero empirical risk. This is clearly not the case given that we are to find an optimal
approximation and if so, the conclusion that b̂ = (X⊤X)−1X⊤y will no longer hold since

there can be infinitely many b̂.

Hands on (7 Points)
Open the source code file hw1 code source.py from the .zip folder. Using the function get a

get a value for a, and draw a sample x train, y train of size N = 10 and a sample x test,

y test of size Ntest = 1000 using the function draw sample.

1You can check the linear algebra review here if needed here.

http://cs229.stanford.edu/section/cs229-linalg.pdf

DS-GA-1003 - Spring 2023 4

7. (2 Points) Write a function called least square estimator taking as input a design matrix

X ∈ RN×(d+1) and the corresponding vector y ∈ RN returning b̂ ∈ R(d+1). Your function
should handle any value of N and d, and in particular return an error if N ≤ d. (Drawing
x at random from the uniform distribution makes it almost certain that any design matrix
X with d ≥ 1 we generate is full rank).

Solution. The function least square estimator is implemented as follows:

1 def least_square_estimator(X, y):

2 """ Computes an empirical risk minimizer with least square loss function.

3

4 Parameters

5 ----------

6 X : np.ndarray

7 The design matrix X of size N times (d+1).

8 y : np.array

9 The corresponding vector y of size N.

10

11 Returns

12 -------

13 ERM : np.array

14 The empirical risk minimizer b of size (d+1).

15

16 Raises

17 ------

18 Exception

19 If N <= d, then ERM does not exist.

20 """

21 if X.shape [0] <= X.shape [1] - 1:

22 raise Exception("ERM does not exist: N <= d")

23 return np.dot(np.dot(np.linalg.inv(np.dot(X.T, X)), X.T), y)

8. (1 Points) Recall the definition of the empirical risk R̂(f̂) on a sample {xi, yi}Ni=1 for a

prediction function f̂ . Write a function empirical risk to compute the empirical risk
of fb taking as input a design matrix X ∈ RN×(d+1), a vector y ∈ RN and the vector
b ∈ Rd+1 parametrizing the predictor.

Solution. The function empirical risk is implemented as follows:

1 def empirical_risk(X, y, b):

2 """ Computes the empirical risk of a predictor with respect to squared

loss.

3

4 Parameters

5 ----------

6 X : np.ndarray

7 The design matrix X of size N times (d+1).

8 y : np.array

9 The corresponding vector y of size N.

10 b : np.array

11 The predictor b of size (d+1).

12

13 Returns

14 -------

15 emp_risk : float

16 The empirical risk of the predictor with respect to squared loss.

17 """

18 return np.sum(np.square(np.dot(X, b) - y)) / y.size / 2

DS-GA-1003 - Spring 2023 5

9. (3 Points) Use your code to estimate b̂ from x train, y train using d = 5. Compare b̂
and a. Make a single plot (Plot 1) of the plane (x, y) displaying the points in the training
set, values of the true underlying function g(x) in [0, 1] and values of the estimated function
fb̂(x) in [0, 1]. Make sure to include a legend to your plot.

Solution. Plot 1 is shown as in Figure 1. Note that the true underlying function and the
estimated function are indistinguishable in the plot, but they are indeed different.

Figure 1: The training set, the true underlying function, and the estimated function.

10. (1 Points) Now you can adjust d. What is the minimum value for which we get a “perfect
fit”? How does this result relates with your conclusions on the approximation error above?

Solution. The minimum value of for which we get a “perfect fit” is d = 2, as can be seen
from the output below:

d=0, R(f)=9.512686082762002

d=1, R(f)=0.11938848709867445

d=2, R(f)=2.443920820733036e-27

d=3, R(f)=1.636629710420283e-25

d=4, R(f)=3.131124948699181e-22

d=5, R(f)=4.446301326088822e-19

Indeed with d ≥ 2, the approximation error achieved by the risk minimizer in Hd should be
0, and here the empirical risk (which includes the estimation error and the approximation
error) is almost 0 for d ≥ 2.

In presence of noise (13 Points)
Now we will modify the true underlying PX×Y , adding some noise in y = g(x)+ϵ, with ϵ ∼ N (0, 1)
a standard normal random variable independent from x. We will call training error et the
empirical risk on the train set and generalization error eg the empirical risk on the test set.

11. (6 Points) Plot et and eg as a function of N for d < N < 1000 for d = 2, d = 5 and d = 10
(Plot 2). You may want to use a logarithmic scale in the plot. Include also plots similar
to Plot 1 for 2 or 3 different values of N for each value of d.

DS-GA-1003 - Spring 2023 6

Solution. Plot 2 is shown as in Figure 2. Note that both axes are of logarithmic scale, i.e.,
the values in the plots are the natural logarithms of the actual values.

Figure 2: The training error and the generalization error with respect to N for different d.

Moreover, pick sample size N = 50, 200, 500, we can respectively plot the true underlying
function and the estimated function as is shown in Figure 3.

12. (4 Points) Recall the definition of the estimation error. Using the test set (which we
intentionally chose large so as to take advantage of the law of large numbers), give an
empirical estimator of the estimation error. For the same values of N and d above plot the
estimation error as a function of N (Plot 3).

Solution. Recall the definition of the estimation error that

Estimation Error = R(f̂n)−R(fF), (11)

where f̂n is the empirical risk minimizer in the hypothesis space and fF is the risk minimizer
in the hypothesis space. By the law of large numbers, the empirical risk estimator R̂n(f̂n)

approximates the real risk R(f̂n). Moreover, R̂n(f̂n) is represented by the generalization
error eg, and now it suffices to compute R(fF). For any function f , denote ϕ = f − g for

DS-GA-1003 - Spring 2023 7

Figure 3: Training sets, true underlying functions, and estimated functions for different combi-
nations of d and N .

simplicity and we have that

R(f) = E(x,y)∼P ′
X×Y

[ℓ(f(x), y)] = Ex∼Unif([0,1])[ℓ(f(x), g(x) + ϵ)]

=
1

2
Ex∼Unif([0,1])[(f(x)− g(x)− ϵ)2] =

1

2
Ex∼Unif([0,1])[ϕ

2(x)− 2ϵϕ(x) + ϵ2]

=
1

2
Ex∼Unif([0,1])[ϕ

2(x)]− Ex∼Unif([0,1])[ϵϕ(x)] +
1

2
E[ϵ2]

=
1

2
Ex∼Unif([0,1])[ϕ

2(x)]− E[ϵ] · Ex∼Unif([0,1])[ϕ(x)] +
1

2
E[ϵ2] (12)

=
1

2
Ex∼Unif([0,1])[ϕ

2(x)] +
1

2
≥ 1

2
, (13)

DS-GA-1003 - Spring 2023 8

where the equality can be obtained when ϕ ≡ 0, i.e., f ≡ g. Note that (12) follows from
the independence of ϵ from x, and the equality in (13) follows since the first and second
moments of a standard normal random variable are 0 and 1, respectively. Therefore, we
can see that fF = g and R(fF) =

1
2 . As a result, an empirical estimator of the estimation

error is given by

Estimation Error ≈ eg −
1

2
. (14)

Using the above observation, Plot 3 is shown as in Figure 4. Note that the x-axis of the
plot is of logarithmic scale, i.e., the x-values in the plots are the natural logarithms of the
actual values of N .

Figure 4: The estimation error with respect to N for different d.

13. (2 Points) The generalization error gives in practice an information related to the estimation
error. Comment on the results of (Plot 2 and 3). What is the effect of increasing N? What
is the effect of increasing d?

Solution. By analyzing the training error, the generalization error, and the estimation error
from Plot 2 and 3, we can see that with N increasing, the training error gets larger, the
generalization error gets smaller, and the estimation error gets smaller. On the other hand,
when d increases, the training error, the generalization error, and the estimation error all
get larger.

DS-GA-1003 - Spring 2023 9

14. (1 Points) Besides the approximation and estimation there is a last source of error we have
not discussed here. Can you comment on the optimization error of the algorithm we are
implementing?

Solution. The optimization error of the algorithm we are implementing is 0, since we are
using the exact empirical risk minimizer rather than a good enough one, which is shown
in Question 6.

Application to Ozone data (optional) (2 Points)
You can now use the code we developed on the synthetic example on a real world dataset.
Using the command np.loadtxt("ozone wind.data") load the data in the .zip. The first
column corresponds to ozone measurements and the second to wind measurements. You can try
polynomial fits of the ozone values as a function of the wind values.

15. (2 Points) Reporting plots, discuss again in this context the results when varying N (sub-
sampling the training data) and d.

Solution. The relation of the training error and the generalization error to N and d can
be seen in Figure 5 and Figure 6. Note that both axes in Figure 5 are of logarithmic scale,
i.e., the values in the plots are the natural logarithms of the actual values, and the y-axis
in Figure 6 is of logarithmic scale, i.e., the y-values in the plots are the natural logarithms
of the actual values of the errors.

Figure 5: The training error and the generalization error with respect to N for different d.

Figure 6: The training error and the generalization error with respect to d for different N .

From the plots, we can see that the training error increases with N and is unclear how it
changes with d. The generalization error, on the other hand, decreases withN and increases

DS-GA-1003 - Spring 2023 10

with d. The sample is small so the conclusions may not be accurate. Moreover, the training
set and the estimated function for different combinations of d and N (specifically the cases
above) are as shown in Figure 7.

Figure 7: Training sets and estimated functions for different combinations of d and N .

DS-GA-1003 - Spring 2023 1

Homework 2: Gradient Descent & Regularization

Due: Wednesday, February 15, 2023 at 11:59pm

Instructions: Your answers to the questions below, including plots and mathematical work,
should be submitted as a single PDF file. It’s preferred that you write your answers using
software that typesets mathematics (e.g.LaTeX, LyX, or MathJax via iPython), though if you
need to you may scan handwritten work. You may find the minted package convenient for
including source code in your LaTeX document. If you are using LyX, then the listings package
tends to work better.

This second homework features 3 problems and explores statistical learning theory (Week 1 &
Week 2), gradient descent algorithms, loss functions (both topics of Week 2), and regularization
(topic of Week 3). Following the instructions in the homework you should be able to solve a
lot of questions before the lecture of Week 3. Additionally, some parts of this homework are
optional. Optional questions will be graded but the points do not count towards this assignment.
They instead contribute towards the extra credit you can earn over the entire course (maximum
2%) which can be used to improve the final grade by half a letter (e.g., A- to A).

Statistical Learning Theory

In the last homework, we used training error to determine whether our models have converged.
It is crucial to understand what is the source of this training error. We specifically want to
understand how it is connected to the noise in the data. In this question, we will compute the
expected training error when we use least squares loss to fit a linear function.

Consider a full rank N × d data matrix X with N > d, where the training labels are generated
as yi = b · xi + ϵi, and ϵi ∼ N (0, σ2) is the noise. From Homework 1, we know that the formula

for the ERM is b̂ = (X⊤X)−1X⊤y.

1. Show that

Training Error =
1

N

∥∥(X(X⊤X)−1X⊤ − I
)
ϵ
∥∥2
2

where ϵ ∼ N (0, σ2IN) and training error is defined as 1
N ∥X b̂− y∥22.

Proof. Bringing the formula for the empirical risk minimizer into the definition of the
training error, we have that

Training Error =
1

N

∥∥X(X⊤X)−1X⊤y − y
∥∥2
2
=

1

N

∥∥(X(X⊤X)−1X⊤ − I
)
y
∥∥2
2

=
1

N

∥∥(X(X⊤X)−1X⊤ − I
)
Xb+

(
X(X⊤X)−1X⊤ − I

)
ϵ
∥∥2
2

=
1

N

∥∥(X(X⊤X)−1(X⊤X)−X
)
b+

(
X(X⊤X)−1X⊤ − I

)
ϵ
∥∥2
2

=
1

N

∥∥(XI −X) b+
(
X(X⊤X)−1X⊤ − I

)
ϵ
∥∥2
2
=

1

N

∥∥(X(X⊤X)−1X⊤ − I
)
ϵ
∥∥2
2
, (1)

where ϵ ∼ N (0, σ2IN) since each of its component ϵi ∼ N (0, σ2) and are mutually inde-
pendent. This completes the proof.

https://github.com/gpoore/minted
https://en.wikibooks.org/wiki/LaTeX/Source_Code_Listings

DS-GA-1003 - Spring 2023 2

2. Show that the expectation of the training error can be expressed solely in terms of only
N , d, and σ as:

E
[
1

N

∥∥(X(X⊤X)−1X⊤ − I
)
ϵ
∥∥2
2

]
=

(N − d)

N
σ2.

Hints:

• Consider A = X(X⊤X)−1X⊤. What is A⊤A? Is A symmetric? What is A2?

• For a symmetric matrix A satisfying A2 = A, what are its eigenvalues?

• If X is full rank, then what is the rank of A? What is the eigenmatrix of A?

Proof. Let A = X(X⊤X)−1X⊤, then we have that A is idempotent since

A2 = X(X⊤X)−1X⊤X(X⊤X)−1X⊤ = XI(X⊤X)−1X⊤ = X(X⊤X)−1X⊤ = A. (2)

Moreover, A is also a symmetric matrix, since

A⊤ = (X(X⊤X)−1X⊤)⊤ = X((X⊤X)−1)⊤X⊤ = X((X⊤X)⊤)−1X⊤

= X(X⊤X)−1X⊤ = A. (3)

Therefore, by definition of the l2 norm and using the fact that tr(M1M2) = tr(M2M1), we
can compute that

E[Training Error] = E
[
1

N

∥∥(X(X⊤X)−1X⊤ − I
)
ϵ
∥∥2
2

]
=

1

N
E
[
∥(A− I)ϵ∥22

]
=

1

N
E
[
((A− I)ϵ)⊤(A− I)ϵ

]
=

1

N
E
[
ϵ⊤(A− I)⊤(A− I)ϵ

]
=

1

N
E
[
ϵ⊤(A⊤ − I⊤)(A− I)ϵ

]
=

1

N
E
[
ϵ⊤(A− I)(A− I)ϵ

]
=

1

N
E
[
ϵ⊤(A2 −AI − IA+ I2)ϵ

]
=

1

N
E
[
ϵ⊤(IN −A)ϵ

]
=

1

N
E
[
tr(ϵ⊤(IN −A)ϵ)

]
=

1

N
E
[
tr((IN −A)ϵϵ⊤)

]
=

1

N
tr((IN −A)E[ϵϵ⊤]). (4)

Note that by definition of the covariance matrix, we have that

σ2IN = Var[ϵ] = Cov[ϵ, ϵ] = E[(ϵ− E[ϵ])(ϵ− E[ϵ])⊤] = E[ϵϵ⊤]. (5)

Moreover, using the linearity and commutativity property of traces, we can see that

tr(IN −A) = tr(IN)− tr(A) = N − tr(X(X⊤X)−1X⊤)

= N − tr(X⊤X(X⊤X)−1) = N − tr(Id) = N − d. (6)

Therefore, (4) can be rewritten as

E[Training Error] =
1

N
tr((IN −A)σ2IN) =

σ2

N
tr(IN −A) =

σ2(N − d)

N
, (7)

which completes the proof of the desired result.

DS-GA-1003 - Spring 2023 3

3. From this result, give a reason as to why the training error is very low when d is close to
N , i.e., when we overfit the data.

Solution. From the previous result, we can easily compute that

lim
d→N−

E[Training Error] = lim
d→N−

σ2(N − d)

N
=

σ2(N − limd→N− d)

N
= 0, (8)

implying that the expectation of the training error will tend to 0 as d gets closer to N .

Gradient Descent for Ridge(less) Linear Regression

We have provided you with a file called ridge regression dataset.csv. Columns x0 through
x47 correspond to the input and column y corresponds to the output. We are trying to fit the
data using a linear model and gradient based methods. Please also check the supporting code in
skeleton code.py. Throughout this problem, we refer to particular blocks of code to help you
step by step.

Feature normalization

When feature values differ greatly, we can get much slower rates of convergence of gradient-
based algorithms. Furthermore, when we start using regularization, features with larger values
are treated as “more important”, which is not usually desired.

One common approach to feature normalization is perform an affine transformation (i.e. shift
and rescale) on each feature so that all feature values in the training set are in [0, 1]. Each feature
gets its own transformation. We then apply the same transformations to each feature on the
validation set or test set. Importantly, the transformation is “learned” on the training set, and
then applied to the test set. It is possible that some transformed test set values will lie outside
the [0, 1] interval.

4. Modify function feature normalization to normalize all the features to [0, 1]. Can you
use numpy’s broadcasting here? Often broadcasting can help to simplify and/or speed up
your code. Note that a feature with constant value cannot be normalized in this way. Your
function should discard features that are constant in the training set.

Solution. The function feature normalization can be implemented as follows:

1 def feature_normalization(train , test):

2 """ Normalize train set features and update test set feature

correspondingly.

3

4 Rescale the data so that each feature in the training set is in the

interval [0, 1], and apply the same transformations to the test set ,

using the statistics computed on the training set.

5

6 Parameters

7 ----------

8 train : np.ndarray

9 The training set of size num_instances * num_features.

10 test : np.ndarray

11 The test set of size num_instances * num_features.

12

13 Returns

https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html

DS-GA-1003 - Spring 2023 4

14 -------

15 train_normalized : np.ndarray

16 The training set after normalization.

17 test_normalized :

18 The test set after applying the same transformation as for the

19 training set.

20 """

21 train_min , train_max = np.min(train), np.max(train)

22 train_normalized = (train - train_min) / (train_max - train_min)

23 test_normalized = (test - train_min) / (train_max - train_min)

24 return train_normalized , test_normalized

At the end of the skeleton code, the function load data loads, split into a training set and a
test set, and normalize the data using your feature normalization function.

Linear regression

In linear regression, we consider the hypothesis space of linear functions

hθ : Rd → R, x 7→ θ⊤x, θ ∈ Rd,

and we choose θ that minimizes the following “average square loss” objective function:

J(θ) =
1

m

m∑
i=1

(hθ(xi)− yi)
2
,

where (x1, y1), . . . , (xm, ym) ∈ Rd × R is our training data.

While this formulation of linear regression is very convenient, it’s more standard to use a hy-
pothesis space of affine functions:

hθ,b(x) = θ⊤x+ b,

which allows a nonzero intercept term b, sometimes called a “bias” term. The standard way to
achieve this, while still maintaining the convenience of the first representation, is to add an extra
dimension to x that is always a fixed value, such as 1, and use θ,x ∈ Rd+1. Convince yourself
that this is equivalent. We will assume this representation.

5. Let X ∈ Rm×(d+1) be the design matrix, where the ith row of X is denoted by xi, and
let y = (y1, · · · , ym)

⊤ ∈ Rm×1 be the response. Write the objective function J(θ) as a
matrix/vector expression, without using an explicit summation sign.1

Solution. By definition of the objective function, we can write that

J(θ) =
1

m

m∑
i=1

(hθ(xi)− yi)
2
=

1

m

m∑
i=1

(
θ⊤xi − yi

)2
=

1

m
∥Xθ − y∥22 . (9)

6. Write down an expression for the gradient of J without using an explicit summation sign.

1Being able to write expressions as matrix/vector expressions without summations is crucial to making im-
plementations that are useful in practice, since you can use numpy (or more generally, an efficient numerical
linear algebra library) to implement these matrix/vector operations orders of magnitude faster than naively
implementing with loops in Python.

DS-GA-1003 - Spring 2023 5

Solution. By definition of gradient of matrices, vectors, and linear forms, we can compute
the gradient of J with respect to θ as

∇θJ(θ) = ∇θ

(
1

m
∥Xθ − y∥22

)
=

1

m
∇θ

(
(Xθ − y)⊤(Xθ − y)

)
=

1

m
∇θ

(
θ⊤X⊤Xθ − y⊤Xθ − θ⊤X⊤y + y⊤y

)
=

1

m
∇θ

(
θ⊤X⊤Xθ − 2y⊤Xθ + y⊤y

)
=

1

m

(
X⊤X + (X⊤X)⊤

)
θ − 2

m

(
y⊤X

)⊤
=

2

m

(
X⊤Xθ −X⊤y

)
. (10)

7. Write down the expression for updating the parameter vector θ in the gradient descent
algorithm with step size η.

Solution. We can update θ using

θ ← θ − 2η

m

(
X⊤Xθ −X⊤y

)
. (11)

8. Modify the function compute square loss to compute J(θ) for a given θ. You might want
to create a small dataset for which you can compute J(θ) by hand, and verify that your
compute square loss function returns the correct value.

Solution. The function compute square loss can be implemented as follows:

1 def compute_square_loss(X, y, theta):

2 """ Compute the average square loss for predicting y with X * theta.

3

4 Parameters

5 ----------

6 X : np.ndarray

7 The feature vector of size num_instances * num_features.

8 y : np.array

9 The label vector of size num_instances.

10 theta : np.array

11 The parameter vector of size num_features.

12

13 Returns

14 -------

15 loss : float

16 The average square loss.

17 """

18 return np.sum(np.square(np.dot(X, theta) - y)) / y.size

9. Modify the function compute square loss gradient, to compute ∇θJ(θ). You may again
want to use a small dataset to verify that your compute square loss gradient function
returns the correct value.

Solution. The function compute square loss gradient can be implemented as follows:

1 def compute_square_loss_gradient(X, y, theta):

2 """ Compute the gradient of the average square loss at the point theta.

3

DS-GA-1003 - Spring 2023 6

4 Parameters

5 ----------

6 X : np.ndarray

7 The feature vector of size num_instances * num_features.

8 y : np.array

9 The label vector of size num_instances.

10 theta : np.array

11 The parameter vector of size num_features.

12

13 Returns

14 -------

15 grad : np.array

16 The gradient vector of size num_features.

17 """

18 return np.dot(X.T, np.dot(X, theta) - y) * 2 / y.size

Gradient checker

We can numerically check the gradient calculation. If J : Rd → R is differentiable, then for any
vector h ∈ Rd, the directional derivative of J at θ in the direction h is given by

lim
ϵ→0

J(θ + ϵh)− J(θ − ϵh)

2ϵ
.

It is also given by the more standard definition of directional derivative as

lim
ϵ→0

1

ϵ
[J(θ + ϵh)− J(θ)] .

The former form gives a better approximation to the derivative when we are using small (but not
infinitesimally small) ϵ. We can approximate this directional derivative by choosing a small value
of ϵ > 0 and evaluating the quotient above. We can get an approximation to the gradient by
approximating the directional derivatives in each coordinate direction and putting them together
into a vector. In other words, take h = (1, 0, 0, · · · , 0) to get the first component of the gradient.
Then take h = (0, 1, 0, · · · , 0) to get the second component, and so on.

10. Complete the function grad checker according to its documentation given in the source file
skeleton code.py. Alternatively, you may complete the function generic grad checker

which can work for any objective function.

Solution. The function grad checker can be implemented as follows:

1 def grad_checker(X, y, theta , epsilon =0.01, tolerance =1e-4):

2 """ Check whether `compute_square_loss_gradient ` function returns the

correct result.

3

4 Let d be the number of features. Here we numerically estimate the

gradient by approximating the directional derivative in each of the d

coordinate directions: (e_1=(1,0,0,...,0,0), e_2=(0,1,0,...,0,0), ...,

e_d=(0,0,0,...,0,1))

5

6 The approximation for the directional derivative of J at the point theta

in direction e_i is given by: (J(theta + epsilon * e_i) - J(theta -

epsilon * e_i)) / (2* epsilon).

7

8 We then look at the Euclidean distance between the gradient computed

using this approximation and the gradient computed by `
compute_square_loss_gradient ` function. If the Euclidean distance

exceeds tolerance , we say the gradient is incorrect.

DS-GA-1003 - Spring 2023 7

9

10 Parameters

11 ----------

12 X : np.ndarray

13 The feature vector of size num_instances * num_features.

14 y : np.array

15 The label vector of size num_instances.

16 theta : np.array

17 The parameter vector of size num_features.

18 epsilon : float

19 The epsilon used in the approximation.

20 tolerance : float

21 The tolerance error.

22

23 Returns

24 -------

25 correct : boolean

26 Whether the gradient is correct or not.

27 """

28 true_gradient = compute_square_loss_gradient(X, y, theta)

29 num_features = theta.shape [0]

30 approx_grad = np.zeros(num_features)

31 for i in range(num_features):

32 direction = np.zeros(num_features)

33 direction[i] = epsilon

34 approx_grad[i] = (compute_square_loss(X, y, theta + direction)

35 - compute_square_loss(X, y, theta - direction)) / 2 / epsilon

36 return np.linalg.norm(true_gradient - approx_grad) <= tolerance

The more general function generic gradient checker can be implemented as follows:

1 def generic_gradient_checker(X, y, theta , objective_func , gradient_func ,

2 epsilon =0.01, tolerance =1e-4):

3 """ Check whether the proposed gradient function is correct.

4

5 The functions takes objective_func and gradient_func as parameters , and

check whether gradient_func(X, y, theta) returned the true gradient for

objective_func(X, y, theta).

6

7 Parameters

8 ----------

9 X : np.ndarray

10 The feature vector of size num_instances * num_features.

11 y : np.array

12 The label vector of size num_instances.

13 theta : np.array

14 The parameter vector of size num_features.

15 objective_func : function

16 The objective function.

17 gradient_func : function

18 The proposed gradient function of the objective function.

19 epsilon : float

20 The epsilon used in the approximation.

21 tolerance : float

22 The tolerance error.

23

24 Returns

25 -------

26 correct : boolean

27 Whether the gradient is correct or not.

28 """

29 true_gradient = gradient_func(X, y, theta)

DS-GA-1003 - Spring 2023 8

30 num_features = theta.shape [0]

31 approx_grad = np.zeros(num_features)

32 for i in range(num_features):

33 direction = np.zeros(num_features)

34 direction[i] = epsilon

35 approx_grad[i] = (objective_func(X, y, theta + direction)

36 - objective_func(X, y, theta - direction)) / 2 / epsilon

37 return np.linalg.norm(true_gradient - approx_grad) <= tolerance

You should be able to check that the gradients you computed above remain correct throughout
the learning below.

Batch gradient descent

We will now finish the job of running regression on the training set.

11. Complete batch gradient descent. Note the phrase batch gradient descent distinguishes
between stochastic gradient descent or more generally minibatch gradient descent.

Solution. The batch gradient descent algorithm can be implemented as follows:

1 def batch_grad_descent(X, y, alpha =0.1, num_step =1000):

2 """ Batch gradient descent minimizing average square loss.

3

4 Parameters

5 ----------

6 X : np.ndarray

7 The feature vector of size num_instances * num_features.

8 y : np.array

9 The label vector of size num_instances.

10 alpha : float

11 The step size in gradient descent.

12 num_step : int

13 The number of steps to run.

14

15 Returns

16 -------

17 theta_hist : np.ndarray

18 The history of the parameter vector. It is of size (num_step + 1)

19 * num_features.

20 loss_hist : np.array

21 The history of the average square loss on the data. It is of size

22 (num_step + 1).

23 """

24 _, num_features = X.shape [0], X.shape [1]

25 theta_hist = np.zeros((num_step + 1, num_features))

26 loss_hist = np.zeros(num_step + 1)

27 theta = np.zeros(num_features)

28 for step in range(num_step + 1):

29 theta_hist[step] = theta

30 loss_hist[step] = compute_square_loss(X, y, theta)

31 theta -= alpha * compute_square_loss_gradient(X, y, theta)

32 return theta_hist , loss_hist

12. Now let’s experiment with the step size. Note that if the step size is too large, gradient
descent may not converge. Starting with a step size of 0.1, try various different fixed step
sizes to see which converges most quickly and/or which diverge. As a minimum, try step

DS-GA-1003 - Spring 2023 9

sizes 0.5, 0.1, 0.05, and 0.01. Plot the average square loss on the training set as a function
of the number of steps for each step size. Briefly summarize your findings.

Solution. The plot of average square loss on the training set versus the number of steps
for step sizes 0.01 to 0.05 are shown as in Figure 1. Clearly, within a certain range, larger
step sizes lead to faster convergence of loss. However, note that when the step size exceeds
approximately 0.066, the average square loss on the training set explodes (diverges), and
such cases are not included in the plot.

Figure 1: The change of average square loss on the train set with the increase of steps in the
batch gradient descent algorithm under different step sizes.

13. For the learning rate you selected above, plot the average test loss as a function of the
iterations. You should observe overfitting: the test error first decreases and then increases.

Solution. The plot of average square loss on the test set versus the number of steps for
step sizes 0.01 to 0.05 are shown as in Figure 2. Here we can indeed observe overfitting:
while the loss on the train set keeps decreasing, after a number of steps the loss on the test
set starts increasing.

Ridge regression

We will add l2 regularization to linear regression. When we have a large number of features
compared to instances, regularization can help control overfitting. Ridge regression is just linear
regression with l2 regularization. The regularization term is sometimes called a penalty term.
The objective function for ridge regression is

Jλ(θ) =
1

m

m∑
i=1

(hθ(xi)− yi)
2
+ λθ⊤θ,

DS-GA-1003 - Spring 2023 10

Figure 2: The change of average square loss on the test set with the increase of steps in the
batch gradient descent algorithm under different step sizes.

where λ is the regularization parameter, which controls the degree of regularization. Note that
the bias term (which we included as an extra dimension in θ) is being regularized as well as the
other parameters. Sometimes it is preferable to treat this term separately.

14. Compute the gradient of Jλ(θ) and write down the expression for updating θ in the gradient
descent algorithm with matrix/vector expression (without explicit summation).

Solution. By definition of the objective function and using (10), we can compute the gra-
dient of Jλ with respect to θ as

∇θJλ(θ) = ∇θJ(θ) +∇θ

(
λθ⊤θ

)
=

2

m

(
X⊤Xθ −X⊤y

)
+ 2λθ. (12)

We can thus update θ using

θ ← θ − 2η

m

(
X⊤Xθ −X⊤y

)
− 2λθ. (13)

15. Implement compute regularized square loss gradient.

Solution. The function above can be implemented as follows:

1 def compute_regularized_square_loss_gradient(X, y, theta , lambda_reg):

2 """ Compute the gradient of the l2-regularized average square loss at the

point theta.

3

4 Parameters

5 ----------

6 X : np.ndarray

DS-GA-1003 - Spring 2023 11

7 The feature vector of size num_instances * num_features.

8 y : np.array

9 The label vector of size num_instances.

10 theta : np.array

11 The parameter vector of size num_features.

12 lambda_reg : float

13 The regularization coefficient.

14

15 Returns

16 -------

17 grad : np.array

18 The gradient vector of size num_features.

19 """

20 return np.dot(X.T, np.dot(X, theta) - y) * 2 / y.size

21 + 2 * lambda_reg * theta

16. Implement regularized grad descent.

Solution. The regularized grad descent algorithm can be implemented as follows:

1 def regularized_grad_descent(X, y, alpha =0.05, lambda_reg =1e-2,

2 num_step =1000):

3 """ Batch gradient descent minimizing l2-regularized average square loss.

4

5 Parameters

6 ----------

7 X : np.ndarray

8 The feature vector of size num_instances * num_features.

9 y : np.array

10 The label vector of size num_instances.

11 alpha : float

12 The step size in gradient descent.

13 lambda_reg : float

14 The regularization coefficient.

15 num_step : int

16 The number of steps to run.

17

18 Returns

19 -------

20 theta_hist : np.ndarray

21 The history of the parameter vector. It is of size (num_step + 1)

22 * num_features.

23 loss_hist : np.array

24 The history of the average square loss on the data. It is of size

25 (num_step + 1).

26 """

27 _, num_features = X.shape [0], X.shape [1]

28 theta_hist = np.zeros((num_step + 1, num_features))

29 loss_hist = np.zeros(num_step + 1)

30 theta = np.zeros(num_features)

31 for step in range(num_step + 1):

32 theta_hist[step] = theta

33 loss_hist[step] = compute_square_loss(X, y, theta)

34 theta -= alpha

35 * compute_regularized_square_loss_gradient(X, y, theta)

36 return theta_hist , loss_hist

Our goal is to find λ that gives the minimum average square loss on the test set, so you should
start your search very broadly, looking over several orders of magnitude. For instance, you can

DS-GA-1003 - Spring 2023 12

try λ = 10−7, 10−5, 10−3, 10−1, 1, 10, 100. Then you can zoom in on the best range. Follow the
steps below to proceed.

17. Choosing a reasonable step size, plot training average square loss and the test average
square loss (just the average square loss part, without the regularization, in each case) as
a function of the training iterations for various values of λ. What do you notice in terms
of overfitting?

Solution. Fix the step size as 0.05. The plots of average square loss on the train set and on
the test set versus the number of steps for regularization parameter λ between 10−6 and
10−4 are respectively shown as in Figure 3. Here we can see that the overfitting problem
gets alleviated as the regularization parameter λ increases.

Figure 3: The change of average square loss on the train set (above) and on the test set (below)
with the increase of steps in the batch gradient descent algorithm under different regularization
parameters and step size 0.05.

DS-GA-1003 - Spring 2023 13

18. Plot the training average square loss and the test average square loss at the end of training
as a function of λ. You may want to have log λ on the x-axis rather than λ. Which value
of λ would you choose?

Solution. Fix the step size as 0.05. The plot of average square loss on the train set and on
the test set after 2× 106 steps of training versus the regularization parameter λ is shown
as in Figure 4. Note that the x-axis of the plot is of logarithmic scale, i.e., the x-values
in the plots are the base-10 logarithms of the actual values of λ. I will choose λ ≈ 10−3.5

since the average loss on the test set is minimized around this value.

Figure 4: The change of average square loss on the train set and on the test set with the increase
of regularization parameter λ and step size 0.05.

19. Another heuristic of regularization is to early-stop the training when the test error reaches
a minimum. Add to the last plot the minimum of the test average square loss along training
as a function of λ. Is the value λ you would select with early stopping the same as before?

Solution. Fix the step size as 0.05. The plot of average square loss on the test set within
2×106 steps of training and with early-stop versus the regularization parameter λ is shown
as in Figure 5. Note that the x-axis of the plot is of logarithmic scale, i.e., the x-values in
the plots are the base-10 logarithms of the actual values of λ. Though early-stopping has
a significant improvement on the average square loss on the test set for small values of λ, I
will still choose λ ≈ 10−3.5 since the average loss on the test set is still minimized around
this value.

20. What θ would you select in practice and why?

Solution. I will first try some random initial θ, then use their solutions as the initial θ for
further experiments as long as they do not produce obviously strange solutions.

DS-GA-1003 - Spring 2023 14

Figure 5: The change of average square loss on the train set and on the test set with the increase
of regularization parameter λ and step size 0.05.

Stochastic gradient descent (SGD) (optional)

When the training data set is very large, evaluating the gradient of the objective function can
take a long time, since it requires looking at each training example to take a single gradient step.

In SGD, rather than taking −∇θJ(θ) as our step direction to minimize

J(θ) =
1

m

m∑
i=1

fi(θ),

we take −∇θfi(θ) for some i chosen uniformly at random from {1, · · · ,m}. The approximation
is poor, but we will show it is unbiased.

In machine learning applications, each fi(θ) would be the loss on the ith example. In practical
implementations for machine learning, the data points are randomly shuffled, and then we sweep
through the whole training set one by one, and perform an update for each training example
individually. One pass through the data is called an epoch. Note that each epoch of SGD touches
as much data as a single step of batch gradient descent. You can use the same ordering for each
epoch, though optionally you could investigate whether reshuffling after each epoch affects the
convergence speed.

21. Show that the objective function

Jλ(θ) =
1

m

m∑
i=1

(hθ(xi)− yi)
2
+ λθ⊤θ

can be written in the form Jλ(θ) = 1
m

∑m
i=1 fi(θ) by giving an expression for fi(θ) that

makes the two expressions equivalent.

DS-GA-1003 - Spring 2023 15

Proof. Note that since the regularization term is independent of i, we have that

Jλ(θ) =
1

m

m∑
i=1

(hθ(xi)− yi)
2 + λθ⊤θ =

1

m

m∑
i=1

(
(hθ(xi)− yi)

2 + λθ⊤θ
)
. (14)

Therefore, by choosing fi(θ) = (hθ(xi) − yi)
2 + λθ⊤θ we can make the two expressions

equivalent, thus completing the proof.

22. Show that the stochastic gradient ∇θfi(θ), for i chosen uniformly at random in the range
{1, · · · ,m}, is an unbiased estimator of ∇θJλ(θ). In other words, show that E [∇θfi(θ)] =
∇θJλ(θ) for any θ. It will be easier to prove this for a general Jλ(θ) =

1
m

∑m
i=1 fi(θ), rather

than the specific case of ridge regression. You can start by writing down an expression for
E [∇θfi(θ)].

Proof. Note that since i is chosen uniformly at random, the probability for each i being
chosen is 1/m. Therefore, we have that

E[∇θfi(θ)] =

m∑
i=1

(
∇θfi(θ) ·

1

m

)
= ∇θ

(
1

m

m∑
i=1

fi(θ)

)
= ∇θJλ(θ), (15)

indicating that the stochastic gradient is an unbiased estimator of ∇θJλ(θ).

23. Write down the update rule for θ in SGD for the ridge regression objective function.

Solution. We can compute the stochastic gradient as

∇θfi(θ) = ∇θ

((
θ⊤xi − yi

)2
+ λθ⊤θ

)
= ∇θ

((
θ⊤xi

)2 − 2yi
(
θ⊤xi

)
+ λθ⊤θ

)
= 2θ⊤xi∇θ

(
θ⊤xi

)
− 2yi∇θ

(
θ⊤xi

)
+ λ∇θ

(
θ⊤θ

)
=
(
2θ⊤xi

)
· xi − 2yi · xi + 2λ · θ. (16)

Therefore, we can choose i ∈ {1, · · · ,m} uniformly at random and update θ using

θ ← θ − 2η
((
θ⊤xi

)
· xi − yixi + λθ

)
. (17)

24. Implement stochastic grad descent.

Solution. The stochastic grad descent algorithm can be implemented as follows:

1 def stochastic_grad_descent(X, y, alpha =0.01, lambda_reg =1e-2,

2 num_epoch =1000):

3 """ Stochastic gradient descent with l2-regularization minimizing average

square loss.

4

5 Parameters

6 ----------

7 X : np.ndarray

8 The feature vector of size num_instances * num_features.

9 y : np.array

10 The label vector of size num_instances.

11 alpha : float or str

12 The step size in gradient descent. Note that in SGD , it is not a

DS-GA-1003 - Spring 2023 16

13 good idea to use a fixed step size. Usually it is set to 1/sqrt(t)

14 or 1/t. If alpha is a float , then the step size in every step is the

15 float. If alpha == "1/ sqrt(t)", then take alpha= 0.1/ sqrt(t). If

16 alpha == "1/t", then take alpha = 0.1/t.

17 lambda_reg : float

18 The regularization coefficient.

19 num_epoch : int

20 The number of epochs to go through the whole training set.

21

22 Returns

23 -------

24 theta_hist : np.ndarray

25 The history of the parameter vector. It is of size num_epoch

26 * num_instances * num_features.

27 loss_hist : np.array

28 The history of the average square loss on the data. It is of size

29 num_epoch * num_instances.

30

31 Raises

32 ------

33 Exception

34 If the alpha is not a float or "1/ sqrt(t)" or "1/t".

35 """

36 if isinstance(alpha , float) or isinstance(alpha , int):

37 get_alpha = lambda _: alpha

38 elif alpha == "1/sqrt(t)":

39 get_alpha = lambda x: 0.1 / np.sqrt(x)

40 elif alpha == "1/t":

41 get_alpha = lambda x: 0.1 / x

42 else:

43 raise Exception("Invalid step size specification , use float or \

44 '1/sqrt(t)' or '1/t'")
45 num_instances , num_features = X.shape [0], X.shape [1]

46 theta_hist = np.zeros((num_epoch , num_instances , num_features))

47 loss_hist = np.zeros((num_epoch , num_instances))

48 theta = np.ones(num_features)

49 step = 0

50 for epoch in range(num_epoch):

51 shuffled_indices = np.array(range (10))

52 np.random.shuffle(shuffled_indices)

53 for i in range(num_instances):

54 step += 1

55 theta_hist[epoch][i] = theta

56 loss_hist[epoch][i] = compute_square_loss(X, y, theta)

57 theta -= 2 * get_alpha(step) * (np.dot(theta.T, X[i]) * X[i]

58 - y[i] * X[i] + lambda_reg * theta)

59 return theta_hist , loss_hist

25. Use SGD to find θ∗
λ that minimizes the ridge regression objective for the λ you selected in

the previous problem. (If you could not solve the previous problem, choose λ = 10−2). Try
a few fixed step sizes (at least try ηt ∈ {0.05, 0.005}). Note that SGD may not converge
with fixed step size. Simply note your results. Next try step sizes that decrease with the
step number according to the following schedules: ηt = C/t and ηt = C/

√
t, C ≤ 1. Please

include C = 0.1 in your submissions. You are encouraged to try different values of C (see
notes below for details). For each step size rule, plot the value of the objective function
(or the log of the objective function if that is more clear) as a function of epoch (or step
number, if you prefer). How do the results compare?

DS-GA-1003 - Spring 2023 17

Solution. Fix λ = 10−3.5 for this part as determined in previous sections. First we experi-
ment on large values of fixed step size. We will use η = 0.05 as a baseline for convergence,
and experiment for η ∈ [0.06, 0.064], as is shown in Figure 6. Note that the y-axis of the
plot is of logarithmic scale, i.e., the y-values in the plots are the base-10 logarithms of the
actual values of loss. Also note that when the fixed step size η exceeds this range, the
objective function explodes and no longer converges. In fact, as can be seen in Figure 6, as
η grows towards the upper bound 0.064, the objective function is increasingly struggling to
converge. Experiments suggest that the behaviors of the average square loss on the train
set and on the test set with l2 regularized stochastic gradient descent are almost identical,
so we only show the latter for clarity of the plot.

Figure 6: The change of average square loss on the train set (above) and on the test set (below)
with the increase of epochs in the l2 regularized stochastic gradient descent algorithm under
different large fixed step sizes and regularization parameter λ = 10−3.5.

Now we move on to try variable step sizes. We will use fixed step sizes η = 0.02, 0.01, 0.005

DS-GA-1003 - Spring 2023 18

and variable step sizes ηt = 0.1/
√
t and ηt = 0.1/t, where t is the step number, as is shown

in Figure 7. Again, note that the y-axis of the plot is of logarithmic scale, i.e., the y-values
in the plots are the base-10 logarithms of the actual values of loss. Here we can see that
variable step sizes converges much faster than fixed step sizes in the beginning and slower
afterwards.

Figure 7: The change of average square loss on the train set (above) and on the test set (below)
with the increase of epochs in the l2 regularized stochastic gradient descent algorithm under
different schemes of fixed/variable step sizes and regularization parameter λ = 10−3.5.

In order to address the effect of C on variable step sizes, we use ηt = C/
√
t as an illustration.

We choose large values of C ranging from 0.5 up to 1.5, and small values of C ranging from
0.1 down to 0.01, as are shown in Figure 8. As we can see from the plot above, large values
of C are too aggressive in the beginning of the stochastic gradient descent, thus leading to
an explosion in loss and is unlikely to converge in reasonable time. As we can see from the
plot below, too small values of C are also unfavorable due to too slow convergence in the

DS-GA-1003 - Spring 2023 19

long term.

Figure 8: The change of average square loss on test set (below) with the increase of epochs in
the l2 regularized stochastic gradient descent algorithm under different variable step sizes and
regularization parameter λ = 10−3.5.

A few remarks about the question above:

• In this case we are investigating the convergence rate of the optimization algorithm with
different step size schedules, thus we’re interested in the value of the objective function,
which includes the regularization term.

• Sometimes the initial step size (C for C/t and C/
√
t) is too aggressive and will get you

into a part of parameter space from which you can’t recover. Try reducing C to counter
this problem.

DS-GA-1003 - Spring 2023 20

• SGD convergence is much slower than GD once we get close to the minimizer (remember,
the SGD step directions are very noisy versions of the GD step direction). If you look at
the objective function values on a logarithmic scale, it may look like SGD will never find
objective values that are as low as GD gets. In statistical learning theory terminology, GD
has much smaller optimization error than SGD. However, this difference in optimization
error is usually dominated by other sources of error (estimation error and approximation
error). Moreover, for very large datasets, SGD (or minibatch GD) is much faster (by
wall-clock time) than GD to reach a point close enough to the minimizer.

Acknowledgement: This problem set is based on assignments developed by David Rosenberg
of NYU and Bloomberg.

Image Classification with Regularized Logistic Regression

In this problem set we will examine a classification problem. To do so we will use the MNIST
dataset2 which is one of the traditional image benchmark for machine learning algorithms. We
will only load the data from the 0 and 1 class, and try to predict the class from the image. You
will find the support code for this problem in mnist classification source code.py. Before
starting, take a little time to inspect the data. Load X train, y train, X test, y test with
pre process mnist 01(). Using the function plt.imshow from matplotlib visualize some data
points from X train by reshaping the 764 dimensional vectors into 28 × 28 arrays. Note how
the class labels ‘0’ and ‘1’ have been encoded in y train. No need to report these steps in your
submission.

Logistic regression

We will use here again a linear model, meaning that we will fit an affine function,

hθ,b(x) = θ⊤x+ b,

with x ∈ R764, θ ∈ R764 and b ∈ R. This time we will use the logistic loss instead of the squared
loss. Instead of coding everything from scratch, we will also use the package scikit-learn and
study the effects of l1 regularization. You may want to check that you have a version of the
package up to date (0.24.1).

26. Recall the definition of the logistic loss between target y and a prediction hθ,b(x) as a
function of the margin m = y · hθ,b(x). Show that given that we chose the convention
yi ∈ {−1, 1}, our objective function over the training data {xi, yi}mi=1 can be rewritten as

L(θ) =
1

2m

m∑
i=1

(
(1 + yi) log

(
1 + e−hθ,b(xi)

)
+ (1− yi) log

(
1 + ehθ,b(xi)

))
.

Proof. Recall that the logistic loss between target y and a prediction hθ,b(x) is defined as

ℓ(x, y) = log
(
1 + e−yhθ,b(x)

)
, (18)

2http://yann.lecun.com/exdb/mnist/

http://yann.lecun.com/exdb/mnist/

DS-GA-1003 - Spring 2023 21

Therefore, we can express the objective function as

L(θ) =
1

m

m∑
i=1

log
(
1 + e−yihθ,b(xi)

)
. (19)

Note that when y = 1, we have that

log
(
1 + e−yhθ,b(x)

)
= log

(
1 + e−hθ,b(x)

)
=: f1(x), (20)

and when y = −1, we have that

log
(
1 + e−yhθ,b(x)

)
= log

(
1 + ehθ,b(x)

)
=: f−1(x). (21)

Therefore, we can rewrite the objective function as

L(θ) =
1

m

m∑
i=1

(
1 + yi

2
f1(xi) +

1− yi
2

f−1(xi)

)

=
1

2m

m∑
i=1

(
(1 + yi) log

(
1 + e−hθ,b(xi)

)
+ (1− yi) log

(
1 + ehθ,b(xi)

))
, (22)

since

1 + yi
2

=

{
1, if yi = 1,

0, if yi = −1,
1− yi

2
=

{
0, if yi = 1,

1, if yi = −1,
(23)

thus concluding the proof.

27. What will become the loss function if we regularize the coefficients of θ with an l1 penalty
using a regularization parameter α?

Solution. With the l1 penalty, the objective function will become

L(θ) =
1

2m

m∑
i=1

(
(1 + yi) log

(
1 + e−hθ,b(xi)

)
+ (1− yi) log

(
1 + ehθ,b(xi)

))
+ α

764∑
j=1

|θj |.

(24)

We are going to use the module SGDClassifier from scikit-learn. In the code provided we
have set a little example of its usage. By checking the online documentation3, make sure you
understand the meaning of all the keyword arguments that were specified. We will keep the
learning rate schedule and the maximum number of iterations fixed to the given values for all
the problem. Note that scikit-learn is actually implementing a fancy version of SGD to deal
with the l1 penalty which is not differentiable everywhere, but we will not enter these details
here.

3https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html

DS-GA-1003 - Spring 2023 22

28. To evaluate the quality of our model we will use the classification error, which corresponds
to the fraction of incorrectly labeled examples. For a given sample, the classification error
is 1 if no example was labeled correctly and 0 if all examples were perfectly labeled. Using
the method clf.predict() from the classifier, write a function that takes as input an
SGDClassifier which we will call clf, a design matrix X and a target vector y and returns
the classification error. You should check that your function returns the same value as 1
- clf.score(X, y).

Solution. The function classification error can be implemented as follows:

1 def classification_error(clf , X, y):

2 """ Compute the classification error.

3

4 Parameters

5 ----------

6 clf : SGDClassifier

7 The SGD classifier object that has been fit to the training data.

8 X : np.ndarray

9 The design matrix of size n_test_samples * n_features

10 y : np.array

11 The target vector of size n_test_samples.

12

13 Returns

14 -------

15 err : float

16 The classification error.

17 """

18 y_pred = clf.predict(X)

19 return np.mean(y_pred != y)

To speed up computations we will subsample the data. Using the function sub sample, restrict
X train and y train to N train = 100.

29. Report the test classification error achieved by the logistic regression as a function of the
regularization parameters α (taking 10 values between 10−4 and 10−1). You should make a
plot with α as the x-axis in log scale. For each value of α, you should repeat the experiment
10 times so as to finally report the mean value and the standard deviation. You should
use plt.errorbar to plot the standard deviation as error bars.

Solution. The test classification errors achieved by the logistic regression are as shown in
Figure 9. Note that the x-axis of the plot is of logarithmic scale.

30. Which source(s) of randomness are we averaging over by repeating the experiment?

Solution. The randomness comes from randomly shuffling the samples in the training step
within each epoch, since the SGDClassifier estimator implements regularized linear mod-
els with stochastic gradient descent learning, according to the documentation.

31. What is the optimal value of the parameter α among the values you tested?

Solution. The optimal value of α is 10−1 among all the values that I tested.

DS-GA-1003 - Spring 2023 23

Figure 9: The change the test classification error achieved by the logistic regression with the
regularization parameter α. Each data point and the corresponding error bar represent the mean
and the standard deviation of the 10 experiments for each value of α.

32. Finally, for one run of the fit for each value of α plot the value of the fitted θ. You can
access it via clf.coef , and should reshape the 764 dimensional vector to a 28× 28 array
to visualize it with plt.imshow. Defining scale = np.abs(clf.coef).max(), you can
use the following keyword arguments (cmap=plt.cm.RdBu, vmax=scale, vmin=-scale)
which will set the colors nicely in the plot. You should also use a plt.colorbar() to
visualize the values associated with the colors.

Solution. The plots of the fitted θ for each value of α between 10−3 and 10−1 are shown
as in Figure 10.

33. What can you note about the pattern in θ? What can you note about the effect of the
regularization?

Solution. The red part looks like a circle or zero, and the blue part looks like a line or
one. As the regularization parameter α increases, the both the blue part and the red
part are vanishing, or in other words, there are increasingly more white parts, indicating
increasingly more zero entries in θ. This is reasonable since l1 regularization tends to yield
solutions, i.e., it tends to make entries near 0 to become exactly 0. Therefore, with a larger
regularization parameter, more entries will become 0, consistent with the results shown in
Figure 10.

DS-GA-1003 - Spring 2023 24

Figure 10: The values of the fitted θ for the regularization parameter α in the range 10−3 to
10−1 (increasing from left to right and from top to bottom).

DS-GA-1003 - Spring 2023 1

Homework 3: SVMs & Kernel Methods

Due: Wednesday, March 1, 2023 at 11:59PM EST

Instructions: Your answers to the questions below, including plots and mathematical work,
should be submitted as a single PDF file. It’s preferred that you write your answers using
software that typesets mathematics (e.g.LaTeX, LyX, or MathJax via iPython), though if you
need to you may scan handwritten work. You may find the minted package convenient for
including source code in your LaTeX document. If you are using LyX, then the listings package
tends to work better.

In this problem set we will get up to speed with SVMs and Kernels. Long at first glance, the
problem set includes a lot of helpers. You will find a review of kernalization. One section will
include a revision of ridge regression which you should start to be familiar with. For the second
and third problem some codes are provided to save you some time. Finally, some reminders on
positive (semi)definite matrices are included in the Appendix.

Support Vector Machines: SVMs with Pegasos

In this first problem we will use Support Vector Machines to predict whether the sentiment of a
movie review was positive or negative. We will represent each review by a vector x ∈ Rd where
d is the size of the word dictionary and xi is equal to the number of occurrence of the ith word
in the review x. The corresponding label is either y = 1 for a positive review or y = −1 for
a negative review. In class we have seen how to transform the SVM training objective into a
quadratic program using the dual formulation. Here we will use a gradient descent algorithm
instead.

Subgradients

Recall that a vector g ∈ Rd is a subgradient of f : Rd → R at x if for all z,

f(z) ≥ f(x) + g⊤(z − x).

There may be 0, 1, or infinitely many subgradients at any point. The subdifferential of f at a
point x, denoted ∂f(x), is the set of all subgradients of f at x. A good reference for subgradients
are the course notes on Subgradients by Boyd et al. Below we derive a property that will make
our life easier for finding a subgradient of the hinge loss.

1. Suppose f1, · · · , fm : Rd → R are convex functions, and f(x) = maxi=1,··· ,m fi(x). Let k
be any index for which fk(x) = f(x), and choose g ∈ ∂fk(x) (a convex function on Rd has
a non-empty subdifferential at all points). Show that g ∈ ∂f(x).

Proof. For an arbitrary z ∈ Rd, we have that

f(z) ≥ fk(z) ≥ fk(x) + g⊤(z − x) = f(x) + g⊤(z − x). (1)

By the arbitrariness of z, we can conclude that g ∈ ∂f(x).

2. Give a subgradient of the hinge loss objective J(w) = max
{
0, 1− yw⊤x

}
.

https://github.com/gpoore/minted
https://en.wikibooks.org/wiki/LaTeX/Source_Code_Listings
https://stanford.edu/class/ee364b/lectures/subgradients_notes.pdf

DS-GA-1003 - Spring 2023 2

Solution. By the previous question, in order to find a subgradient of the hinge loss objective
J(w), we only need to find a subgradient of J1(w) = 0 when yw⊤x > 1 and a subgradient of
J2(w) = 1−yw⊤x when yw⊤x ≤ 1. However, note that J1 and J2 are both differentiable,
thus their only possible subgradients are their gradients. We have that

∇wJ1(w) = 0, ∇wJ2(w) = −yx. (2)

Therefore, a subgradient of the hinge loss objective J(w) can be

g =

{
0, if yw⊤x > 1,

−yx, otherwise.
(3)

3. (Optional) Suppose we have function f : Rn → R which is sub-differentiable everywhere,
i.e. ∂f ̸= ∅ for all x ∈ Rn. Show that f is convex. Note, in the general case, a function is
convex if for all x, y in the domain of f and for all θ ∈ (0, 1),

θf(a) + (1− θ)f(b) ≥ f(θa+ (1− θ)b).

Proof. Assume for contradiction that f is not convex, then there exist a, b ∈ Rd, and
θ ∈ (0, 1), such that

θf(a) + (1− θ)f(b) < f(θa+ (1− θ)b). (4)

Now since f is sub-differentiable everywhere, there exists a subgradient g at the point
x = θa+ (1− θ)b. By definition of subgradient, we thus have that

f(a) ≥ f(x) + g⊤(a− x) = f(x) + g⊤((1− θ)a− (1− θ)b), (5)

f(b) ≥ f(x) + g⊤(b− x) = f(x) + g⊤(θb− θa). (6)

Since θ ∈ (0, 1), we can rewrite the inequalities above as

g⊤(a− b) ≤ f(a)− f(x)
1− θ

, (7)

g⊤(b− a) ≤ f(b)− f(x)
θ

. (8)

Adding the two inequalities above, we have that

0 ≤ f(a)− f(x)
1− θ

+
f(b)− f(x)

θ
=
θf(a) + (1− θ)f(b)− f(x)

θ(1− θ)
. (9)

However, by the assumption in (4), the right-hand side in the inequality above is strictly
less than 0, thus leading to a contradiction. Therefore, f is convex and the proof is
complete.

SVM with the Pegasos algorithm

You will train a Support Vector Machine using the Pegasos algorithm 1. Recall the SVM objective
using a linear predictor f(x) = wTx and the hinge loss:

min
w∈Rd

λ

2
∥w∥2 + 1

n

n∑
i=1

max
{
0, 1− yiw⊤xi

}
,

1Shalev-Shwartz et al. Pegasos: Primal Estimated sub-GrAdient SOlver for SVM.

http://ttic.uchicago.edu/~nati/Publications/PegasosMPB.pdf

DS-GA-1003 - Spring 2023 3

where n is the number of training examples and d the size of the dictionary. Note that, for
simplicity, we are leaving off the bias term b. Note also that we are using l2 regularization with
a parameter λ. Pegasos is stochastic subgradient descent using a step size rule ηt = 1/ (λt) for
iteration number t. The pseudocode is given below:

Algorithm 1 Pegasos

Require: λ > 0, choose w1 = 0 and t = 0.
1: while termination condition is not met do
2: for j = 1, · · · , n (assuming data is randomly permuted) do
3: t← t+ 1;
4: ηt ← 1/(tλ);
5: if yiw

⊤
t xj < 1 then

6: wt+1 ← (1− ηtλ)wt + ηtyjxj ;
7: else
8: wt+1 ← (1− ηtλ)wt;
9: end if

10: end for
11: end while

4. Consider the SVM objective function for a single training point2

Ji(w) =
λ

2
∥w∥2 +max

{
0, 1− yiw⊤xi

}
.

The function Ji(w) is not everywhere differentiable. Specify where the gradient of Ji(w)
is not defined. Give an expression for the gradient where it is defined.

Solution. The function is not differentiable when yiw
⊤xi = 0. Otherwise, we have that

∇wJi(w) =

{
λw, if yw⊤x > 1,

λw − yx, if yw⊤x < 1.
(10)

5. Show that a subgradient of Ji(w) is given by

gw =

{
λw − yixi, if yiw

⊤xi < 1

λw, if yiw
⊤xi ≥ 1.

You may use the following facts without proof: (1) If f1, . . . , fn : Rd → R are convex
functions and f = f1 + · · · + fn, then ∂f(x) = ∂f1(x) + · · · + ∂fn(x). (2) For α ≥ 0,
∂ (αf) (x) = α∂f(x).

Hint: Use the first part of this problem.

Proof. Using (3), the subgradient of the function max{1− yiw⊤xi} can be

h =

{
−yx, if yw⊤x < 1,

0, if yw⊤x ≥ 1.
(11)

2Recall that if i is selected uniformly from the set {1, . . . , n}, then this objective function has the same expected
value as the full SVM objective function.

DS-GA-1003 - Spring 2023 4

Moreover, the function λ
2 ∥w∥

2
is everywhere differentiable, so its subgradient is

k = ∇w

(
λ

2
∥w∥2

)
= λw. (12)

Both functions are convex, since they are both everywhere differentiable. Therefore, by
the linearity of subgradients, we have that

gw = h+ k =

{
λw − yx, if yw⊤x < 1,

λw, if yw⊤x ≥ 1,
(13)

as desired, so the proof is complete.

Convince yourself that if the step size rule is ηt = 1/ (λt), then doing SGD with the subgradient
direction from the previous question is the same as given in the pseudocode.

Dataset and sparse representation

We will be using the Polarity Dataset v2.0, constructed by Pang and Lee, provided in the
data reviews/ folder. It has the full text from 2000 movies reviews: 1000 reviews are classified
as positive and 1000 as negative. Our goal is to predict whether a review has positive or negative
sentiment from the text of the review. Each review is stored in a separate file: the positive
reviews are in a folder called “pos”, and the negative reviews are in “neg”. We have provided
some code in utils svm reviews.py to assist with reading these files. The code removes some
special symbols from the reviews and shuffles the data. Load all the data to have an idea of
what it looks like.

A usual method to represent text documents in machine learning is with bag-of-words. As hinted
above, here every possible word in the dictionnary is a feature, and the value of a word feature
for a given text is the number of times that word appears in the text. As most words will not
appear in any particular document, many of these counts will be zero. Rather than storing
many zeros, we use a sparse representation, in which only the nonzero counts are tracked. The
counts are stored in a key/value data structure, such as a dictionary in Python. For example,
“Harry Potter and Harry Potter II” would be represented as the following Python dictionary: x
= {‘Harry’:2, ‘Potter’:2, ‘and’:1, ‘II’:1}.

6. Write a function that converts an example (a list of words) into a sparse bag-of-words
representation. You may find Python’s Counter3 class to be useful here.

Solution. We present the function to bag as follows.

1 def to_bag(words):

2 """ Convert a list of words into a sparse bag -of-words representation.

3

4 Parameters

5 ----------

6 words : list

7 The list of words to convert.

8

9 Returns

10 -------

11 bag : dict

3https://docs.python.org/3/library/collections.html

https://www.cs.cornell.edu/people/pabo/movie-review-data/
https://docs.python.org/3/library/collections.html

DS-GA-1003 - Spring 2023 5

12 The bag -of -words , with keys as words and values as their

13 corresponding counts.

14

15 Example

16 -------

17 >>> x = [" Harry", "Potter", "and", "Harry", "Potter", "II"]

18 >>> to_bag(x)

19 {'Harry ': 2, 'Potter ': 2, 'and ': 1, 'II ': 1}

20 """

21 return dict(Counter(words))

7. Load all the data and split it into 1500 training examples and 500 validation examples.
Format the training data as a list X train of dictionaries and y train as the list of corre-
sponding 1 or −1 labels. Format the test set similarly.

Solution. We present the function get train and test as follows.

1 def get_train_and_test ():

2 """ Split into a train set and a test set.

3

4 Returns

5 -------

6 X_train : list of dict

7 A train set of 1500 bags of words , with keys as words and values as

8 their corresponding counts.

9 X_test : list of dict

10 A test set of 1500 bags of words , with keys as words and values as

11 their corresponding counts.

12 y_train : list

13 A train set of 1500 binary sentiments , 1 as positive and -1 as

14 negative.

15 y_test : list

16 A test set of 1500 binary sentiments , 1 as positive and -1 as

17 negative.

18 """

19 X, y = [], []

20 for review in load_and_shuffle_data ():

21 X.append(to_bag(review [:-1]))

22 y.append(review [-1])

23 return train_test_split(X, y, test_size =0.25 , random_state =42)

We will be using linear classifiers of the form f(x) = w⊤x, and we can store the vector w
in a sparse format as well, such as w = {‘minimal’:1.3, ‘Harry’:-1.1, ‘viable’:-4.2,

‘and’:2.2, ‘product’:9.1}. The inner product between w and x would only involve the
features that appear in both x and w, since whatever doesn’t appear is assumed to be zero. For
this example, the inner product would be x(‘Harry’) * w(‘Harry’) + x(‘and’) * w(‘and’)

= 2*(-1.1) + 1*(2.2). To help you along, utils svm reviews.py includes two functions for
working with sparse vectors: (1) a dot product between two vectors represented as dictionaries
and (2) a function that increments one sparse vector by a scaled multiple of another vector,
which is a very common operation. It is worth reading the code, even if you intend to implement
it yourself. You may get some ideas on how to make things faster.

8. Implement the Pegasos algorithm for a sparse data representation. The output should be
a sparse weight vector w represented as a dictionary. Note that our Pegasos algorithm
starts at w = 0, which corresponds to an empty dictionary.

DS-GA-1003 - Spring 2023 6

Remark 1: With this problem, you will need to take some care to code things efficiently. In
particular, be aware that making copies of the weight dictionary can slow down your code
significantly. If you want to make a copy of your weights (e.g. for checking for convergence),
make sure you don’t do this more than once per epoch.

Remark 2: If you normalize your data in some way, be sure not to destroy the sparsity of
your data. Anything that starts as zero should stay as zero.

Solution. We implement the Pegasos algorithm as follows.

1 def pegasos(X, y, w, lambd=1, num_epoch =1000):

2 """ The Pegasos algorithm.

3

4 Parameters

5 ----------

6 X : list of dict

7 A list of bags of words , with keys as words and values as their

8 corresponding counts.

9 y : list

10 A list of binary sentiments , 1 as positive and -1 as negative.

11 w : dict

12 A bag of words , the initial value for training.

13 lambd : float

14 A parameter for the learning rate. For step t, learning rate =

15 1 / (lambd * t)

16 num_epoch : int

17 The number of epochs for training.

18

19 Notes

20 -----

21 Note that this function modifies w in place.

22 """

23 t, ran = 1, list(range(len(y)))

24 for _ in range(num_epoch):

25 random.shuffle(ran)

26 for j in ran:

27 t += 1

28 eta = 1 / (t * lambd)

29 if y[j] * dotProduct(w, X[j]) < 1:

30 increment(w, -eta * lambd , w)

31 increment(w, eta * y[j], X[j])

32 else:

33 increment(w, -eta * lambd , w)

Note that in every step of the Pegasos algorithm, we rescale every entry of wt by the factor
(1 − ηtλ). Implementing this directly with dictionaries is very slow. We can make things
significantly faster by representing w = sW , where s ∈ R andW ∈ Rd. You can start with s = 1
andW all zeros (i.e. an empty dictionary). Note that both updates (i.e. whether or not we have
a margin error) start with rescaling wt, which we can do simply by setting st+1 = (1− ηtλ) st.

9. If the Pegasos update step is wt+1 = (1− ηtλ)wt + ηtyjxj , verify that it is equivalent to

st+1 = (1− ηtλ) st,

Wt+1 =Wt +
1

st+1
ηtyjxj .

DS-GA-1003 - Spring 2023 7

Implement the Pegasos algorithm with the (s,W) representation described above.4

Solution. Since we require that w = sW in each step, with the described update we have

wt+1 = st+1Wt+1 = (1− ηtλ)st
(
Wt +

1

(1− ηtλ)st
ηtyjxj

)
= (1− ηtλ)stWt + ηtyjxj = (1− ηtλ)wt + ηtyjxj , (14)

which is exactly the correct Pegasos update step in this case. The implementation of the
Pegasos algorithm using this (s,W) representation is as follows.

1 def sw_pegasos(X, y, w, lambd=1, num_epoch =1000):

2 """ The Pegasos algorithm implemented with the (s,W) representation.

3

4 Parameters

5 ----------

6 X : list of dict

7 A list of bags of words , with keys as words and values as their

8 corresponding counts.

9 y : list

10 A list of binary sentiments , 1 as positive and -1 as negative.

11 w : dict

12 A bag of words , the initial value for training.

13 lambd : float

14 A parameter for the learning rate. For step t, learning rate =

15 1 / (lambd * t)

16 num_epoch : int

17 The number of epochs for training.

18

19 Notes

20 -----

21 Note that this function modifies w in place.

22 """

23 t, ran , s, W = 1, list(range(len(y))), 1, {}

24 for _ in range(num_epoch):

25 random.shuffle(ran)

26 for j in ran:

27 t += 1

28 eta = 1 / (t * lambd)

29 if y[j] * s * dotProduct(W, X[j]) < 1:

30 s *= (1 - eta * lambd)

31 increment(W, eta * y[j] / s, X[j])

32 else:

33 s *= (1 - eta * lambd)

34 increment(w, s, W)

10. Run both implementations of the Pegasos algorithm on the training data for a couple of
epochs. Make sure your implementations are correct by verifying that the two approaches
give essentially the same result. Report on the time taken to run each approach.

Solution. The runtime of the two implementations of the Pegasos algorithm is as follows.

4There is one subtle issue with the approach described above: if we ever have 1− ηtλ = 0, then st+1 = 0, and
we’ll have a divide by 0 in the calculation for Wt+1. This only happens when ηt = 1/λ. With our step-size rule
of ηt = 1/ (λt), it happens exactly when t = 1. So one approach is to just start at t = 2. More generically, note
that if st+1 = 0, then wt+1 = 0. Thus an equivalent representation is st+1 = 1 and W = 0. Thus if we ever get
st+1 = 0, simply set it back to 1 and reset Wt+1 to zero, which is an empty dictionary in a sparse representation.

DS-GA-1003 - Spring 2023 8

Splitting into training and testing sets... done.

Running intuitive Pegasos... completed in 44.9340 seconds.

Running (s,W)-representation Pegasos... completed in 0.8463 seconds.

Though the outputs are not exactly the same, the greatest difference is just a bit over the
machine precision 2−53, thus we consider the two approaches to be giving essentially the
same result.

11. Write a function classification error that takes a sparse weight vector w, a list of
sparse vectors X and the corresponding list of labels y, and returns the fraction of errors
when predicting yi using sign(w⊤xi). In other words, the function reports the 0-1 loss of
the linear predictor f(x) = w⊤x.

Solution. The function classification error can be implemented as follows.

1 def classification_error(X, y, w):

2 """ Compute the classification error.

3

4 Parameters

5 ----------

6 X : list of dict

7 A list of bags of words , with keys as words and values as their

8 corresponding counts.

9 y : list

10 A list of binary sentiments , 1 as positive and -1 as negative.

11 w : dict

12 A sparse weight vector , e.g., the prediction result of the Pegasos

13 algorithm.

14

15 Returns

16 -------

17 err : float

18 The classification error.

19 """

20 accum = 0

21 for j in range(len(y)):

22 if y[j] * dotProduct(w, X[j]) < 0:

23 accum += 1

24 return accum / len(y)

12. Search for the regularization parameter that gives the minimal percent error on your test
set. You should now use your faster Pegasos implementation, and run it to convergence. A
good search strategy is to start with a set of regularization parameters spanning a broad
range of orders of magnitude. Then, continue to zoom in until you’re convinced that
additional search will not significantly improve your test performance. Plot the test errors
you obtained as a function of the parameters λ you tested.

Hint: The error you get with the best regularization should be closer to 15% than 20%. If
not, maybe you did not train to convergence.)

Solution. The plot of the classification errors on the test set is shown as in Figure 1. From
the plot, we can see that the regularization parameter that gives the minimal percent error
on the test set is approximately λ = 5× 10−4.

DS-GA-1003 - Spring 2023 9

Figure 1: The relation between the classification error of the test set and the regularization
parameter λ.

Error Analysis (Optional)

Recall that the score is the value of the prediction f(x) = w⊤x. We like to think that the
magnitude of the score represents the confidence of the prediction. This is something we can
directly verify or refute.

13. (Optional) Break the predictions on the test set into groups based on the score (you can
play with the size of the groups to get a result you think is informative). For each group,
examine the percentage error. You can make a table or graph. Summarize the results. Is
there a correlation between higher magnitude scores and accuracy?

Solution. We break the test set into 6 groups based on the absolute values of the scores,
with each group having the same length of range of scores. Specifically in this case,

Group #0: (0.51, 49.31)

Group #1: (49.31, 98.11)

Group #2: (98.11, 146.90)

Group #3: (146.90, 195.70)

Group #4: (195.70, 244.50)

Group #5: (244.50, 293.30)

The classification errors for each group can be seen as in Figure 2. Clearly, we can see that
the larger the group number, the less the classification error. In other words, the larger
the absolute value of the score, the better confidence we have for that prediction.

In natural language processing one can often interpret why a model has performed well or poorly
on a specific example. The first step in this process is to look closely at the errors that the model
makes.

14. (Optional) Choose an input example x = (x1, . . . , xd) ∈ Rd that the model got wrong.
We want to investigate what features contributed to this incorrect prediction. One way

DS-GA-1003 - Spring 2023 10

Figure 2: The classification errors of each group. The larger the group number, the greater the
absolute values of the scores.

to rank the importance of the features to the decision is to sort them by the size of their
contributions to the score. That is, for each feature we compute |wixi|, where wi is the
weight of the ith feature in the prediction function, and xi is the value of the ith feature in
the input x. Create a table of the most important features, sorted by |wixi|, including the
feature name, the feature value xi, the feature weight wi, and the product wixi. Attempt
to explain why the model was incorrect. Can you think of a new feature that might be
able to fix the issue? Include a short analysis for at least 2 incorrect examples. Can you
think of new features that might help fix a problem? (Think of making groups of words.)

Solution. Let us consider this first example, where the review is negative but misclassified
as positive (with score 47.68). The 10 most important features are listed below.

word |wx| w x

0 and 23.146358 1.653311 14

1 he 19.199744 2.399968 8

2 only 19.199744 -6.399915 3

3 to 18.719750 -1.039986 18

4 it's 12.373168 3.093292 4

5 quite 10.879855 5.439927 2

6 bad 10.586526 -10.586526 1

7 movie 10.266530 -1.466647 7

8 the 10.079866 0.239997 42

9 paulie 9.706537 0.693324 14

We can see that though there are words like “bad” which have large negative weights and
can indicate that the review is negative, there are too many common words like “and”
and “he” which are considered as positive. Though these words are commonly assigned
only small weights, they appear too often that lead to the misclassification. Now let us
consider another example, where the review is positive but misclassified as negative (with
score −71.54). The 10 most important features are listed below.

DS-GA-1003 - Spring 2023 11

word |wx| w x

0 and 24.799669 1.653311 15

1 to 22.879695 -1.039986 22

2 only 19.199744 -6.399915 3

3 have 19.039746 -2.719964 7

4 even 18.773083 -4.693271 4

5 nothing 18.639751 -6.213250 3

6 i 17.226437 1.013320 17

7 script 13.439821 -4.479940 3

8 unfortunately 11.306516 -5.653258 2

9 as 11.066519 2.213304 5

Again, words like “to” and “have” are considered negative and appear too often that lead
to the misclassification. One possible fix is to ignore the words that appear too often in
both positive and negative reviews (for instance, by assigning them zero weight). Many of
the pronouns, articles, etc. clearly fall into this category. In this way, we can minimize (or
at least mitigate) the effect of commonly appearing words on the final classification.

Kernel Methods

Kernelization review

Consider the following optimization problem on a data set (x1, y1) , · · · , (xn, yn) ∈ Rd × Y

min
w∈Rd

R
(√
⟨w,w⟩

)
+ L (⟨w,x1⟩ , . . . , ⟨w,xn⟩) ,

where w,x1, · · · ,xn ∈ Rd, and ⟨·, ·⟩ is the standard inner product on Rd. The function R :
[0,∞)→ R is nondecreasing and gives us our regularization term, while L : Rn → R is arbitrary5

and gives us our loss term. We noted in lecture that this general form includes soft-margin SVM
and ridge regression, though not lasso regression. Using the representer theorem, we showed if
the optimization problem has a solution, there is always a solution of the form w =

∑n
i=1 αixi,

for some α ∈ Rn. Plugging this into the our original problem, we get the following “kernelized”
optimization problem:

min
α∈Rn

R
(√
α⊤Kα

)
+ L (Kα) ,

where K ∈ Rn×n is the Gram matrix (or “kernel matrix”) defined by Kij = k(xi,xj) = ⟨xi,xj⟩.
Predictions are given by

f(x) =

n∑
i=1

αik(xi,x),

and we can recover the original w ∈ Rd by w =
∑n

i=1 αixi.

The kernel trick is to swap out occurrences of the kernel k (and the corresponding Gram matrix
K) with another kernel. For example, we could replace k(xi,xj) = ⟨xi,xj⟩ by k′(xi,xj) =

5You may be wondering where the yi’s are. They are built into the function L. For example, a square loss

on a training set of size 3 could be represented as L(s1, s2, s3) =
1
3

(
(s1 − y1)

2 + (s2 − y2)
2 + (s3 − y3)

3
)
, where

each si stands for the ith prediction ⟨w,xi⟩.

DS-GA-1003 - Spring 2023 12

⟨ψ(xi), ψ(xj)⟩ for an arbitrary feature mapping ψ : Rd → Rd. In this case, the recovered
w ∈ Rd would be w =

∑n
i=1 αiψ(xi) and predictions would be ⟨w,ψ(xi)⟩.

More interestingly, we can replace k by another kernel k′′(xi,xj) for which we do not even know
or cannot explicitly write down a corresponding feature map ψ. Our main example of this is the
RBF kernel

k(x,x′) = exp

(
−∥x− x

′∥2

2σ2

)
,

for which the corresponding feature map ψ is infinite dimensional. In this case, we cannot
recover w since it would be infinite dimensional. Predictions must be done using α ∈ Rn, with
f(x) =

∑n
i=1 αik(xi,x).

Your implementation of kernelized methods below should not make any reference to w or to
a feature map ψ. Your learning routine should return α, rather than w, and your prediction
function should also use α rather thanw. This will allow us to work with kernels that correspond
to infinite-dimensional feature vectors.

Kernel problems

Ridge Regression: Theory

Suppose our input space is X = Rd and our output space is Y = R. Moreover, let us denote
D = {(x1, y1) , · · · , (xn, yn)} as a training set from X × Y. We will use the “design matrix”
X ∈ Rn×d, which has the input vectors as rows, such that

X =

−x1−
...

−xn−

 .

Recall the ridge regression objective function

J(w) = ||Xw − y||2 + λ||w||2, λ > 0.

15. Show that for w to be a minimizer of J(w), we must have X⊤Xw + λIw = X⊤y. Show
that the minimizer of J(w) is w = (X⊤X+λI)−1X⊤y. Justify that the matrix X⊤X+λI
is invertible, for λ > 0. (You should use properties of positive (semi-)definite matrices. If
you need a reminder look up the Appendix.)

Proof. We can first compute the gradient of the objective function J as

∇wJ(w) = ∇w

(
(Xw − y)⊤(Xw − y) + λw⊤w

)
= ∇w

(
w⊤X⊤Xw − y⊤Xw −w⊤X⊤y + y⊤y + λw⊤w

)
= ∇w

(
w⊤X⊤Xw − 2y⊤Xw + y⊤y + λw⊤w

)
=
(
X⊤X + (X⊤X)⊤

)
w − 2

(
y⊤X

)⊤
+ 2λw

= 2
(
X⊤Xw −X⊤y + λIw

)
. (15)

Therefore, in order to minimize J(w), we require its gradient to be zero, that is,

∇wJ(w) = 0 ⇐⇒ X⊤y = X⊤Xw + λIw. (16)

DS-GA-1003 - Spring 2023 13

Now, note that for any v ∈ Rd \ {0}, we have that〈
(X⊤X + λI)v,v

〉
=
〈
X⊤Xv,v

〉
+ λ ⟨v,v⟩ > v⊤X⊤Xv = ⟨Xv, Xv⟩ ≥ 0. (17)

Therefore, by arbitrariness of v, we have that (X⊤X + λI)v ̸= 0 for all v ∈ Rd \ {0}.
Therefore, X⊤X + λI is invertible, and thus we can write that

∇wJ(w) = 0 ⇐⇒ X⊤y = (X⊤X + λI)w ⇐⇒ w = (X⊤X + λI)−1X⊤y, (18)

as desired, and the proof is complete.

16. Rewrite X⊤Xw + λIw = X⊤y as w = 1
λ (X

⊤y −X⊤Xw). Based on this, show that we
can write w = X⊤α for some α, and give an expression for α.

Proof. Clearly, we can write that

w =
1

λ
(X⊤y −X⊤Xw) = X⊤

(
1

λ
(y −Xw)

)
. (19)

By taking α = 1
λ (y −Xw), we can obtain that w = X⊤α, so the proof is complete.

17. Based on the fact that w = X⊤α, explain why we say w is “in the span of the data.”

Solution. Since X is the design matrix, we can expand the expression to obtain that

w =

 | |
x1 · · · xn

| |

α1

...
αn

 =

∑n

i=1 xi1αi

...∑n
i=1 xidαi

 =

n∑
i=1

αi

xi1...
xid

 =

n∑
i=1

αixi, (20)

so w can be expressed by some linear combination of x1, · · · ,xn, and in order words, we
say that w ∈ span(x1, · · · ,xn).

18. Show that α = (λI + XX⊤)−1y. Note that XX⊤ is the kernel matrix for the standard
vector dot product.

Hint: Replace w by X⊤α in the expression for α, and then solve for α.

Proof. Plugging in the expression w = X⊤α, we can rewrite (16) as

X⊤y = X⊤XX⊤α+ λX⊤α =⇒ X⊤y = X⊤(XX⊤ + λI)α. (21)

Since X⊤ is of size d× n of full rank and with d≫ n, we can deduce that

y = (XX⊤ + λI)α =⇒ α = (λI +XX⊤)−1y, (22)

as desired, and the proof is complete.

19. Give a kernelized expression for the Xw, the predicted values on the training points.

Hint: Replace w by X⊤α and α by its expression in terms of the kernel matrix XX⊤.

DS-GA-1003 - Spring 2023 14

Solution. By previous results, we can write that

Xw = XX⊤α = XX⊤(λI +XX⊤)−1y. (23)

This is indeed a kernelized expression, since all information of the training input x1, · · · ,xn

is included in XX⊤, which is in fact the Gram matrix in this case.

20. Give an expression for the prediction f(x) = x⊤w∗ for a new point x, not in the training
set. The expression should only involve x via inner products with other x’s.

Hint: It is often convenient to define the column vector

kx =

x
⊤x1

...
x⊤xn

to simplify the expression.

Solution. By previous results, we can write that

f(x) = x⊤X⊤α∗ =
(
x1 · · · xd

) | |
x1 · · · xn

| |

α∗

=
(∑d

i=1 xix1i · · ·
∑d

i=1 xixdi

)
α∗ = k⊤xα

∗. (24)

Kernels and Kernel Machines

There are many different families of kernels. So far we have talked about linear kernels, RBF
(Gaussian) kernels, and polynomial kernels. The last two kernel types have parameters. In this
section, we will implement these kernels in a way that will be convenient for implementing our
kernelized ridge regression later on. For simplicity, we will assume that our input space is X = R.
This allows us to represent a collection of n inputs in a matrix X ∈ Rn×1. You should now refer
to the jupyter notebook skeleton code kernels.ipynb.

21. Write functions that compute the RBF kernel

kRBF(σ)(x,x
′) = exp

(
−∥x− x

′∥2

2σ2

)
,

as well as the polynomial kernel

kpoly(a,d)(x,x
′) = (a+ ⟨x,x′⟩)d .

The linear kernel klinear(x,x
′) = ⟨x,x′⟩ has been done for you in the support code. Your

functions should take as input two matrices W ∈ Rn1×d and X ∈ Rn2×d and should return
a matrixM ∈ Rn1×n2 whereMij = k(Wi·, Xj·). In words, the (i, j)th entry ofM should be
kernel evaluation between wi (the ith row of W) and xj (the jth row of X). For the RBF
kernel, you may use the scipy function cdist(X1, X2, ‘sqeuclidean’) in the package
scipy.spatial.distance.

Solution. The function RBF kernel can be implemented as follows:

DS-GA-1003 - Spring 2023 15

1 def RBF_kernel(X1, X2 , sigma):

2 """ Compute the RBF kernel between two sets of vectors.

3

4 Parameters

5 ----------

6 X1 : np.ndarray

7 A matrix of size n1 * d, with vectors x1_1 , ..., x1_n1 as its rows.

8 X2 : np.ndarray

9 A matrix of size n2 * d, with vectors x2_1 , ..., x2_n2 as its rows.

10 sigma: float

11 The bandwidth (i.e., standard deviation) for the RBF kernel.

12

13 Returns

14 -------

15 K : np.ndarray

16 A matrix of size n1 * n2, with the K_ij = k_RBF(x1_i , x2_j).

17 """

18 return np.exp(-np.square(dist.cdist(X1, X2 , "sqeuclidean"))

19 / (2 * sigma ** 2))

The function polynomial kernel can be implemented as follows:

1 def polynomial_kernel(X1, X2, offset , degree):

2 """ Compute the inhomogeneous polynomial kernel between two sets of

vectors.

3

4 Parameters

5 ----------

6 X1 : np.ndarray

7 A matrix of size n1 * d, with vectors x1_1 , ..., x1_n1 as its rows.

8 X2 : np.ndarray

9 A matrix of size n2 * d, with vectors x2_1 , ..., x2_n2 as its rows.

10 offset : float

11 The paremeter a as in k_POLY(x, x ') = (a + <x,x'>)^d.
12 degree : float

13 The paremeter d as in k_POLY(x, x ') = (a + <x,x'>)^d.
14

15 Returns

16 -------

17 K : np.ndarray

18 A matrix of size n1 * n2, with K_ij = k_POLY(x1_i , x2_j).

19 """

20 return (offset + np.dot(X1 , X2.T)) ** degree

22. Use the linear kernel function defined in the code to compute the kernel matrix on the set
of points x0 ∈ DX = {−4,−1, 0, 2}. Include both the code and the output.

Solution. The code for computing the kernel matrix on DX is as follows.

1 X = np.array([-4, -1, 0, 2]).reshape(-1, 1) # Construct D_X

2 K = linear_kernel(X, X) # Compute the kernel matrix

The output, i.e., the kernel matrix K, is then

[[16 4 0 -8]

[4 1 0 -2]

[0 0 0 0]

[-8 -2 0 4]]

DS-GA-1003 - Spring 2023 16

23. Suppose we have the data set DX,y = {(−4, 2), (−1, 0), (0, 3), (2, 5)} (in each set of paren-
theses, the first number is the value of xi and the second number the corresponding value
of the target yi). Then by the representer theorem, the final prediction function will be in
the span of the functions x 7→ k(x0, x) for x0 ∈ DX = {−4,−1, 0, 2}. This set of functions
will look quite different depending on the kernel function we use. The set of functions
x 7→ klinear(x0, x) for x0 ∈ X and for x ∈ [−6, 6] has been provided for the linear kernel.

(a) Plot the set of functions x 7→ kpoly(1,3)(x0, x) for x0 ∈ DX and for x ∈ [−6, 6].

Solution. The plot is shown as in Figure 3.

Figure 3: The plot of the set of functions x 7→ kpoly(1,3)(x0, x) for x0 ∈ DX and x ∈ [−6, 6].

(b) Plot the set of functions x 7→ kRBF(1)(x0, x) for x0 ∈ X and for x ∈ [−6, 6].

Solution. The plot is shown as in Figure 4.

Figure 4: The plot of the set of functions x 7→ kRBF(1)(x0, x) for x0 ∈ DX and x ∈ [−6, 6].

DS-GA-1003 - Spring 2023 17

Note that the values of the parameters of the kernels you should use are given in their
definitions in (a) and (b).

24. By the representer theorem, the final prediction function will be of the form f(x) =∑n
i=1 αik(xi, x), where x1, · · · , xn ∈ X are the inputs in the training set. We will use

the class Kernel Machine in the skeleton code to make prediction with different kernels.
Complete the predict function of the class Kernel Machine. Construct a Kernel Machine

object with the RBF kernel (σ = 1), with prototype points at −1, 0, 1 and corresponding
weights αi = 1,−1, 1. Plot the resulting function.

Solution. The method predict of the class Kernel Machine can be implemented as follows.

1 class Kernel_Machine:

2 def predict(self , X):

3 """ Evaluate the kernel machine on the points given by the rows of X.

4

5 Parameters

6 ----------

7 X : np.ndarray

8 A matrix with inputs x_1 , ..., x_n as its rows , of size n * d.

9

10 Returns

11 -------

12 prediction : np.array

13 The vector of kernel machine evaluations on the n points in X.

14 """

15 return np.array([np.dot(self.kernel(self.training_points , X)[:, i],

16 self.weights) for i in range(X.shape [0])])

Initializing the kernel machine using functools.partial(RBF kernel, sigma=1), pro-
totype points at −1, 0, 1, and the corresponding weights αi = 1,−1, 1, the plot of the
prediction function f(x) is shown as in Figure 5.

Figure 5: The plot of the prediction function f(x) with respect to x, using the RBF kernel with
parameter σ = 1, prototype points at −1, 0, 1, and with corresponding weights αi = 1,−1, 1.

Note: For this last problem, and for other problems below, it may be helpful to use par-
tial application on your kernel functions. For example, if your polynomial kernel function

https://en.wikipedia.org/wiki/Partial_application
https://en.wikipedia.org/wiki/Partial_application

DS-GA-1003 - Spring 2023 18

has signature polynomial kernel(W, X, offset, degree), you can write k = functools.

partial(polynomial kernel, offset=2, degree=2), and then a call to k(W, X) is equivalent
to polynomial kernel(W, X, offset=2, degree=2), the advantage being that the extra pa-
rameter settings are built into k(W, X). This can be convenient so that you can have a function
that just takes a kernel function k(W, X) and doesn’t have to worry about the parameter settings
for the kernel.

Kernel Ridge Regression: Practice

In the .zip file for this assignment, we have provided a training set in krr-train.txt and a
test set in krr-test.txt for a one-dimensional regression problem, in which X = Y = A = R.
Fitting this data using kernelized ridge regression, we will compare the results using several
different kernel functions. Because the input space is one-dimensional, we can easily visualize
the results.

25. Plot the training data. You should note that while there is a clear relationship between x
and y, the relationship is not linear.

Solution. The plot of the training data is shown as in Figure 6.

Figure 6: The plot of the data points in the training set.

26. In a previous problem, we showed that in kernelized ridge regression, the final prediction
function is f(x) =

∑n
i=1 αik(xi,x), where α = (λI +K)−1y and K ∈ Rn×n is the kernel

matrix of the training data, such that Kij = k(xi,xj), for any i, j ∈ {1, · · · , n}. In terms
of kernel machines, αi is the weight on the kernel function evaluated at the training point
xi. Complete the function train kernel ridge regression so that it performs kernel
ridge regression and returns a Kernel Machine object that can be used for predicting on
new points.

Solution. The function train kernel ridge regression can be implemented as follows.

1 def train_kernel_ridge_regression(X, y, kernel , l2reg):

2 """ Return the kernel machine with optimal weight under ridge regression.

3

DS-GA-1003 - Spring 2023 19

4 Parameters

5 ----------

6 X : np.ndarray

7 The input of the training set.

8 y : np.array

9 The output of the training set.

10 kernel : function

11 The kernel function to use.

12 l2reg : float

13 The l2 regularization coefficient.

14

15 Returns

16 -------

17 kernel_machine : Kernel_Machine

18 The kernel machine with optimal weights under ridge regression.

19 """

20 return Kernel_Machine(kernel , X, np.dot(np.linalg.inv(l2reg *

21 np.identity(X.shape [0]) + kernel(X, X)), y))

27. Use the code provided to plot your fits to the training data for the RBF kernel with a fixed
regularization parameter of 0.0001 for 3 different values of sigma: 0.01, 0.1, and 1.0. What
values of sigma do you think would be more likely to overfit, and which less?

Solution. The plot of the fits with the RBF kernel and regularization parameter λ = 10−4

is shown as in Figure 7. We use different bandwidths σ = 10−2, 10−1, 1.0 for the RBF
kernel. From the plot, we can see that smaller values of σ are more likely to overfit, while
larger values of σ are less likely to overfit.

Figure 7: The plot of the data points in the training set, as well as the prediction curves made
with the RBF kernel and regularization parameter λ = 10−4, but with different bandwidths
(standard deviations) σ = 10−2, 10−1, 1.0.

28. Use the code provided to plot your fits to the training data for the RBF kernel with a fixed
sigma of 0.02 and 4 different values of the regularization parameter λ: 0.0001, 0.01, 0.1,
and 2.0. What happens to the prediction function as λ→∞?

DS-GA-1003 - Spring 2023 20

Solution. The plot of the fits with the RBF kernel and bandwidth σ = 0.02 is shown as
in Figure 8. We use different regularization parameters λ = 10−4, 10−2, 10−1, 2.0 for the
RBF kernel. If λ→∞, then the prediction function will become constant zero.

Figure 8: The plot of the data points in the training set, as well as the prediction curves
made with the RBF kernel and bandwidth (standard deviation) σ = 0.02, but with different
regularization parameters λ = 10−4, 10−2, 10−1, 2.0.

29. (Optional) Find the best hyperparameter settings (including kernel parameters and the
regularization parameter) for each of the kernel types. Summarize your results in a table,
which gives training error and test error for each setting. Include in your table the best
settings for each kernel type, as well as nearby settings that show that making small change
in any one of the hyperparameters in either direction will cause the performance to get
worse. You should use average square loss on the test set to rank the parameter settings.
To make things easier for you, we have provided an sklearn wrapper for the kernel ridge
regression function we have created so that you can use sklearn’s GridSearchCV.

Note: Because of the small dataset size, these models can be fit extremely fast, so there is
no excuse for not doing extensive hyperparameter tuning.

Solution. For the linear kernel, we first try regularization parameters λ ∈ [10−4, 10], and
then zoom in to the range λ ∈ [1, 6]. We take 50 different values of λ in this range and
figure out that the best regularization parameter form the linear kernel is approximately
λ = 3.9. The ten best fitting results are shown as follows.

Lambda Kernel Sigma Offset Degree Testing MSE Training MSE

3.9 Linear - - - 1.64509507e-01 2.06560128e-01

4.0 Linear - - - 1.64509534e-01 2.06562831e-01

3.8 Linear - - - 1.64509541e-01 2.06557469e-01

4.1 Linear - - - 1.64509621e-01 2.06565579e-01

3.7 Linear - - - 1.64509638e-01 2.06554856e-01

4.2 Linear - - - 1.64509766e-01 2.06568371e-01

3.6 Linear - - - 1.64509798e-01 2.06552291e-01

4.3 Linear - - - 1.64509970e-01 2.06571204e-01

DS-GA-1003 - Spring 2023 21

3.5 Linear - - - 1.64510022e-01 2.06549773e-01

4.4 Linear - - - 1.64510230e-01 2.06574080e-01

For the RBF kernel, we first try regularization parameters λ ∈ [10−4, 10] and bandwidths
σ ∈ [10−4, 10], and then zoom in to the range λ ∈ [10−3, 3× 10−3] and σ ∈ [0.05, 0.1]. We
take 20 different values of each of λ and σ in their ranges respectively, and figure out that
the best pair of regularization parameter and bandwidth is approximately λ = 2.1× 10−3

and σ = 0.07. The ten best fitting results are shown as follows.

Lambda Kernel Sigma Offset Degree Testing MSE Training MSE

0.002158 RBF 0.071053 - - 1.38077013e-02 1.54797997e-02

0.002263 RBF 0.071053 - - 1.38101878e-02 1.54594393e-02

0.002053 RBF 0.071053 - - 1.38192319e-02 1.55253417e-02

0.002368 RBF 0.071053 - - 1.38220784e-02 1.54563383e-02

0.002474 RBF 0.071053 - - 1.38406186e-02 1.54655235e-02

0.001947 RBF 0.071053 - - 1.38530111e-02 1.56094186e-02

0.002579 RBF 0.071053 - - 1.38640722e-02 1.54837262e-02

0.002684 RBF 0.071053 - - 1.38912918e-02 1.55087138e-02

0.002789 RBF 0.071053 - - 1.39214866e-02 1.55389112e-02

0.001842 RBF 0.071053 - - 1.39249049e-02 1.57561939e-02

The polynomial kernel is much trickier since there are three parameters, so my conclusion
may not be accurate. We first try regularization parameters λ ∈ [10−5, 10], degrees d ∈
[2, 50], and offsets a ∈ [−100, 100], and then zoom in to the range λ ∈ [10−5, 10−1], degrees
d ∈ [2, 10], and offsets a ∈ [−50, 50]. By some more experiments, we find that d = 6 seems
to be the best degree parameter, and some plots with d = 6 are shown as in Figure 9.

Figure 9: Plots of the polynomial kernel with degree parameter d = 6.

Unfortunately, these plots are not very informative, so we perform more experiments with
more sets of parameters, and find that the best set of parameters is approximately λ = 10−5

DS-GA-1003 - Spring 2023 22

and a = −1, and d = 6. Note that these may not be the best sets of parameters, but the
best that I can find. The ten best fitting results are shown as follows.

Lambda Kernel Sigma Offset Degree Testing MSE Training MSE

0.000010 Poly - -1.020408 6 3.22318336e-02 3.93336172e-02

0.000011 Poly - -1.020408 6 3.23056778e-02 3.93418390e-02

0.000012 Poly - -1.020408 6 3.23855317e-02 3.93512605e-02

0.000013 Poly - -1.020408 6 3.24717327e-02 3.93620134e-02

0.000015 Poly - -1.020408 6 3.25646074e-02 3.93742335e-02

0.000016 Poly - -1.020408 6 3.26644656e-02 3.93880588e-02

0.000018 Poly - -1.020408 6 3.27715938e-02 3.94036268e-02

0.000019 Poly - -1.020408 6 3.28862479e-02 3.94210713e-02

0.000021 Poly - -1.020408 6 3.30086471e-02 3.94405186e-02

0.000023 Poly - -1.020408 6 3.31389669e-02 3.94620842e-02

30. (Optional) Plot your best fitting prediction functions using the polynomial kernel and the
RBF kernel. Use the domain x ∈ (−0.5, 1.5). Comment on the results.

Solution. The best fitting prediction functions are shown as in Figure 10.

Figure 10: The data points in the training set as well as the fitting curves using linear, RBF,
and polynomial kernels, respectively with their best set of parameters as previously determined.

31. (Optional) The data for this problem was generated as follows: A function f : R → R
was chosen. Then to generate a point (x, y), we sampled x uniformly from (0, 1) and we
sampled ϵ ∼ N

(
0, 0.12

)
(so Var[ϵ] = 0.12). The final point is (x, f(x) + ϵ). What is the

Bayes decision function and the Bayes risk for the loss function ℓ (ŷ, y) = (ŷ − y)2.

Solution. Recall that in this case, a Bayes prediction function g∗ : R → R is a function
that achieves the minimal risk among all possible functions g : R → R. In order to find
the Bayes prediction function, we first take an arbitrary function g : R→ R. For the sake

DS-GA-1003 - Spring 2023 23

of simplicity, let us denote ϕ = g − f , then its risk can be computed as

R(g) = E(x,y)∼P ′
X×Y

[ℓ(g(x), y)] = Ex∼Unif([0,1])[ℓ(g(x), f(x) + ϵ)]

= Ex∼Unif([0,1])[(g(x)− f(x)− ϵ)2] = Ex∼Unif([0,1])[ϕ
2(x)− 2ϵϕ(x) + ϵ2]

= Ex∼Unif([0,1])[ϕ
2(x)]− 2Ex∼Unif([0,1])[ϵϕ(x)] + E[ϵ2]

= Ex∼Unif([0,1])[ϕ
2(x)]− 2E[ϵ] · Ex∼Unif([0,1])[ϕ(x)] + Var[ϵ] + E2[ϵ] (25)

= Ex∼Unif([0,1])[ϕ
2(x)] + 0.12 ≥ 0.01, (26)

where the equality can be obtained when ϕ ≡ 0, i.e., g ≡ f . By the arbitrariness of g, we
have found a Bayes prediction function g∗ = f , with Bayes risk of 0.01.

Kernel SVMs with Kernelized Pegasos (Optional)

32. (Optional) Load the SVM training data in svm-train.txt and test data in svm-test.txt

from the zip file. Plot the training data using the code supplied. Are the data linearly
separable? Quadratically separable? What if we used some RBF kernel?

Solution. The data points in the training set are shown as in Figure 11, with the red plus
marks showing data points with +1 labels and blue minus marks showing data points
with −1 labels. From the plot, we can clearly see that the data set is neither linearly nor
quadratically separable, since the data points with +1 labels are surrounding those with
−1 labels. However, it is possible that using the RBF kernel we can reasonably separate
the data set, since it is infinitely differentiable (i.e., it is smooth).

Figure 11: The data points in the training set, with red plus marks showing those with +1 labels
and blue minus marks showing those with −1 labels.

33. (Optional) Unlike for kernel ridge regression, there is no closed-form solution for SVM
classification (kernelized or not). Implement kernelized Pegasos. Because we are not using
a sparse representation for this data, you will probably not see much gain by implementing
the “optimized” versions described in the problems above.

DS-GA-1003 - Spring 2023 24

Solution. I am not sure what the term “kernelized Pegasos” means. If we want to make
use of the Gram matrix, then we will need the dual problem right? So I implemented the
following KernelSVM class to solve the dual problem. Note that I take the regularization
parameter λ = 1 as in class, since the training process is slow and it is impossible for me
to tune so many free parameters.

1 class KernelSVM:

2 def __init__(self , kernel):

3 """ Create a KernelSVM object.

4

5 Parameters

6 ----------

7 kernel : function

8 The kernel function that returns a cross -kernel matrix.

9 """

10 self.kernel = kernel

11 self._prototypes = None

12 self._alphy = None

13

14 def fit(self , X, y, verbose =0):

15 """ Fit the KernelSVM model to the dataset.

16

17 Parameters

18 ----------

19 X : np.ndarray

20 The feature lists of the data points in the dataset.

21 y : np.array

22 The labels of the data points in the dataset.

23 verbose : int

24 The verbose level.

25

26 Raises

27 ------

28 Exception

29 y must be 1-dimensional array , or _gradient () will suspend.

30 """

31 if y.ndim != 1:

32 raise Exception("Error: y must be 1-dimensional array")

33 self._gram(X)

34 self._alpha_hist , self._obj_hist =

35 self._batch_gradient_descent(X, y, verbose)

36 self._prototypes , self._alphy = X, self._alpha_hist [-1] * y

37

38 def predict(self , X):

39 """ Predict for a set of data points.

40

41 Parameters

42 ----------

43 X : np.ndarray

44 The set of data points to predict , with each row a data point.

45

46 Returns

47 -------

48 pred : np.array

49 The array of prediction results for the data points.

50

51 Raises

52 ------

53 Exception

54 Model must be trained via fit() before making predictions.

55 """

DS-GA-1003 - Spring 2023 25

56 if self._alphy is None:

57 raise Exception("Error: model has not been trained")

58 self._smooth_pred = np.array(

59 [np.dot(self.kernel(self._prototypes , X)[:, i], self._alphy)

60 for i in range(X.shape [0])])

61 pred = []

62 for i in range(len(self._smooth_pred)):

63 if self._smooth_pred[i] >= 0:

64 pred.append (1)

65 else:

66 pred.append (-1)

67 return np.array(pred)

68

69 def _gram(self , X):

70 """ Build the Gram matrix."""

71 self._K = self.kernel(X, X)

72

73 def _objective(self , X, y, alpha):

74 """ Get the value of the objective function at alpha."""

75 alphy = alpha * y

76 return np.dot(np.dot(alphy.T, self._K), alphy) / 2 - np.sum(alpha)

77

78 def _gradient(self , X, y, alpha , epsilon =0.01):

79 """ Approximate the gradient of the objective function at alpha."""

80 num_features = X.shape [0]

81 approx_grad = np.zeros(num_features)

82 for i in range(num_features):

83 direction = np.zeros(num_features)

84 direction[i] = epsilon

85 approx_grad[i] = (self._objective(X, y, alpha + direction) -

86 self._objective(X, y, alpha - direction)) / (2 * epsilon)

87 return approx_grad

88

89 def _batch_gradient_descent(self , X, y, verbose , learning_rate =0.01 ,

90 num_steps =1000):

91 """ Batch gradient descent algorithm to minimize the objective."""

92 num_featues = X.shape [0]

93 alpha_hist = np.zeros((num_steps + 1, num_featues))

94 obj_hist = np.zeros(num_steps + 1)

95 alpha = np.zeros(num_featues)

96 for step in range(num_steps + 1):

97 if step % 100 == 0 and verbose >= 1:

98 print("Gradient Descent: Step {}".format(step))

99 alpha_hist[step] = alpha

100 obj_hist[step] = self._objective(X, y, alpha)

101 alpha -= learning_rate * self._gradient(X, y, alpha)

102 return alpha_hist , obj_hist

34. (Optional) Find the best hyperparameter settings (including kernel parameters and the
regularization parameter) for each of the kernel types. Summarize your results in a table,
which gives training error and test error (i.e. average 0-1 loss) for each setting. Include in
your table the best settings for each kernel type, as well as nearby settings that show that
making small change in any one of the hyperparameters in either direction will cause the
performance to get worse. You should use the 0-1 loss on the test set to rank the parameter
settings.

Solution. In the previous question (as well as the implementation), I have fixed the reg-
ularization parameter λ = 1 so that there are fewer free parameters to tune. I am sorry

DS-GA-1003 - Spring 2023 26

about that but my implementation runs too slow so I have to do so. In this case, if we
use the linear kernel, there will be no free parameters, and the average 0-1 loss is ap-
proximately 49.75%. As for the polynomial kernel, we try degrees d ∈ [2, 20] and offsets
a ∈ [−50, 50], but the 0-1 loss is always 22.00%. As for the RBF kernel, we start with
bandwidths σ ∈ [10−4, 10], and then zoom in to σ ∈ [10−3, 10−2]. Some of the results are
shown as follows.

Sigma 0-1 Err

7.35e-03 6.750%

7.25e-03 6.875%

7.00e-03 7.000%

7.45e-03 7.000%

7.50e-03 7.000%

6.00e-03 7.125%

8.00e-03 7.250%

5.00e-03 7.500%

1.00e-02 7.625%

Therefore, we can see that approximately σ = 7.35 × 10−3 is the best bandwidth for the
RBF kernel given the regularization parameter λ = 1.

35. (Optional) Plot your best fitting prediction functions using the linear, polynomial, and the
RBF kernel. The code provided may help.

Solution. The plots are shown as in Figure 12, Figure 13, and Figure 14. In each of these
plots, plus markers represent the data points with +1 labels and minus markers represent
those with −1 labels. Moreover, red data points are predicted to have +1 labels while blue
data points are predicted to have −1 labels.

Figure 12: SVM with the linear kernel. Plus markers represent the data points with +1 labels
and minus markers represent those with −1 labels. Red data points are predicted to have +1
labels while blue data points are predicted to have −1 labels.

DS-GA-1003 - Spring 2023 27

Figure 13: SVM with the polynomial kernel with degree d = 25 and offset a = 3. Plus markers
represent the data points with +1 labels and minus markers represent those with −1 labels. Red
data points are predicted to have +1 labels while blue data points are predicted to have −1
labels.

Figure 14: SVM with the RBF kernel with bandwidth σ = 7.35× 10−3. Plus markers represent
the data points with +1 labels and minus markers represent those with −1 labels. Red data
points are predicted to have +1 labels while blue data points are predicted to have −1 labels.

Given the marker and color representations, we know that the plus markers are expected to
be colored red, and the minus markers are expected to be colored blue. Clearly, the linear
kernel does not do well since it can only make linear cuts. The polynomial kernel is not
doing well either in my case, but probably since I failed to tune the best set of parameters.
The RBF kernel is doing very well, making only a few wrong predictions.

DS-GA-1003 - Spring 2023 28

Appendix

Here we are recalling important properties of positive (semi-)definite matrices. The exercises
below are for revisions for student who may not feel comfortable with these notions. None of
the appendix is for credit.

Positive Semidefinite Matrices

In statistics and machine learning, we use positive semidefinite matrices a lot. Let’s recall some
definitions from linear algebra that will be useful here.

Definition 1. A set of vectors {x1, · · · ,xn} is orthonormal if ⟨xi,xi⟩ = 1 for all i = 1, · · · , n
(i.e. xi has unit norm), and furthermore, we have for all i ̸= j that ⟨xi,xj⟩ = 0 (i.e. xi and xj

are orthogonal).

Note that if the vectors are column vectors in a Euclidean space, we can write this as x⊤
i xj = 1i ̸=j

for all i, j ∈ {1, . . . , n}.

Definition 2. A matrix is orthogonal if it is a square matrix with orthonormal columns.

It follows from the definition that if a matrix M ∈ Rn×n is orthogonal, then M⊤M = I, where
I is the n× n identity matrix. Thus M⊤ =M−1, and so MM⊤ = I as well.

Definition 3. A matrix M is symmetric if M =M⊤.

Definition 4. For a square matrix M , if Mv = λv for some column vector v and scalar λ, then
v is called an eigenvector of M and λ is its corresponding eigenvalue.

Theorem 1 (Spectral Theorem). A real, symmetric matrix M ∈ Rn×n can be diagonalized as
M = QΣQ⊤, where Q ∈ Rn×n is an orthogonal matrix whose columns are a set of orthonormal
eigenvectors of M , and Σ is a diagonal matrix of the corresponding eigenvalues.

Definition 5. A real, symmetric matrixM ∈ Rn×n is positive semidefinite if for any x ∈ Rn,

x⊤Mx ≥ 0.

Note that unless otherwise specified, when a matrix is described as positive semidefinite, we
are implicitly assuming it is real and symmetric (or complex and Hermitian in certain contexts,
though not here). As an exercise in matrix multiplication, note that for any matrix A with
columns a1, · · · ,ad, that is,

A =

 | |
a1 · · · ad

| |

 ∈ Rn×d,

we have that

A⊤MA =

a⊤
1 Ma1 a⊤

1 Ma2 · · · a⊤
1 Mad

a⊤
2 Ma1 a⊤

2 Ma2 · · · a⊤
2 Mad

...
...

. . .
...

a⊤
d Ma1 a⊤

d Ma2 · · · a⊤
d Mad

 .

Therefore, M is positive semidefinite if and only if for any A ∈ Rn×d, we have that

diag(A⊤MA) =
(
a⊤
1 Ma1, · · · ,a⊤

d Mad

)⊤ ⪰ 0,

where ⪰ is the elementwise inequality, and 0 is a d× 1 zero column vector.

DS-GA-1003 - Spring 2023 29

1. Use the definition of positive definite matrices and the spectral theorem to show that all
eigenvalues of a positive semidefinite matrix M are non-negative.

Hint: By Spectral theorem, Σ = Q⊤MQ for some Q. What if you take A = Q in the
“exercise in matrix multiplication” described above?

2. In this problem, we show that a positive semidefinite matrix is a matrix version of a non-
negative scalar, in that they both have a “square root”. Show that a symmetric matrix M
can be expressed asM = BB⊤ for some matrix B, if and only ifM is positive semidefinite.

Hint: To show M = BB⊤ implies M is positive semidefinite, use the fact that for any
vector v, v⊤v ≥ 0. To show that M positive semidefinite implies M = BB⊤ for some B,
use the Spectral Theorem.

Positive Definite Matrices

Definition 6. A real, symmetric matrix M ∈ Rn×n is positive definite if for any nonzero
vector x ∈ Rn, we have that

x⊤Mx > 0.

1. Show that all eigenvalues of a symmetric positive definite matrix are positive. Hint: You
can use the same method as you used for positive semidefinite matrices above.

2. Let M be a symmetric positive definite matrix. By the spectral theorem, M = QΣQ⊤,
where Σ is a diagonal matrix of the eigenvalues ofM . By the previous problem, all diagonal
entries of Σ are positive. If Σ = diag (σ1, · · · , σn), then Σ−1 = diag

(
σ−1
1 , . . . , σ−1

n

)
. Show

that the matrix QΣ−1Q⊤ is the inverse of M .

3. Since positive semidefinite matrices may have eigenvalues that are zero, we see by the
previous problem that not all positive semidefinite matrices are invertible. Show that if M
is a positive semidefinite matrix and I is the identity matrix, then M + λI is symmetric
positive definite for any λ > 0, and give an expression for the inverse of M + λI.

4. LetM and N be symmetric matrices, withM positive semidefinite and N positive definite.
Use the definitions of positive semidefiniteness and positive definiteness to show thatM+N
is symmetric and positive definite. Thus M +N is invertible.

Hint: For any nonzero vector x, show that x⊤(M +N)x > 0.

DS-GA-1003 - Spring 2023 1

Homework 4: Probabilistic models

Due: Wednesday, March 22, 2023 at 11:59PM EST

Instructions: Your answers to the questions below, including plots and mathematical work,
should be submitted as a single PDF file. It’s preferred that you write your answers using
software that typesets mathematics (e.g.LaTeX, LyX, or MathJax via iPython), though if you
need to you may scan handwritten work. You may find the minted package convenient for
including source code in your LaTeX document. If you are using LyX, then the listings package
tends to work better.

Logistic Regression

Consider a binary classification setting with input space X = Rd, outcome space Y± = {−1, 1},
and a dataset D =

(
(x(1), y(1)), . . . , (x(n), y(n))

)
.

Equivalence of ERM and probabilistic approaches

In the lecture we derived logistic regression using the Bernoulli response distribution. In this
problem you will show that it is equivalent to ERM with logistic loss.

ERM with logistic loss: Consider a linear scoring function in the space

Fscore =
{
x 7→ w⊤x; w ∈ Rd

}
.

A simple way to make predictions (similar to what we’ve seen with the perceptron algorithm)
is to predict ŷ = 1 if w⊤x > 0, or ŷ = sign(w⊤x). Accordingly, we consider margin-based loss
functions that relate the loss with the margin, yw⊤x. A positive margin means that w⊤x has
the same sign as y, i.e., a correct prediction. Specifically, let’s consider the logistic loss function

ℓlogistic(x, y,w) = log
(
1 + exp(−yw⊤x)

)
.

This is a margin-based loss function that we have encountered several times. Given the logistic
loss, we can now minimize the empirical risk on our dataset D in order to obtain an estimate of
the parameters, ŵ.

MLE with a Bernoulli response distribution and the logistic link function: As discussed in the

lecture, given that P[y = 1|x;w] = 1/(1 + exp(−w⊤x)), we can estimate w by maximizing the
likelihood, or equivalently, minimizing the negative log-likelihood (NLLD(w) in short) of the
data.

1. Show that the two approaches are equivalent, i.e. they produce the same solution for w.

Proof. Since we are modeling P[y|x] as a Bernoulli distribution, we have that

P[y|x;w] =

(
1

1 + e−w⊤x

) y+1
2
(
1− 1

1 + e−w⊤x

) 1−y
2

. (1)

https://github.com/gpoore/minted
https://en.wikibooks.org/wiki/LaTeX/Source_Code_Listings

DS-GA-1003 - Spring 2023 2

Therefore, the negative log-likelihood can be computed as

NLLD(w) = −
n∑

i=1

logP[y(i)|x(i);w]

= −
n∑

i=1

(
y(i) + 1

2
log

(
1

1 + e−w⊤x(i)

)
+

1− y(i)

2
log

(
1− 1

1 + e−w⊤x(i)

))

= −
n∑

i=1

(
y(i) + 1

2
log

(
1

1 + e−w⊤x(i)

)
+

1− y(i)

2
log

(
e−w⊤x(i)

1 + e−w⊤x(i)

))

= −
n∑

i=1

(
y(i) + 1

2
log

(
1

1 + e−w⊤x(i)

)
+

1− y(i)

2
log

(
1

1 + ew⊤x(i)

))

=

n∑
i=1

(
y(i) + 1

2
log
(
1 + e−w⊤x(i)

)
+

1− y(i)

2

(
log
(
1 + ew

⊤x(i)
)))

︸ ︷︷ ︸
=:Hi

. (2)

When y(i) = 1, the coefficient of the second summand in Hi vanishes so we have that

Hi = log
(
1 + e−w⊤x(i)

)
= log

(
1 + e−y(i)w⊤x(i)

)
. (3)

When y(i) = −1, the coefficient of the first summand in Hi vanishes so again we have that

Hi = log
(
1 + ew

⊤x(i)
)
= log

(
1 + e−y(i)w⊤x(i)

)
. (4)

Therefore, we can substitute the simplified expression of Hi into the expression of the
negative log-likelihood, so that

NLLD(w) =

n∑
i=1

log
(
1 + e−y(i)w⊤x(i)

)
=

n∑
i=1

ℓlogistic(x
(i), y(i),w). (5)

This is simply n times the ERM objective with logistic loss, so that minimizing the negative
log-likelihood with a Bernoulli response distribution and the logistic link function is equiv-
alent to minimizing the ERM objective with logistic loss. Therefore, the two approaches
are equivalent, and the proof is complete.

Linearly Separable Data

In this problem, we will investigate the behavior of MLE for logistic regression when the data is
linearly separable.

2. Show that the decision boundary of the logistic regression is given by
{
x; w⊤x = 0

}
. Note

that the set will not change if we multiply the weights by some constant c.

Proof. The decision boundary of the logistic regression is given by the points x such that

P[1|x] = P[−1|x] = 1

2
. (6)

DS-GA-1003 - Spring 2023 3

In other words, if a point x is on the decision boundary, we have that

1

1 + e−w⊤x
=

1

2
=⇒ e−w⊤x = 1 =⇒ w⊤x = 0. (7)

Therefore, the decision boundary is the set of points x such that w⊤x = 0, thus is given
by
{
x; w⊤x = 0

}
, and the proof is complete.

3. Suppose the data is linearly separable and by gradient descent/ascent we have reached a
decision boundary defined by ŵ where all examples are classified correctly. Show that we
can always increase the likelihood of the data by multiplying a scalar c on ŵ, which means
that MLE is not well-defined in this case.

Hint: You can show this by taking the derivative of L(cŵ) with respect to c, where L is
the likelihood function.

Proof. By definition of the log-likelihood, we have that

l(cŵ) = logP[D; cŵ] = log

(
n∏

i=1

P[y(i)|x(i); cŵ]

)

=

n∑
i=1

(
y(i) + 1

2
log

(
1

1 + e−cŵ⊤x(i)

)
+

1− y(i)

2
log

(
1− 1

1 + e−cŵ⊤x(i)

))

= −
n∑

i=1

(
y(i) + 1

2
log
(
1 + e−cŵ⊤x(i)

)
+

1− y(i)

2

(
log
(
1 + ecŵ

⊤x(i)
)))

. (8)

Taking its partial derivative with respect to c, we can deduce that

∂

∂c
l(cŵ) = −

n∑
i=1

(
y(i) + 1

2
· −e−cŵ⊤x(i)

ŵ⊤x(i)

1 + e−cŵ⊤x(i)
+

1− y(i)

2
· e

cŵ⊤x(i)

ŵ⊤x(i)

1 + ecŵ⊤x(i)

)

=

n∑
i=1

(
y(i) + 1

2
· ŵ⊤x(i)

1 + ecŵ⊤x(i)
+

1− y(i)

2
· −ŵ⊤x(i)

1 + e−cŵ⊤x(i)

)
︸ ︷︷ ︸

=:Hi

. (9)

When y(i) = 1, the coefficient of the second summand in Hi vanishes so we have that

Hi =
ŵ⊤x(i)

1 + ecŵ⊤x(i)
=

y(i)ŵ⊤x(i)

1 + ecy(i)ŵ⊤x(i)
. (10)

When y(i) = −1, the coefficient of the first summand in Hi vanishes so again we have that

Hi =
−ŵ⊤x(i)

1 + e−cŵ⊤x(i)
=

y(i)ŵ⊤x(i)

1 + ecy(i)ŵ⊤x(i)
. (11)

Substituting this expression into the partial derivative then gives

∂

∂c
l(cŵ) =

n∑
i=1

y(i)ŵ⊤x(i)

1 + ecy(i)ŵ⊤x(i)
. (12)

DS-GA-1003 - Spring 2023 4

Since ŵ is such that all examples are classified correctly, we know that y(i)ŵ⊤x(i) > 0
for all i = 1, · · · , n. Therefore, the partial derivative must also be positive. This means
that by increasing c, the log-likelihood would also increase. By definition of the log-
likelihood, we then have that the likelihood L(cŵ) = el(cŵ). Since the exponential function
is monotonically increasing, the likelihood also increases as c gets larger. This implies that
the MLE is not well-defined in this case, and thus the proof is complete.

Regularized Logistic Regression

As we’ve shown in above, when the data is linearly separable, MLE for logistic regression may
end up with weights with very large magnitudes. Such a function is prone to overfitting. In
this part, we will apply regularization to fix the problem. The l2 regularized logistic regression
objective function can be defined as

Jlogistic(w) = R̂n(w) + λ∥w∥2 =
1

n

n∑
i=1

log
(
1 + exp

(
−y(i)w⊤x(i)

))
+ λ∥w∥2.

4. Prove that the objective function Jlogistic(w) is convex. You may use any facts mentioned
in the convex optimization notes.

Proof. To show that Jlogistic(w) is convex, it suffices to show that the corresponding Hessian
matrix is positive definite. First, we compute its first-order partial derivative with respect
to an arbitrary entry wk as

∂

∂wk
Jlogistic(w) =

1

n

n∑
i=1

∂

∂wk
log
(
1 + exp

(
−y(i)w⊤x(i)

))
+ λ

∂

∂wk
∥w∥2

=
1

n

n∑
i=1

1

1 + exp
(
−y(i)w⊤x(i)

) · ∂

∂wk
exp

(
−y(i)w⊤x(i)

)
+ 2λwk

=
1

n

n∑
i=1

exp
(
−y(i)w⊤x(i)

)
1 + exp

(
−y(i)w⊤x(i)

) · ∂

∂wk

(
−y(i)w⊤x(i)

)
+ 2λwk

=
1

n

n∑
i=1

−y(i)x
(i)
k

1 + exp
(
y(i)w⊤x(i)

) + 2λwk. (13)

Next, we further compute its partial derivative with respect to an arbitrary entry wl in
order to obtain the second-order partial derivative with respect to wk and wl, such that

∂2

∂wl∂wk
Jlogistic(w) =

1

n

n∑
i=1

(
−y(i)x

(i)
k

) ∂

∂wl

(
1

1 + exp
(
y(i)w⊤x(i)

))+ 2λδkl

=
1

n

n∑
i=1

y(i)x
(i)
k(

1 + exp
(
y(i)w⊤x(i)

))2 · ∂

∂wl
exp

(
y(i)w⊤x(i)

)
+ 2λδkl

=
1

n

n∑
i=1

y(i)x
(i)
k exp

(
y(i)w⊤x(i)

)(
1 + exp

(
y(i)w⊤x(i)

))2 · ∂

∂wl

(
y(i)w⊤x(i)

)
+ 2λδkl

=
1

n

n∑
i=1

exp
(
y(i)w⊤x(i)

)(
1 + exp

(
y(i)w⊤x(i)

))2 · x(i)
k x

(i)
l + 2λδkl. (14)

https://davidrosenberg.github.io/mlcourse/Notes/convex-optimization.pdf

DS-GA-1003 - Spring 2023 5

Therefore, the Hessian matrix of the l2 regularized logistic regression objective function
can be expressed as

H(w) =
1

n

n∑
i=1

exp
(
y(i)w⊤x(i)

)(
1 + exp

(
y(i)w⊤x(i)

))2x(i)(x(i))⊤ + 2λI. (15)

Therefore, for any nonzero vector z, we have that

z⊤H(w)z =
1

n

n∑
i=1

exp
(
y(i)w⊤x(i)

)(
1 + exp

(
y(i)w⊤x(i)

))2 ∥z⊤x(i)∥2 + 2λ ∥z∥2 > 0, (16)

which implies that the Hessian matrix H(w) is positive semidefinite. This completes our
proof that Jlogistic(w) is convex.

5. Complete the f objective function in the skeleton code, which computes the objective
function for Jlogistic(w).

Hint: you may get numerical overflow when computing the exponential literally, e.g. try
e1000 in numpy. Make sure to read about the log-sum-exp trick and use the numpy function
logaddexp to get accurate calculations and to prevent overflow.

Solution. The function f objective can be implemented as follows.

1 def f_objective(theta , X, y, l2_param =1):

2 """ The l2 -regularized logistic regression objective.

3

4 Parameters

5 ----------

6 theta : np.array

7 The array of parameters (weights), of size num_features.

8 X : np.ndarray

9 The design matrix , of size num_instances * num_features.

10 y : np.array

11 The array of binary outcomes , of size num_instances.

12 l2_param : float

13 The l2 regularization parameter.

14

15 Returns

16 -------

17 objective : float

18 The scalar value of the objective function.

19 """

20 n = X.shape [0]

21 return np.mean(np.logaddexp(np.zeros(n), -y * np.dot(X, theta))) \

22 + l2_param * np.linalg.norm(theta) ** 2

6. Complete the fit logistic regression function in the skeleton code using the function
minimize from scipy.optimize. Use this function to train a model on the provided data.
Make sure to take the appropriate preprocessing steps, such as standardizing the data and
adding a column for the bias term.

Solution. The function fit logistic regression function is implemented as follows.

https://blog.feedly.com/tricks-of-the-trade-logsumexp/
https://docs.scipy.org/doc/numpy/reference/generated/numpy.logaddexp.html

DS-GA-1003 - Spring 2023 6

1 def fit_logistic_reg(X, y, objective_function , l2_param =1):

2 """ Train a model using l2-regularized logistic regression.

3

4 Parameters

5 ----------

6 X : np.ndarray

7 The design matrix , of size num_instances * num_features.

8 y : np.array

9 The array of binary outcomes , of size num_instances.

10 objective_function : function

11 The objective function that takes theta , X, y, and l2_param.

12 l2_param : float

13 The l2 regularization parameter.

14

15 Returns

16 -------

17 optimal_theta : np.array

18 The optimal array of parameters (weights), of size num_features.

19 """

20 d = X.shape [1]

21 opt = minimize(objective_function , np.zeros(d), args=(X, y, l2_param))

22 return opt.x

Moreover, we need the following preprocessing steps.

1 # Preprocessing: change labels from {0, 1} to {-1, 1}

2 y_train[y_train == 0] = -1

3 y_val[y_val == 0] = -1

4

5 # Preprocessing: add bias term (intercept)

6 X_train = np.hstack ((np.ones((X_train.shape [0], 1)), X_train))

7 X_val = np.hstack ((np.ones((X_val.shape[0], 1)), X_val))

8

9 # Preprocessing: normalize to [0, 1]

10 scaler = StandardScaler ()

11 X_train = scaler.fit_transform(X_train)

12 X_val = scaler.transform(X_val)

7. Find the l2 regularization parameter that minimizes the log-likelihood on the validation
set. Plot the log-likelihood for different values of the regularization parameter.

Solution. The plot of the objective function with respect to different values of the regular-
ization parameter λ is shown as in Figure 1.

From the plot, we can see that the best regularization parameter is approximately λ =
0.019.

8. (Optional) It seems reasonable to interpret the prediction f(x) = ϕ(w⊤x) = 1/(1+e−w⊤x)
as the probability that y = 1, for a randomly drawn pair (x, y). Since we only have a finite
sample (and we are regularizing, which will bias things a bit), there is a question of how
well “calibrated” our predicted probabilities are. Roughly speaking, we say f(x) is well
calibrated if we look at all examples (x, y) for which f(x) ≈ 0.7 and we find that close to
70% of those examples have y = 1, as predicted... and then we repeat that for all predicted
probabilities in (0, 1). To see how well-calibrated our predicted probabilities are, break the
predictions on the validation set into groups based on the predicted probability (you can
play with the size of the groups to get a result you think is informative). For each group,

https://en.wikipedia.org/wiki/Calibration_(statistics)

DS-GA-1003 - Spring 2023 7

Figure 1: The objective function with respect to different values of the regularization parameter
λ, ranging from 0 to 0.05. Both axes are in the log scale.

examine the percentage of positive labels. You can make a table or graph. Summarize the
results. You may get some ideas and references from scikit-learn’s discussion.

Solution. The calibration plot using regularization parameter λ = 0.019 and splitting into
ten bins is shown as in Figure 2.

Figure 2: The calibration plot using regularization parameter λ = 0.019. The x-axis represents
the average predicted probability (for +1 label) in each bin. The y-axis represents the fraction of
+1 labels among the validation examples in each bin. The dashed line in the middle represents
perfect calibration.

From the plot, we can see that the scattered points does not deviate too much from the
perfect calibration, indicating that the predicted probabilities are quite well calibrated.

http://scikit-learn.org/stable/modules/calibration.html

DS-GA-1003 - Spring 2023 8

Coin Flipping with Partial Observability

Consider flipping a biased coin where P[z = H; θ1] = θ1. However, we cannot directly observe
the result z. Instead, someone reports the result to us, which we denote by x. Furthermore,
there is a chance that the result is reported incorrectly if it is a head. More specifically, we have
P[x = H|z = H; θ2] = θ2 and P[x = T|z = T] = 1.

9. Show that P[x = H; θ1, θ2] = θ1θ2.

Proof. By the law of total probability, we have that

P[x = H; θ1, θ2] = P[x = H|z = H; θ2] · P[z = H; θ1] + P[x = H|z = T] · P[z = T; θ1]

= θ2 · θ1 + 0 · (1− θ1) = θ1θ2, (17)

so the proof is complete.

10. Given a set of reported results Dr of size Nr, where the number of heads is nh and the
number of tails is nt, write down the likelihood of Dr as a function of θ1 and θ2.

Solution. The likelihood of Dr can be written as

L(θ1, θ2) = P[Dr; θ1, θ2] = (θ1θ2)
nh(1− θ1θ2)

nl . (18)

11. Can we estimate θ1 and θ2 using MLE? Explain your judgment.

Solution. We cannot estimate θ1 and θ2 using MLE. The reason is, what we have is just
the set of reported results, and we cannot determine whether the change of likelihood is
due to the bias of the coin or the incorrectness of the reported results. In other words, we
can only estimate θ1θ2 using MLE, but not θ1 and θ2 respectively.

DS-GA-1003 - Spring 2023 1

Homework 5: SGD for Multiclass Linear SVM

Due: Wednesday, April 5, 2023 at 11:59PM EST

Instructions: Your answers to the questions below, including plots and mathematical work,
should be submitted as a single PDF file. It’s preferred that you write your answers using
software that typesets mathematics (e.g.LaTeX, LyX, or MathJax via iPython), though if you
need to you may scan handwritten work. You may find the minted package convenient for
including source code in your LaTeX document. If you are using LyX, then the listings package
tends to work better.

Bayesian Modeling

Bayesian Logistic Regression with Gaussian Priors

This question analyzes logistic regression in the Bayesian setting, where we introduce a prior
P[w] on w ∈ Rd. Consider a binary classification setting with input space X = Rd, outcome
space Y± = {−1, 1}, and a dataset D =

(
(x(1), y(1)), · · · , (x(n), y(n))

)
.

1. Give an expression for the posterior density P[w|D] in terms of the negative log-likelihood
function NLLD(w) and the prior density P[w] (up to a proportionality constant is fine).

Solution. The posterior density can be computed by Bayes’ rule as

P[w|D] = P[D|w]P[w]

P[D]
=

LD(w)P[w]

P[D]
=

exp(−NLLD(w))P[w]

P[D]
, (1)

so that in terms of the negative log-likelihood and the prior density, we can conclude that

P[w|D] ∝ exp(−NLLD(w))P[w]. (2)

2. Suppose we take a prior on w of the form w ∼ N (0,Σ), which is in the Gaussian family.
Is this a conjugate prior to the likelihood given by logistic regression?

Solution. Since w ∼ N (0,Σ), we have that

P[w] ∝ exp

(
−1

2
w⊤Σ−1w

)
. (3)

Moreover, recall that the negative log-likelihood given by the logistic regression is

NLLD(w) =

n∑
i=1

log
(
1 + exp

(
−y(i)w⊤x(i)

))
. (4)

Therefore, the posterior density can be computed as

P[w|D] ∝ exp

(
−

n∑
i=1

log
(
1 + exp

(
−y(i)w⊤x(i)

)))
exp

(
−1

2
w⊤Σ−1w

)

=
n∏

i=1

1

1 + exp
(
−y(i)w⊤x(i)

) exp(−1

2
w⊤Σ−1w

)
. (5)

This, unfortunately, is not a multivariate Gaussian distribution, thus the given prior is not
a conjugate prior to the likelihood given by the logistic regression.

https://github.com/gpoore/minted
https://en.wikibooks.org/wiki/LaTeX/Source_Code_Listings

DS-GA-1003 - Spring 2023 2

3. Show that there exist a covariance matrix Σ such that the MAP (maximum a posteriori)
estimate for w after observing data D is the same as the minimizer of the regularized
logistic regression function, and give its value.

Hint: Consider minimizing the negative log posterior of w. Also, remember you can drop
any term from the objective function that does not depend on w. You may freely use the
results of previous problems.

Proof. The negative log posterior of w, in the above setting, can be computed as

− logP[w|D] =
n∑

i=1

log
(
1 + exp

(
−y(i)w⊤x(i)

))
+

1

2
w⊤Σ−1w + const. (6)

Also recall that the regularized logistic regression function is defined as

Jlogistic(w) =
1

n

n∑
i=1

log
(
1 + exp

(
−y(i)w⊤x(i)

))
+ λ ∥w∥2 . (7)

By taking Σ = (2λn)−1I, we can rewrite the negative log posterior of w as

− logP[w|D] =
n∑

i=1

log
(
1 + exp

(
−y(i)w⊤x(i)

))
+

2λn

2
w⊤w + const.

=

n∑
i=1

log
(
1 + exp

(
−y(i)w⊤x(i)

))
+ λn ∥w∥2 + const. (8)

Therefore, the MAP estimate for w after observing data D can be written as

ŵMAP = argmax
w

P[w|D] = argmin
w

(− logP[w|D])

= argmin
w

(
n∑

i=1

log
(
1 + exp

(
−y(i)w⊤x(i)

))
+ λn ∥w∥2 + const.

)

= argmin
w

(
n∑

i=1

log
(
1 + exp

(
−y(i)w⊤x(i)

))
+ λn ∥w∥2

)
= argmin

w
nJlogistic(w) = argmin

w
Jlogistic(w). (9)

Hence, we have shown that there exists a covariance matrix Σ = (2λn)−1I, such that the
MAP estimate for w after observing data D is the same as the minimizer of the regularized
logistic regression function, so the proof is complete.

4. In the Bayesian approach, the prior should reflect your beliefs about the parameters before
seeing the data and, in particular, should be eindependent on the eventual size of your
dataset. Imagine choosing a prior distribution w ∼ N (0, I). For a dataset D of size n,
how should you choose λ in our regularized logistic regression objective function so that
the ERM is equal to the mode of the posterior distribution of w (i.e. is equal to the MAP
estimator)?

Solution. By the result of the previous question, if we take Σ = I, then we would require
(2λn)−1 = 1, which solves to λ = (2n)−1.

DS-GA-1003 - Spring 2023 3

Coin Flipping with Partial Observability

This is continuing your analysis done in HW4, you may use the results you obtained in HW4.
Consider flipping a biased coin where P[z = H; θ1] = θ1. However, we cannot directly observe
the result z. Instead, someone reports the result to us, which we denote by x. Furthermore,
there is a chance that the result is reported incorrectly if it is a head. Specifically, we have
P[x = H|z = H; θ2] = θ2 and P[x = T|z = T] = 1.

5. We additionally obtained a set of clean results Dc of size Nc, where x is directly observed
without the reporter in the middle. Given that there are ch heads and ct tails, estimate θ1
and θ2 by MLE taking the two datasets into account. In this case, note that the likelihood
is L(θ1, θ2) = P[Dr,Dc; θ1, θ2].

Solution. From HW4, the likelihood of Dr can be written as

P[Dr; θ1, θ2] = (θ1θ2)
nh(1− θ1θ2)

nt . (10)

The likelihood of Dc depends only on the real result. It can thus be written as

P[Dc; θ1] =

Nc∏
i=1

P[zi = H; θ1]
[zi=H]P[zi = T; θ1]

[zi=T] = θch1 (1− θ1)
ct . (11)

Since the observation on Dr and on Dc are independent, we can compute the joint likelihood
of Dr and Dc as

L(θ1, θ2) = P[Dr,Dc; θ1, θ2] = P[Dr; θ1, θ2]P[Dc; θ1]

= θnh+ch
1 θnh

2 (1− θ1)
ct(1− θ1θ2)

nt . (12)

For the sake of simplicity when estimating θ1 and θ2, we consider the log-likelihood, which
can be written as

logL(θ1, θ2) = (nh + ch) log θ1 + nh log θ2 + ct log(1− θ1) + nt log(1− θ1θ2). (13)

The first order condition with respect to θ1 gives that

nh + ch
θ1

− ct
1− θ1

− ntθ2
1− θ1θ2

= 0

=⇒ nh + ch + θ21θ2(nh + ch + nt + ct) = θ1θ2(nh + ch + nt) + θ1(nh + ch + ct). (14)

The first order condition with respect to θ2 gives that

nh

θ2
− ntθ1

1− θ1θ2
= 0 =⇒ θ1θ2nt = (1− θ1θ2)nh =⇒ θ1θ2 =

nh

nh + nt
. (15)

Substituting this result into (14), we have that

nh + ch +
θ1nh(nh + ch + nt + ct)

nh + nt
=

nh(nh + ch + nt)

nh + nt
+ θ1(nh + ch + ct)

=⇒ chnt = θ1(ntch + ntct) =⇒ θ1 =
ch

ch + ct
. (16)

DS-GA-1003 - Spring 2023 4

Substituting this result into (15), we can further obtain that

θ2 =
nh

nh + nt
· ch + ct

ch
=

nh(ch + ct)

ch(nh + nt)
. (17)

Therefore, we can conclude that by MLE, the estimates of θ1 and θ2 are respectively

(θ̂1)MLE =
ch

ch + ct
, (θ̂2)MLE =

nh(ch + ct)

ch(nh + nt)
. (18)

6. Since the clean results are expensive, we only have a small number of those and we are
worried that we may overfit the data. To mitigate overfitting we can use a prior distribution
on θ1 if available. Let’s imagine that an oracle gave use the prior P[θ1] = Beta(h, t). Derive
the MAP estimates for θ1 and θ2.

Solution. Given the beta family prior, we can write the posterior distribution as

P[θ1, θ2|Dr,Dc] ∝ P[Dr,Dc; θ1, θ2]P[θ1]
= θnh+ch

1 θnh
2 (1− θ1)

ct(1− θ1θ2)
nt · θh−1

1 (1− θ1)
t−1

= θnh+ch+h−1
1 (1− θ1)

ct+t−1θnh
2 (1− θ1θ2)

nt . (19)

For the sake of simplicity when estimating θ1 and θ2, we consider the log-likelihood, which
can be written as

l(θ1, θ2) = logP[θ1, θ2|Dr,Dc]

= (nh + ch + h− 1) log θ1 + nh log θ2 + (ct + t− 1) log(1− θ1) + nt log(1− θ1θ2), (20)

ignoring the constant additive since it would have no effect on the optimization. The first
order condition with respect to θ1 gives that

nh + ch + h− 1

θ1
− ct + t− 1

1− θ1
− ntθ2

1− θ1θ2
= 0

=⇒ nh + ch + h− 1 + θ21θ2(nh + ch + nt + ct + h+ t− 2)

= θ1θ2(nh + ch + nt + h− 1) + θ1(nh + ch + ct + h+ t− 2). (21)

The first order condition with respect to θ2 gives that

nh

θ2
− ntθ1

1− θ1θ2
= 0 =⇒ θ1θ2nt = (1− θ1θ2)nh =⇒ θ1θ2 =

nh

nh + nt
. (22)

Substituting this result into (21), we have that

nh + ch + h− 1 +
θ1nh(nh + ch + nt + ct + h+ t− 2)

nh + nt

=
nh(nh + ch + nt + h− 1)

nh + nt
+ θ1(nh + ch + ct + h+ t− 2)

=⇒ (ch + h− 1)nt = θ1(ch + ct + h+ t− 2)nt =⇒ θ1 =
ch + h− 1

ch + ct + h+ t− 2
. (23)

DS-GA-1003 - Spring 2023 5

Substituting this result into (22), we can further obtain that

θ2 =
nh

nh + nt
· ch + ct + h+ t− 2

ch + h− 1
=

nh(ch + ct + h+ t− 2)

(ch + h− 1)(nh + nt)
. (24)

Therefore, we can conclude that by MLE, the estimates of θ1 and θ2 are respectively

(θ̂1)MAP =
ch + h− 1

ch + ct + h+ t− 2
, (θ̂2)MAP =

nh(ch + ct + h+ t− 2)

(ch + h− 1)(nh + nt)
. (25)

Derivation for Multi-class Modeling

Suppose our output space and our action space are given as follows: Y = A = {1, · · · , k}. Given
a non-negative class-sensitive loss function ∆ : Y × A → [0,∞) and a class-sensitive feature
mapping Ψ : X × Y → Rd, our prediction function f : X → Y is given by

fw(x) = argmax
y∈Y

⟨w,Ψ(x, y)⟩ .

For training data (x1, y1), · · · , (xn, yn) ∈ X × Y, let J(w) be the l2-regularized empirical risk
function for the multiclass hinge loss. We can write this as

J(w) = λ∥w∥2 + 1

n

n∑
i=1

max
y∈Y

(∆ (yi, y) + ⟨w,Ψ(xi, y)−Ψ(xi, yi)⟩) ,

for some λ > 0.

7. Show that J(w) is a convex function of w. You may use any of the rules about convex
functions described in our notes on Convex Optimization, in previous assignments, or in
the Boyd and Vandenberghe book, though you should cite the general facts you are using.

Hint: If f1, · · · , fm : Rn → R are convex, then their pointwise maximum f(x) = maxi fi(x)
is also convex.

Proof that affine mappings are convex. Let A(x) = a⊤x + b for arbitrary a and b. Then
for any 0 ≤ λ ≤ 1, we have that

A(λx+ (1− λ)y) = a⊤(λx+ (1− λ)y) + b = λa⊤x+ (1− λ)a⊤y + λb+ (1− λ)b

= λ(a⊤x+ b) + (1− λ)(a⊤y + b) = λA(x) + (1− λ)A(y), (26)

proving that the affine mapping f is both convex and concave, though neither strictly
convex nor strictly concave. Next we are ready to prove Question 7.

Proof of Question 7. With respect to w, ∆(yi, y) and Ψ(xi, y) −Ψ(xi, yi) are both con-
stant factors. Therefore, we can see that ∆(yi, y) +w⊤ (Ψ(xi, y)−Ψ(xi, yi)) is an affine
mapping on w. Therefore, it is convex, though not strictly convex. Taking the pointwise

https://davidrosenberg.github.io/mlcourse/Notes/convex-optimization.pdf

DS-GA-1003 - Spring 2023 6

maximum over y ∈ Y, the hint implies that the result is also convex. Summing up convex
functions preserves convexity, and thus

1

n

n∑
i=1

max
y∈Y

(
∆(yi, y) +w⊤ (Ψ(xi, y)−Ψ(xi, yi))

)
(27)

is convex. The l2 norm of w is clearly convex as we have seen multiple times in the past,
and given that λ > 0, we can conclude that the multiclass hinge loss objective is convex,
so the proof is complete.

8. Since J(w) is convex, it has a subgradient at every point. Give an expression for a subgra-
dient of J(w). You may use any standard results about subgradients, including the result
from an earlier homework about subgradients of the pointwise maxima of functions.

Hint: It may be helpful to refer to ŷi = argmaxy∈Y (∆ (yi, y) + ⟨w,Ψ(xi, y)−Ψ(xi, yi)⟩).

Solution. A subgradient of J(w) can be given by

gJ(w) = 2λw +
1

n

n∑
i=1

(Ψ(xi, ŷi)−Ψ(xi, yi)) . (28)

Now we prove that gJ is indeed a subgradient of the objective function J . First, note that
2λw is the gradient vector of λ ∥w∥2, so it suffices to prove for the rest part. Next, recall
that we have shown in HW3 that

Suppose f1, · · · , fm : Rd → R are convex functions, and f(x) = maxi fi(x).
Let k be any index for which fk(x) = f(x), and choose g ∈ ∂fk(x). Then
g ∈ ∂f(x).

In our case, we are taking maximum over y ∈ Y, so for each point w, it suffices to find the
subgradient of some function that attains the maximum. The hint has provided us with a
good choice which attains the maximum for all w. Now note that

∇w

(
∆(yi, ŷi) +w⊤ (Ψ(xi, ŷi)−Ψ(xi, yi))

)
= Ψ(xi, ŷi)−Ψ(xi, yi), (29)

so by the previous result and linearity of subgradients, we can conclude that gJ is indeed
a subgradient of the objective function J .

9. Give an expression for the stochastic subgradient based on the point (xi, yi).

Solution. The update formula for the stochastic gradient descent based on the point (xi, yi)
can be written as

w ← (1− 2λη)w − η (Ψ(xi, ŷi)−Ψ(xi, yi)) , (30)

where η is the learning rate.

10. Give an expression for a minibatch subgradient descent based on the points (xi, yi), · · · ,
(xi+m−1, yi+m−1).

DS-GA-1003 - Spring 2023 7

Solution. The update formula for the minibatch subgradient descent based on the points
(xi, yi), · · · , (xi+m−1, yi+m−1) can be written as

w ← (1− 2λη)w − η

m

i+m−1∑
k=i

(Ψ(xk, ŷk)−Ψ(xk, yk)) , (31)

where η is the learning rate.

(Optional) Hinge Loss is a Special Case of Generalized Hinge Loss

Let Y = {−1, 1}. Let ∆(y, ŷ) = 1y ̸=ŷ. If g(x) is the score function in our binary classification
setting, then define our compatibility function as

h(x, 1) =
g(x)

2
, h(x,−1) = −g(x)

2
.

11. Show that for this choice of h, the multiclass hinge loss reduces to hinge loss, such that

ℓ (h, (x, y)) = max
y′∈Y

(∆ (y, y′)) + h(x, y′)− h(x, y)) = max {0, 1− yg(x)} .

Proof. Assume that y = 1, we can compute that

ℓ(h, (x, y)) = max
y′∈Y

(
1y′ ̸=1 + h(x, y′)− g(x)

2

)
= max

{
g(x)

2
− g(x)

2
, 1− g(x)

2
− g(x)

2

}
= max {0, 1− g(x)} . (32)

On the other hand, if y = −1, we can compute that

ℓ(h, (x, y)) = max
y′∈Y

(
1y′ ̸=−1 + h(x, y′) +

g(x)

2

)
= max

{
1 +

g(x)

2
+

g(x)

2
,−g(x)

2
+

g(x)

2

}
= max {1 + g(x), 0} . (33)

Therefore, we can conclude that

ℓ(h, (x, y)) = max {0, 1− yg(x)} , (34)

which means that the multiclass hinge loss reduces to hinge loss with this choice of h, thus
the proof is complete.

Implementation

In this problem we will work on a simple three-class classification example. The data is generated
and plotted for you in the skeleton code.

One-vs-All (a.k.a. One-vs-Rest)

First we will implement one-vs-all multiclass classification. Our approach will assume we have
a binary base classifier that returns a score, and we will predict the class that has the highest
score.

DS-GA-1003 - Spring 2023 8

12. Complete the methods fit, decision function and predict from OneVsAllClassifier

in the skeleton code. Following the OneVsAllClassifier code is a cell that extracts the
results of the fit and plots the decision region. You can have a look at it first to make sure
you understand how the class will be used.

Solution. The class OneVsAllClassifier can be implemented as follows.

1 from sklearn.base import BaseEstimator , ClassifierMixin , clone

2

3 class OneVsAllClassifier(BaseEstimator , ClassifierMixin):

4 """ The One -vs -all classifier.

5

6 We assume that the classes will be the integers 0, ..., (n_classes - 1).

7 We assume that the estimator provided to the class , after fitting , has a

8 `decision_function ` method that returns the score of the positive class.

9 """

10 def __init__(self , estimator , n_classes):

11 """ Initializes the object.

12

13 Parameters

14 ----------

15 estimator : object

16 A binary base classifier.

17 n_classes : int

18 The number of classes.

19 """

20 self.n_classes = n_classes

21 self.estimators = [clone(estimator) for _ in range(n_classes)]

22 self.fitted = False

23

24 def fit(self , X, y=None):

25 """ Fits one classifier for each class.

26

27 `self.estimators[i]` should be fit on class i versus the rest.

28

29 Parameters

30 ----------

31 X : array -like of shape (n_samples , n_features)

32 The input data.

33 y : array -like of shape (n_samples ,)

34 The class labels.

35

36 Returns

37 -------

38 self : object

39 The estimator itself.

40 """

41 for i in range(self.n_classes):

42 # The ith estimator is for class i versus other classes

43 # Where the class label is i, we treat it as 1 and otherwise 0

44 self.estimators[i].fit(X, np.where(y == i, 1, 0))

45 self.fitted = True

46 return self

47

48 def decision_function(self , X):

49 """ Returns the score of each input for each class.

50

51 We assume that the given estimator implements `decision_function `
52 method , and that the estimator has been fitted.

53

54 Parameters

DS-GA-1003 - Spring 2023 9

55 ----------

56 X : array -like of shape (n_samples , n_features)

57 The input data.

58

59 Returns

60 -------

61 scores : np.ndarray of shape (n_samples , n_classes)

62 The score of each input for each class.

63 """

64 if not self.fitted:

65 raise RuntimeError(

66 "You must train the classifier before predicting data."

67)

68 if not hasattr(self.estimators [0], "decision_function"):

69 raise AttributeError(

70 "Base estimator does not support 'decision_function '."
71)

72 scores = np.zeros((X.shape[0], self.n_classes))

73 for i in range(self.n_classes):

74 # The ith column of `scores ` corresponds to the class i

75 # The ith estimator is for class i versus other classes

76 scores[:, i] = self.estimators[i]. decision_function(X)

77 return scores

78

79 def predict(self , X):

80 """ Predicts the class with the highest score.

81

82 Parameters

83 ----------

84 X : array -like of shape (n_samples , n_features)

85 The input data.

86

87 Returns

88 -------

89 pred : np.ndarray of size (n_samples ,)

90 The predicted classes for each input.

91 """

92 scores = self.decision_function(X)

93 # Example n corresponds to the nth row in `scores `
94 # For each example , we pick the class with highest score

95 return np.argmax(scores , axis =1)

13. Include the results of the test cell in your submission.

Solution. The resulting coefficients of each each classifier are as follows.

Coefs 0: [[-1.05852418 -0.90296449]]

Coefs 1: [[-0.26279342 -0.10322927]]

Coefs 2: [[0.89085129 -0.82461715]]

The confusion matrix is as follows.

array([[100, 0, 0],

[0, 100, 0],

[0, 0, 100]], dtype=int64)

The plot is shown as in Figure 1.

DS-GA-1003 - Spring 2023 10

Figure 1: The classification result using OneVsAllClassifier.

Multiclass SVM

In this question, we will implement stochastic subgradient descent for the linear multiclass SVM,
as described in class and in this problem set. We will use the class-sensitive feature mapping
approach with the “multivector construction”, as described in the multiclass lecture.

14. Complete the function featureMap in the skeleton code.

Solution. The function featureMap can be implemented as follows.

1 def featureMap(X, y, n_classes):

2 """ Computes the class -sensitive features.

3

4 Parameters

5 ----------

6 X : array -like of shape (n_samples , n_infeatures) or (n_infeatures ,)

7 The input features for the input fata.

8 y : int

9 The target class.

10

11 Returns

12 -------

13 features : np.ndarray of size (n_samples , n_outfeatures) or

14 (n_outfeatures ,)

15 The class sensitive features for class y.

16 """

17 one_sample = len(X.shape) == 1

18 if one_sample:

19 # Reshape to 2D if a 1D array is passed

20 n_samples , n_infeatures = 1, X.shape [0]

21 X = X.reshape(1, -1)

22 else:

23 n_samples , n_infeatures = X.shape

24 features = np.zeros((n_samples , n_classes * n_infeatures))

25 l, r = y * n_infeatures , (y + 1) * n_infeatures

26 for n in range(n_samples):

27 # Only the indices corresponding the target class are updated

28 features[n, l:r] = X[n]

29 # Reshape back to 1D array if a 1D array is passed originally

30 return features if not one_sample else features.reshape (-1)

DS-GA-1003 - Spring 2023 11

15. Complete the function sgd.

Solution. The subgradient descent algorithm sgd can be implemented as follows.

1 def sgd(X, y, n_outfeatures , subgd , eta=0.1, T=10000 , rng=None):

2 """ Performs subgradient descent.

3

4 Parameters

5 ----------

6 X : array -like of shape (n_samples , n_features)

7 The input training data.

8 y : array -like of shape (n_samples ,)

9 The class labels.

10 n_outfeatures : int

11 The number of class -sensitive features.

12 subgd : function

13 The subgradient taking (x, y, w) and returning the subgradient of

14 the objective.

15 eta : float

16 The learning rate for the SGD.

17 T : int

18 The maximum number of iterations.

19 rng : np.random.RandomState or None

20 The random state for reproducing stochastic random behavior.

21

22 Returns

23 -------

24 w : np.ndarray

25 The resulting weight vector.

26 """

27 n_samples = X.shape [0]

28 w = np.zeros(n_outfeatures)

29 for _ in range(T):

30 # Shuffle the arrays and always pick the first index

31 if rng is None:

32 indices = np.random.permutation(n_samples)

33 else:

34 indices = rng.permutation(n_samples)

35 X, y = X[indices], y[indices]

36 w -= eta * subgd(X[0], y[0], w)

37 return w

16. Complete the methods subgradient, decision function and predict from the estimator
class MulticlassSVM.

Solution. The class MulticlassSVM can be implemented as follows.

1 class MulticlassSVM(BaseEstimator , ClassifierMixin):

2 """ The Multiclass SVM estimator."""

3 def __init__(

4 self ,

5 n_outfeatures ,

6 lam=1.0,

7 n_classes=3,

8 Delta=zeroOne ,

9 Psi=featureMap ,

10 random_state =0,

11):

12 """ Initializes the estimator.

DS-GA-1003 - Spring 2023 12

13

14 Parameters

15 ----------

16 n_outfeatures : int

17 The number of class -sensitive features produced by `Psi `.
18 lam : float

19 The l2 regularization parameter.

20 n_classes : int

21 The number of classes , with labels 0, ..., (n_classes - 1).

22 Delta : function

23 The class -sensitive loss function taking two labels and

24 returning the loss.

25 Psi : function

26 The class -sensitive feature mapping taking x and y and

27 returning the feature map.

28 """

29 self.n_outfeatures = n_outfeatures

30 self.lam = lam

31 self.n_classes = n_classes

32 self.Delta = Delta

33 self.Psi = lambda X, y: Psi(X, y, n_classes)

34 self.rng = np.random.RandomState(random_state)

35 self.fitted = False

36

37 def subgradient(self , x, y, w):

38 """ The subgradient evaluated at x, y, w.

39

40 Parameters

41 ----------

42 x : array -like of shape (n_infeatures ,)

43 The sample input.

44 y : int

45 The sample class.

46 w : array -like of shape (n_infeatures ,)

47 The parameter vector.

48

49 Returns

50 -------

51 subgradient : np.array of shape (n_infeatures ,)

52 The subgradient vector evaluated at x, y given w.

53 """

54 # Look for the optimal hat{y}

55 target , cur = 0, self._subgradient_argmax(x, y, 0, w)

56 for cls in range(1, self.n_classes):

57 new = self._subgradient_argmax(x, y, cls , w)

58 if new > cur:

59 target , cur = cls , new

60 return 2 * self.lam * w + self.Psi(x, target) - self.Psi(x, y)

61

62 def _subgradient_argmax(self , x, y, target , w):

63 """ Helper for `self.subgradient `."""
64 return self.Delta(y, target) \

65 + np.dot(w, self.Psi(x, target) - self.Psi(x, y))

66

67 def fit(self , X, y, eta=0.1, T=10000):

68 """ Fits the estimator.

69

70 Parameters

71 ----------

72 X : array -like of shape (n_samples , n_infeatures)

73 The input training data.

DS-GA-1003 - Spring 2023 13

74 y : array -like of shape (n_samples ,)

75 The input classess.

76 eta : float

77 The learning rate of the SGD.

78 T : int

79 The maximum number of iterations.

80

81 Returns

82 -------

83 self : object

84 The estimator itself.

85 """

86 self.coef_ = sgd(

87 X, y, self.n_outfeatures , self.subgradient , eta , T, self.rng

88)

89 self.fitted = True

90 return self

91

92 def decision_function(self , X):

93 """ Returns the score of each input for each class.

94

95 Assume that the estimator has been fitted.

96

97 Parameters

98 ----------

99 X : array -like of shape (n_samples , n_infeatures)

100 The input data.

101

102 Returns

103 -------

104 scores : np.ndarray of shape (n_samples , n_classes)

105 The score of each input for each class.

106 """

107 if not self.fitted:

108 raise RuntimeError(

109 "You must train the classifier before predicting data."

110)

111 scores = np.zeros((X.shape[0], self.n_classes))

112 for i in range(self.n_classes):

113 # The ith column of `scores ` corresponds to the class i

114 scores[:, i] = np.dot(self.Psi(X, i), self.coef_)

115 return scores

116

117 def predict(self , X):

118 """ Predicts the class with the highest score.

119

120 Parameters

121 ----------

122 X : array -like of shape (n_samples , n_infeatures)

123 The input data to predict.

124

125 Returns

126 -------

127 pred : np.ndarray of shape (n_samples ,)

128 The class labels predicted for each example.

129 """

130 scores = self.decision_function(X)

131 # Example n corresponds to the nth row in `scores `
132 # For each example , we pick the class with highest score

133 return np.argmax(scores , axis =1)

DS-GA-1003 - Spring 2023 14

17. Following the multiclass SVM implementation, we have included another block of test code.
Make sure to include the results from these tests in your assignment, along with your code.

Solution. The resulting coefficients are as follows.

[-0.33354761 -0.05890081 -0.01473713 0.10689075 0.34828473 -0.04798994]

The confusion matrix is as follows.

array([[100, 0, 0],

[0, 100, 0],

[0, 0, 100]], dtype=int64)

The plot is shown as in Figure 2.

Figure 2: The classification result using MulticlassSVM.

DS-GA-1003 - Spring 2023 1

Homework 6: Decision Trees and Boosting

Due: Wednesday, April 19th, 2023 at 11:59PM EST

Instructions: Your answers to the questions below, including plots and mathematical work,
should be submitted as a single PDF file. It’s preferred that you write your answers using
software that typesets mathematics (e.g.LaTeX, LyX, or MathJax via iPython), though if you
need to you may scan handwritten work. You may find the minted package convenient for
including source code in your LaTeX document. If you are using LyX, then the listings package
tends to work better. The optional problems should not take you too much time and
help you navigate the material, consider taking a shot at them.

Decision Tree Implementation

In this problem we’ll implement decision trees for both classification and regression. The strategy
will be to implement a generic class, called Decision Tree, which we’ll supply with the loss
function we want to use to make node splitting decisions, as well as the estimator we’ll use to
come up with the prediction associated with each leaf node. For classification, this prediction
could be a vector of probabilities, but for simplicity we’ll just consider hard classifications here.
We’ll work with the classification and regression data sets from previous assignments.

1. Complete the compute entropy and compute gini functions.

Solution. The function compute entropy can be implemented as follows.

1 def compute_entropy(y_label):

2 """ Compute the entropy of a label list.

3

4 Parameters

5 ----------

6 y_label : np.ndarray of shape (n_samples , 1)

7 The label list to compute entropy of.

8

9 Returns

10 -------

11 entropy : float

12 The entropy of the given label list.

13 """

14 n_samples , _ = y_label.shape

15 # Obtain the prevalence of each label

16 _, counts = np.unique(y_label , return_counts=True)

17 prevalence = counts / n_samples

18 # Compute the entropy by -sum (p * log(p))

19 return -np.sum(prevalence * np.log(prevalence))

The function compute gini can be implemented as follows.

1 def compute_gini(y_label):

2 """ Compute the Gini index of a label list.

3

4 Parameters

5 ----------

6 y_label : np.ndarray of shape (n_samples , 1)

7 The label list to compute gini index of.

8

https://github.com/gpoore/minted
https://en.wikibooks.org/wiki/LaTeX/Source_Code_Listings

DS-GA-1003 - Spring 2023 2

9 Returns

10 -------

11 gini : float

12 The gini index of the given label list.

13 """

14 n_samples , _ = y_label.shape

15 # Obtain the prevalence of each label

16 _, counts = np.unique(y_label , return_counts=True)

17 prevalence = counts / n_samples

18 # Compute the Gini index by sum (p * (1-p))

19 return np.sum(prevalence * (1 - prevalence))

2. Complete the class Decision Tree, given in the skeleton code. The intended implementa-
tion is as follows: Each object of type Decision Tree represents a single node of the tree.
The depth of that node is represented by the variable self.depth, with the root node
having depth 0. The main job of the fit function is to decide, given the data provided,
how to split the node or whether it should remain a leaf node. If the node will split, then
the splitting feature and splitting value are recorded, and the left and right subtrees are
fit on the relevant portions of the data. Thus tree-building is a recursive procedure. We
should have as many Decision Tree objects as there are nodes in the tree. We will not
implement pruning here. Some additional details are given in the skeleton code.

Solution. The class Decision Tree can be implemented as follows.

1 class Decision_Tree(BaseEstimator):

2

3 def __init__(

4 self ,

5 split_loss_function ,

6 leaf_value_estimator ,

7 depth=0,

8 min_sample =5,

9 max_depth =10,

10):

11 """ Initialize a Decision Tree.

12

13 Parameters

14 ----------

15 split_loss_function : callable

16 A function taking y_label and returning the loss.

17 leaf_value_estimator : callable

18 A function taking y_label and estimating the leaf value.

19 depth : int

20 The depth indicator. 0 represents the root node.

21 min_sample : int

22 If an internal node has no more than this many sample points ,

23 it cannot be splitted.

24 max_depth : int

25 The maximum depth of the decision tree.

26 """

27 self.split_loss_function = split_loss_function

28 self.leaf_value_estimator = leaf_value_estimator

29 self.depth = depth

30 self.min_sample = min_sample

31 self.max_depth = max_depth

32 self.is_leaf = False

33

34 def fit(self , X, y):

DS-GA-1003 - Spring 2023 3

35 """ Fit the decision tree.

36

37 This is a recursive tree building procedure.

38

39 Parameters

40 ----------

41 X : np.ndarray of shape (n_samples , n_features)

42 The training data.

43 y : np.ndarray of shape (n_samples , 1)

44 The labels of the training samples.

45

46 Returns

47 -------

48 self : object

49 Returns the fitted decision tree itself.

50 """

51 n_samples , n_features = X.shape

52 # If we have reached the maximum depth or we cannot split the node

53 # Mark as leaf node and compute the prediction value

54 if self.depth == self.max_depth or n_samples <= self.min_sample:

55 self.is_leaf = True

56 self.value = self.leaf_value_estimator(y)

57 return self

58 # Compute the loss of not splitting at all as baseline

59 split_feature , split_index , cur_loss = \

60 None , None , self.split_loss_function(y)

61 for i in range(n_features):

62 # For each feature , try to split into xi <= t and xi > t

63 # Sort the label list based on the ith feature of X

64 indices = np.argsort(X[:, i])

65 for n in range(1, n_samples):

66 # Pick a split index and check the weighted loss

67 # If better then baseline , then update split info

68 y_left , y_right = y[indices [:n]], y[indices[n:]]

69 new_loss = (

70 self.split_loss_function(y_left) * len(y_left) \

71 + self.split_loss_function(y_right) * len(y_right)

72) / n_samples

73 if new_loss < cur_loss:

74 split_feature , split_index , cur_loss = i, n, new_loss

75 # If none of the splits is better than baseline

76 # Mark as leaf node and compute the prediction value

77 if split_feature is None:

78 self.is_leaf = True

79 self.value = self.leaf_value_estimator(y)

80 return self

81 # Set the attributes split_id and split_value

82 indices = np.argsort(X[:, split_feature])

83 self.split_id , self.split_value = \

84 split_feature , X[indices[split_index], split_feature]

85 # Create left and right child nodes , and recursively fit subtrees

86 self.left = Decision_Tree(

87 self.split_loss_function ,

88 self.leaf_value_estimator ,

89 depth=self.depth + 1,

90 min_sample=self.min_sample ,

91 max_depth=self.max_depth ,

92)

93 self.right = Decision_Tree(

94 self.split_loss_function ,

95 self.leaf_value_estimator ,

DS-GA-1003 - Spring 2023 4

96 depth=self.depth + 1,

97 min_sample=self.min_sample ,

98 max_depth=self.max_depth ,

99)

100 self.left.fit(X[indices [: split_index]], y[indices [: split_index]])

101 self.right.fit(X[indices[split_index :]], y[indices[split_index :]])

102 return self

103

104 def predict_instance(self , instance):

105 """ Predict the label according to the decision tree.

106

107 Parameters

108 ----------

109 instance : np.ndarray of shape (1, n_features)

110 The new data to predict.

111

112 Returns

113 -------

114 pred : object

115 The prediction made by the corresponding child node.

116 """

117 if self.is_leaf:

118 return self.value

119 if instance[self.split_id] <= self.split_value:

120 return self.left.predict_instance(instance)

121 else:

122 return self.right.predict_instance(instance)

3. Run the code provided that builds trees for the two-dimensional classification data. Include
the results. For debugging, you may want to compare results with sklearn’s decision tree
(code provided in the skeleton code). For visualization, you’ll need to install graphviz.

Solution. The plot of the classification results using the classification tree estimator imple-
mented with Decision Tree and with different maximum depths is shown as in Figure 1.

4. Complete the function mean absolute deviation around median (MAE). Use the code
provided to fit the Regression Tree to the krr dataset using both the MAE loss and
median predictions. Include the plots for the 6 fits.

Solution. The function mean absolute deviation around median can be implemented as
follows.

1 def mean_absolute_deviation_around_median(y):

2 """ Compute the mean absolute deviation around median.

3

4 Parameters

5 ----------

6 y : np.ndarray of shape (n_samples , 1)

7 The target array to compute MAE of.

8

9 Returns

10 -------

11 mae : float

12 The mean absolute deviation around median.

13 """

14 med = np.median(y)

15 return np.mean(np.abs(y - med))

DS-GA-1003 - Spring 2023 5

Figure 1: The classification results using the classification tree estimator implemented with the
Decision Tree class and with maximum depths ranging from 1 to 6.

The plot of the regression results using the regression tree estimator implemented with
Decision Tree and with different maximum depths is shown as in Figure 2.

Figure 2: The regression results using the regression tree estimator implemented with the
Decision Tree class and with maximum depths ranging from 1 to 6.

DS-GA-1003 - Spring 2023 6

Ensembling

Recall the general gradient boosting algorithm, for a given loss function ℓ and a hypothesis space
F of regression functions (i.e. functions mapping from the input space to R):

1: Initialize f0(x) = 0;
2: for m = 1 to M do
3: Compute

gm =

(
∂

∂fm−1(xj)

n∑
i=1

ℓ (yi, fm−1(xi))

)n

j=1

;

4: Fit regression model to −gm, such that

hm = argmin
h∈F

n∑
i=1

((−gm)i − h(xi))
2
;

5: Choose fixed step size νm = ν = (0, 1], or take

νm = argmin
ν>0

n∑
i=1

ℓ (yi, fm−1(xi) + νhm(xi)) ;

6: Take the step fm(x) = fm−1(x) + νmhm(x);
7: end for
8: return fM ;

This method goes by many names, including gradient boosting machines (GBM), generalized
boosting models (GBM), AnyBoost, and gradient boosted regression trees (GBRT), among oth-
ers. One of the nice aspects of gradient boosting is that it can be applied to any problem with
a subdifferentiable loss function.

Gradient Boosting Regression Implementation

First we’ll keep things simple and consider the standard regression setting with square loss. In
this case the we have Y = R, our loss function is given by ℓ(ŷ, y) = (ŷ − y)

2
/2, and at the mth

round of gradient boosting, we have

hm = argmin
h∈F

n∑
i=1

((yi − fm−1(xi))− h(xi))
2
.

5. Complete the Gradient Boosting class. As the base regression algorithm to compute the
argmin, you should use sklearn’s regression tree. You should use the square loss for the tree
splitting rule (criterion keyword argument) and use the default sklearn leaf prediction
rule from the predict method1. We will also use a constant step size ν.

Solution. The class Gradient Boosting can be implemented as follows.

1The sklearn DecisionTreeRegressor documentation. Examples of usage are provided in the skeleton code.

https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html

DS-GA-1003 - Spring 2023 7

1 class Gradient_Boosting:

2

3 def __init__(

4 self ,

5 n_estimator ,

6 pseudo_residual_func ,

7 learning_rate =0.01 ,

8 min_sample =5,

9 max_depth=5,

10):

11 """ Initialize a gradient boosting machine.

12

13 Parameters

14 ----------

15 n_estimator : int

16 The number of estimators , i.e., the number of rounds of boosting

.

17 pseudo_residual_func : callable

18 The function taking true and pred labels and returning the

pseudo -residual.

19 learning_rate : float

20 The learning rate , i.e., the step size of gradient descent.

21 min_sample : int

22 If an internal node has no more than this many sample points ,

23 it cannot be splitted.

24 max_depth : int

25 The maximum depth of the decision tree.

26 """

27 self.n_estimator = n_estimator

28 self.pseudo_residual_func = pseudo_residual_func

29 self.learning_rate = learning_rate

30 self.min_sample = min_sample

31 self.max_depth = max_depth

32 self.estimators = []

33 self.fitted = False

34

35 def fit(self , X, y):

36 """ Fit the gradient boosting machine.

37

38 Parameters

39 ----------

40 X : np.ndarray of shape (n_samples , n_features)

41 The training data.

42 y : np.array of shape (n_samples ,)

43 The training targets.

44

45 Returns

46 -------

47 self : object

48 Returns the fitted gradient boosting machine itself.

49 """

50 n_samples , _ = X.shape

51 # The prediction function depends only on the training points

52 # Therefore , we characterize it via current predictions

53 # The prediction function is initialized as constant zero

54 cur_preds = np.zeros(n_samples)

55 for _ in range(self.n_estimator):

56 # Compute the pseudo -residuals , i.e., negative gradients

57 residuals = self.pseudo_residual_func(y, cur_preds)

58 # Fit a base learner with squared loss using x and residuals

59 # We will use the sklearn decision tree regressor , using

DS-GA-1003 - Spring 2023 8

60 # square loss as the splitting rule (by default `criterion `)
61 base_learner = DecisionTreeRegressor(

62 min_samples_split=self.min_sample , max_depth=self.max_depth

63)

64 base_learner.fit(X, residuals)

65 # Update the prediction function via updating the predictions

66 # at the training points.

67 cur_preds += self.learning_rate * base_learner.predict(X)

68 self.estimators.append(base_learner)

69 self.fitted = True

70 return self

71

72 def predict(self , X):

73 """ Make prediction using the trained gradient boosting machine.

74

75 Parameters

76 ----------

77 X : np.ndarray of shape (n_samples , n_features)

78 The data for to make predictions on.

79

80 Returns

81 -------

82 pred : np.array

83 The predictions.

84 """

85 if not self.fitted:

86 raise Exception("Model has to be trained before predicting")

87 n_samples , _ = X.shape

88 # The prediction should be made by the final prediction function

89 # but we characterized it only on the training data when fitting

90 # We need to retrieve the prediction function function via the

91 # trained estimators , but making predictions on the given data

92 pred = np.zeros(n_samples)

93 for base_learner in self.estimators:

94 pred += self.learning_rate * base_learner.predict(X)

95 return pred

6. Run the code provided to build gradient boosting models on the regression data sets
krr-train.txt, and include the plots generated. For debugging you can use the sklearn
implementation of GradientBoostingRegressor2.

Solution. The plot of the regression results using the gradient boosting machine with dif-
ferent numbers of estimators (rounds of boosting) is shown as in Figure 3.

Classification of images with Gradient Boosting

In this problem we will consider the classification of MNIST, the dataset of handwritten digits
images, with ensembles of trees. For simplicity, we only retain the “0” and “1” examples and
perform binary classification. First we’ll derive a special case of the general gradient boosting
framework: BinomialBoost. Let’s consider the classification framework, where Y = {−1, 1}. In
lecture, we noted that AdaBoost corresponds to forward stagewise additive modeling with the
exponential loss, and that the exponential loss is not very robust to outliers (i.e. outliers can
have a large effect on the final prediction function). Instead, let’s consider the logistic loss

ℓ(m) = ln
(
1 + e−m

)
,

where m = yf(x) is the margin.

2The sklearn GradientBoostingRegressor documentation.

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html

DS-GA-1003 - Spring 2023 9

Figure 3: The regression results using the gradient boosting machine with different numbers of
estimators (rounds of boosting) ranging from 1 to 100.

7. Give the expression of the negative gradient step direction, or pseudo residual, −gm for
the logistic loss as a function of the prediction function fm−1 at the previous iteration and
the dataset points {(xi, yi)}ni=1. What is the dimension of gm?

Solution. We can compute the pseudo-residual for the jth example as

rm,j =
∂

∂fm−1(xj)

n∑
i=1

ℓ (yi, fm−1(xi)) =
∂

∂fm−1(xj)

n∑
i=1

ln (1 + exp (−yifm−1(xi)))

=
∂ ln (1 + exp (−yjfm−1(xj)))

∂fm−1(xj)
=

yj exp (−yjfm−1(xj))

1 + exp (−yjfm−1(xj))
=

yj
1 + exp (yjfm−1(xj))

.

(1)

Therefore, the negative gradient direction gm would be given by

−gm = − (rm,j)
n
j=1 = −

(
yj

1 + exp (yjfm−1(xj))

)n

j=1

, (2)

thus of dimension n.

8. Write an expression for hm as an argmin over functions h in F .

Solution. The basis function hm is obtained simply by fitting a regression model to −gm
(in the l2 sense), thus is given by

hm = argmin
h∈F

n∑
i=1

((−gm)i − h(xi))
2
= argmin

h∈F

n∑
i=1

(
−yi

1 + exp (yifm−1(xi))
− h(xi)

)2

.

(3)

DS-GA-1003 - Spring 2023 10

9. Load the MNIST dataset using the helper preprocessing function in the skeleton code.Using
the scikit learn implementation of GradientBoostingClassifier, with the logistic loss
(loss="deviance") and trees of maximum depth 3, fit the data with 2, 5, 10, 100 and 200
iterations (estimators). Plot the train and test accuracy as a function of the number of
estimators.

Solution. Using the sklearn implementation of the gradient boosting classifier with maxi-
mum depth 3, the change of training and testing accuracies with respect to the number of
estimators (the number of boosting rounds) is shown as in Figure 4.

Figure 4: The change of training and testing accuracies using GradientBoostingClassifier

with maximum depth 3, with respect to the number of estimators (the number of boosting
rounds), ranging from 2 estimators to 200 estimators.

Classification of images with Random Forests (Optional)

10. Another type of ensembling method we discussed in class are random forests. Explain in
your own words the construction principle of random forests.

Solution. As in bagging, we draw bootstrap samples and treat them as independent, then
build a collection of decision trees independently. However, we modify the tree-growing
procedure by adding an additional layer of randomness, that is, when constructing each
tree node, we restrict the choice of the splitting variable to a randomly chosen subset
of features. This would prevent situations in which all trees are dominated by the same
small number of strong features and therefore too similar to each other, thus mitigating
overfitting and improving diversity.

11. Using the scikit learn implementation of RandomForestClassifier3, with the entropy
loss (criterion="entropy") and trees of maximum depth 3, fit the preprocessed binary
MNIST dataset with 2, 5, 10, 50, 100 and 200 estimators.

Solution. Using the sklearn implementation of the random forest classifier with maximum
depth 3, the change of training and testing accuracies with respect to the number of
estimators is shown as in Figure 5.

3The sklearn RandomForestClassifier documentation.

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html#sklearn.ensemble.RandomForestClassifier

DS-GA-1003 - Spring 2023 11

Figure 5: The change of training and testing accuracies using RandomForestClassifier with
maximum depth 3, with respect to the number of estimators, ranging from 2 estimators to 200
estimators.

12. What general remark can you make on overfitting for Random Forests and Gradient
Boosted Trees? Which method achieves the best train accuracy overall? Is this result
expected? Can you think of a practical disadvantage of the best performing method? How
do the algorithms compare in term of test accuracy?

Solution. As for the overfitting problem, the random forests are prone to overfitting
while the gradient boosting trees are more robust. As we can see from Figure 4 using the
gradient boosting trees, though the testing set accuracy does not increase a lot as the num-
ber of boosting rounds increases, it does not drop either. However, as is shown in Figure 5
using the random forests, the testing set accuracy is the best with approximately 50 estima-
tors, but increasing the number of estimators does not result in any improvement and even
a drop. As for the training set accuracy, the gradient booting trees achieves overall the
best training set accuracy, with a perfect score achieved at 100 and 200 estimators. This
is expected since gradient boosting trees are typically known for their high accuracy and
ability to fit complex datasets. In contrast, though the random forests also achieve high
training set accuracy (> 99.5%), it does not achieve perfect training set accuracy, possibly
because the dataset is very noisy or contains outliers. A practical disadvantage of the
gradient boosting trees, however, is that it is computationally expensive especially on large
datasets. For instance on the MNIST dataset, using random forests with 200 estimators
took me no more than 3 seconds, but using gradient boosting trees with 200 estimators
took me over half a minute. As for the testing set accuracy, both algorithms achieve
high testing set accuracy, with one outperforming the other in some cases and vice versa in
the others. Yet this is not a general conclusion, since overfitting problems may arise using
a different dataset.

DS-GA-1003 - Spring 2023 1

Homework 7: Computation Graphs, Back-propagation, and Neural
Networks

Due: Wednesday, May 3rd, 2023 at 11:59PM EST

Instructions: Your answers to the questions below, including plots and mathematical work,
should be submitted as a single PDF file. It’s preferred that you write your answers using
software that typesets mathematics (e.g. LaTeX, LyX, or MathJax via iPython), though if
you need to you may scan handwritten work. You may find the minted package convenient for
including source code in your LaTeX document. If you are using LyX, then the listings package
tends to work better.

Introduction

There is no doubt that neural networks are a very important class of machine learning models.
Given the sheer number of people who are achieving impressive results with neural networks,
one might think that it’s relatively easy to get them working. This is a partly an illusion. One
reason so many people have success is that, thanks to GitHub, they can copy the exact settings
that others have used to achieve success. In fact, in most cases they can start with “pre-trained”
models that already work for a similar problem, and “fine-tune” them for their own purposes.
It’s far easier to tweak and improve a working system than to get one working from scratch. If
you create a new model, you’re kind of on your own to figure out how to get it working: there’s
not much theory to guide you and the rules of thumb do not always work. Understanding even
the most basic questions, such as the preferred variant of SGD to use for optimization, is still a
very active area of research.

One thing is clear, however: If you do need to start from scratch, or debug a neural network model
that doesn’t seem to be learning, it can be immensely helpful to understand the low-level details
of how your neural network works – specifically, back-propagation. With this assignment, you’ll
have the opportunity to linger on these low-level implementation details. Every major neural
network type (RNNs, CNNs, Resnets, etc.) can be implemented using the basic framework we’ll
develop in this assignment.

To help things along, Philipp Meerkamp, Pierre Garapon, and David Rosenberg have designed a
minimalist framework for computation graphs and put together some support code. The intent is
for you to read, or at least skim, every line of code provided, so that you’ll know you understand
all the crucial components and could, in theory, create your own from scratch. In fact, creating
your own computation graph framework from scratch is highly encouraged – you’ll learn a lot.

Computation Graph Framework

To get started, please read the tutorial on the computation graph framework we’ll be working
with. (Note that it renders better if you view it locally.) The use of computation graphs is not
specific to machine learning or neural networks. Computation graphs are just a way to represent
a function that facilitates efficient computation of the function’s values and its gradients with
respect to inputs. The tutorial takes this perspective, and there is very little in it about machine
learning, per se.

https://github.com/gpoore/minted
https://en.wikibooks.org/wiki/LaTeX/Source_Code_Listings
https://github.com/davidrosenberg/mlcourse/blob/gh-pages/Notebooks/computation-graph/computation-graph-framework.ipynb

DS-GA-1003 - Spring 2023 2

To see how the framework can be used for machine learning tasks, we’ve provided a full imple-
mentation of linear regression. You should start by working your way through the init of the
LinearRegression class in linear regression.py. From there, you’ll want to review the node
class definitions in nodes.py, and finally the class ComputationGraphFunction in graph.py.
ComputationGraphFunction is where we repackage a raw computation graph into something
that’s more friendly to work with for machine learning. The rest of linear regression.py is
fairly routine, but it illustrates how to interact with the ComputationGraphFunction.

As we’ve noted earlier in the course, getting gradient calculations correct can be difficult. To
help things along, we’ve provided two functions that can be used to test the backward method
of a node and the overall gradient calculation of a ComputationGraphFunction. The functions
are in test utils.py, and it’s recommended that you review the tests provided for the lin-
ear regression implementation in linear regression.t.py. (You can run these tests from the
command line with python3 linear regression.t.py.) The functions actually doing the test-
ing, test node backward and test ComputationGraphFunction, may seem a bit intricate, but
they’re implementing the exact same gradient checker logic we saw in the second homework
assignment.

Once you’ve understood how linear regression works in our framework, you’re ready to start
implementing your own algorithms. To help you get started, please make sure you are able to
execute the following commands:

• cd /path/to/hw7

• python3 linear regression.py

• python3 linear regression.t.py

Ridge Regression

When moving to a new system, it’s always good to start with something familiar. But that’s not
the only reason we’re doing ridge regression in this homework. In ridge regression the parameter
vector is “shared”, in the sense that it’s used twice in the objective function. In the computation
graph, this can be seen in the fact that the node for the parameter vector has two outgoing
edges. This sharing is common in many popular neural networks (RNNs and CNNs), where
it is often referred to as parameter tying. ridge regression.py provides a skeleton code and
ridge regression.t.py is a test code, which you should eventually be able to pass.

1. Complete the class L2NormPenaltyNode in nodes.py. If your code is correct, you should
be able to pass test L2NormPenaltyNode in ridge regression.t.py. Please attach a
screenshot that shows the test results for this question.

Solution. The class L2NormPenaltyNode can be implemented as follows.

1 class L2NormPenaltyNode(object):

2 def __init__(self , l2_reg , w, node_name):

3 """ Initialize a node computing l2 penalty.

4

5 Parameters

6 ----------

7 l2_reg : np.array of size (1,)

8 The l2 regularization parameter , with value being nonnegative.

9 w : node object with w.out being np.array

DS-GA-1003 - Spring 2023 3

10 Reference to the node providing input to this node.

11 node_name : str

12 The name of this node.

13

14 Attributes

15 ----------

16 out : np.array

17 The output of this node.

18 d_out : np.array

19 The partial derivatives of the graph output (i.e., objective)

20 with respect to the output of this node.

21 """

22 self.l2_reg = np.array(l2_reg)

23 self.w = w

24 self.node_name = node_name

25 # Setting additional attributes as documented

26 self.out = None

27 self.d_out = None

28

29 def forward(self):

30 """ Forwards one step.

31

32 This sets `out ` of the current node , so we move forward one step.

33 It also initializes `d_out ` to be updated in the backward round.

34 It returns the output of this node which is to be computed.

35

36 Returns

37 -------

38 out : np.array

39 The output of this node.

40 """

41 # The output of w is the input of the current node

42 # The current node then outputs lambda * norm(w)^2

43 self.out = self.l2_reg * (np.linalg.norm(self.w.out) ** 2)

44 # The partial derivative should have the same dimension as the

45 # output of this node (with respect to which derivative is taken)

46 self.d_out = np.zeros(self.out.shape)

47 return self.out

48

49 def backward(self):

50 """ Backwards one step.

51

52 This sets `d_out ` of its predecessor providing input to this node.

53 It returns partial derivative of the graph output (i.e., objective)

54 with respect to this node which is computed by its successor.

55

56 Returns

57 -------

58 d_out : np.array

59 The partial derivatives of the graph output (i.e., objective)

60 with respect to the output of this node.

61 """

62 # By chain rule , we can compute pJ/pin = pJ/pout * pout/pin

63 # pJ/pout is just `d_out ` of the current node

64 # pout/pin is 2 * lambda * w

65 self.w.d_out += self.d_out * (2 * self.l2_reg * self.w.out)

66 return self.d_out

67

68 def get_predecessors(self):

69 """ Gets the predecessors.

70

DS-GA-1003 - Spring 2023 4

71 Returns

72 -------

73 predecessors : list (of nodes)

74 The list of predecessors , i.e., the nodes that provide input to

75 the current node. Normally the l2 regularization penalty node

76 has only one predecessor.

77 """

78 return [self.w]

The result of running test L2NormPenaltyNode is shown as follows.

> python ridge_regression.t.py TestAll.test_L2NormPenaltyNode

DEBUG: (Node l2 norm node) Max rel error for partial deriv w.r.t. w is

1.7066627461369896e-08.

.

--

Ran 1 test in 0.001s

OK

2. Complete the class SumNode in nodes.py. If your code is correct, you should be able to
pass test SumNode in ridge regression.t.py. Please attach a screenshot that shows the
test results for this question.

Solution. The class SumNode can be implemented as follows.

1 class SumNode(object):

2 def __init__(self , a, b, node_name):

3 """ Initialize a node computing l2 penalty.

4

5 Parameters

6 ----------

7 a : node object with a.out being np.array

8 Reference to one node providing input to this node.

9 b : node object with b.out being np.array

10 Reference to the other node providing input to this node.

11 It must have the same shape as a.

12 node_name : str

13 The name of this node.

14

15 Attributes

16 ----------

17 out : np.array

18 The output of this node.

19 d_out : np.array

20 The partial derivatives of the graph output (i.e., objective)

21 with respect to the output of this node.

22 """

23 self.a = a

24 self.b = b

25 self.node_name = node_name

26 # Setting additional attributes as documented

27 self.out = None

28 self.d_out = None

29

30 def forward(self):

31 """ Forwards one step.

32

33 This sets `out ` of the current node , so we move forward one step.

DS-GA-1003 - Spring 2023 5

34 It also initializes `d_out ` to be updated in the backward round.

35 It returns the output of this node which is to be computed.

36

37 Returns

38 -------

39 out : np.array

40 The output of this node.

41 """

42 # The outputs of a and b are the inputs of the current node

43 # The current node then outputs a + b

44 self.out = self.a.out + self.b.out

45 # The partial derivative should have the same dimension as the

46 # output of this node (with respect to which derivative is taken)

47 self.d_out = np.zeros(self.out.shape)

48 return self.out

49

50 def backward(self):

51 """ Backwards one step.

52

53 This sets `d_out ` of its predecessors providing inputs to this node.

54 It returns partial derivative of the graph output (i.e., objective)

55 with respect to this node which is computed by its successor.

56

57 Returns

58 -------

59 d_out : np.array

60 The partial derivatives of the graph output (i.e., objective)

61 with respect to the output of this node.

62 """

63 # By chain rule , we can compute pJ/pain = pJ/pout * pout/pain

64 # pJ/pout is just `d_out ` of the current node

65 # pout/pain is 1

66 self.a.d_out += self.d_out

67 # The case for b is completely symmetric to that for a

68 self.b.d_out += self.d_out

69 return self.d_out

70

71 def get_predecessors(self):

72 """ Gets the predecessors.

73

74 Returns

75 -------

76 predecessors : list (of nodes)

77 The list of predecessors , i.e., the nodes that provide input to

78 the current node. Normally the sum node has two predecessors.

79 """

80 return [self.a, self.b]

The result of running test SumNode is shown as follows.

> python ridge_regression.t.py TestAll.test_SumNode

DEBUG: (Node sum node) Max rel error for partial deriv w.r.t. a is

1.6365788753567756e-09.

DEBUG: (Node sum node) Max rel error for partial deriv w.r.t. b is

1.6365788753567756e-09.

.

--

Ran 1 test in 0.001s

OK

DS-GA-1003 - Spring 2023 6

3. Implement ridge regression with w regularized and b unregularized. Do this by completing
the init method in ridge regression.py, using the classes created above. When
complete, you should be able to pass the tests in ridge regression.t.py. Report the
average square error on the training set for the parameter settings given in the main()

function.

Solution. The init method of the class RidgeRegression can be implemented as fol-
lows. It constructs and stores the ComputationGraphFunction instance in self.graph.

1 class RidgeRegression(BaseEstimator , RegressorMixin):

2 def __init__(self , l2_reg=1, step_size =5e-3, max_num_epochs =5000):

3 """ Initializes a ridge regression object with computation graph.

4

5 We want to build a computation graph for the ridge regression

6 objective :math:`J = lambda * norm(w)^2 + |(w^Tx + b) - y|^2`.
7

8 Parameters

9 ----------

10 l2_reg : real

11 The l2 regularization parameter , which should be nonnegative.

12 step_size : real

13 The learning rate , which should be nonnegative.

14 max_num_epochs : integral

15 The maximum number of epochs , which should be nonnegative.

16

17 Attributes

18 ----------

19 graph : ComputationGraphFunction object

20 The computation graph instance for ridge regression.

21 """

22 self.l2_reg = l2_reg

23 self.step_size = step_size

24 self.max_num_epochs = max_num_epochs

25

26 # Constructing the input nodes

27 # The input vector x

28 self._x = nodes.ValueNode(node_name="x")

29 # The response scalar y

30 self._y = nodes.ValueNode(node_name="y")

31

32 # Constructing the parameter nodes

33 # The parameter vector w

34 self._w = nodes.ValueNode(node_name="w")

35 # The scalar bias parameter b

36 self._b = nodes.ValueNode(node_name="b")

37

38 # Constructing the interim computation nodes

39 # Compute :math:`hat{y} = w^Tx + b`
40 self._prediction = nodes.VectorScalarAffineNode(

41 x=self._x, w=self._w , b=self._b, node_name="prediction"

42)

43 # Compute :math:`l = |hat{y} - y|^2`
44 self._loss = nodes.SquaredL2DistanceNode(

45 a=self._prediction , b=self._y , node_name="loss",

46)

47 # Compute :math:`r = lambda * norm(w)^2`
48 self._reg = nodes.L2NormPenaltyNode(

49 l2_reg=self.l2_reg , w=self._w , node_name="regularization",

50)

51 # Compute :math:`J = r + l`

DS-GA-1003 - Spring 2023 7

52 self._objective = nodes.SumNode(

53 a=self._reg , b=self._loss , node_name="objective"

54)

55

56 # Constructing the computation graph

57 self.graph = graph.ComputationGraphFunction(

58 inputs =[self._x],

59 outcomes =[self._y],

60 parameters =[self._w , self._b],

61 prediction=self._prediction ,

62 objective=self._objective

63)

The result of running test ridge regression gradient is shown as follows.

> python ridge_regression.t.py TestAll.test_ridge_regression_gradient

DEBUG: (Parameter w) Max rel error for partial deriv

2.0535835581448403e-10.

DEBUG: (Parameter b) Max rel error for partial deriv

1.4230151508246912e-10.

.

--

Ran 1 test in 0.001s

OK

Using regularization parameter λ = 1 with step size 5×10−5 and 2000 epochs, the average
square error on the training set is 0.20166182530478097. Using regularization parameter
λ = 0 with step size 5× 10−4 and 500 epochs, the average square error on the training set
is 0.042898700925240965. The regression results are shown as in Figure 1.

Figure 1: The result of ridge regression.

DS-GA-1003 - Spring 2023 8

Multilayer Perceptron

Let’s now turn to a multilayer perceptron (MLP) with a single hidden layer and a square loss.
We’ll implement the computation graph illustrated below:

Multilayer Perceptron, 1 hidden layer, square loss

Parameters

beRm

WZERKM

bzeR
i ×

Hidden Layer Prediction
V

j I

WeRm×d > L=Wx+bµµn)h=tanhk) > f- Wzhatbz
, n

1

herm

FER

11XERD
yer) F- I f- YY >
JER

Data Objective Value

The crucial new piece here is the nonlinear hidden layer, which is what makes the multilayer
perceptron a significantly larger hypothesis space than linear prediction functions.

The Standard Nonlinear Layer

The multilayer perceptron consists of a sequence of “layers” implementing the following non-
linear function

h(x) = σ (Wx+ b) ,

where x ∈ Rd, W ∈ Rm×d, and b ∈ Rm, and where m is often referred to as the number of hidden
units or hidden nodes. σ is some nonlinear function, typically tanh or ReLU, applied elementwise
to the argument of σ. Referring to the computation graph illustration above, we will implement
this nonlinear layer with two nodes, one implementing the affine transform L = W⊤

1 x+ b1, and
the other implementing the nonlinear function h = tanh(L). In this problem, we’ll work out how
to implement the backward method for each of these nodes.

The Affine Transformation

In a general neural network, there may be quite a lot of computation between any given affine
transformation Wx + b and the final objective function value J . We will capture all of that in
a function f : Rm → R, for which J = f(Wx + b). Our goal is to find the partial derivative of
J with respect to each element of W , namely ∂J/∂Wij , as well as the partials ∂J/∂bi, for each
element of b. For convenience, let y = Wx + b, so we can write J = f(y). Suppose we have

already computed the partial derivatives of J with respect to the entries of y = (y1, · · · , ym)
⊤
,

DS-GA-1003 - Spring 2023 9

namely ∂J/∂yi for i = 1, · · · ,m. Then by the chain rule, we have that

∂J

∂Wij
=

m∑
r=1

∂J

∂yr

∂yr
∂Wij

.

4. Show that ∂J/∂Wij = xj · ∂J/∂yi, where x = (x1, · · · , xd)
⊤
.

Hint: Although not necessary, you might find it helpful to use the Kronecker delta noation
δij. So, for example, ∂xj

(∑n
i=1 x

2
i

)
= 2xiδij = 2xj.

Proof. By the chain rule, we can compute that

∂J

∂Wij
=

m∑
r=1

∂J

∂yr

∂yr
∂Wij

=

m∑
r=1

∂J

∂yr

∂

∂Wij

(
d∑

l=1

Wrlxl + br

)
=

m∑
r=1

∂J

∂yr

d∑
l=1

∂ (Wrlxl)

∂Wij

=

m∑
r=1

∂J

∂yr

d∑
l=1

δirδjlxl =

m∑
r=1

∂J

∂yr
δirxj = xj ·

∂J

∂yi
, (1)

as desired, so the proof is complete.

5. Now let’s vectorize this. Let’s write ∂J/∂y ∈ Rm×1 for the column vector whose ith entry
is ∂J/∂yi. Let’s also define the matrix ∂J/∂W ∈ Rm×d, whose (i, j)th entry is ∂J/∂Wij .
Generally speaking, we’ll always take ∂J/∂A to be an array of the same size (“shape” in
numpy) as A. Give a vectorized expression for ∂J/∂W in terms of the column vectors
∂J/∂y and x.

Hint: Outer product.

Solution. In the previous question, we have shown that

∂J

∂Wij
= xj ·

∂J

∂yi
. (2)

By definition of the vectorized expressions, we can thus write that(
∂J

∂W

)
ij

=
∂J

∂Wij
= xj ·

∂J

∂yi
= (x)j ·

(
∂J

∂y

)
i

. (3)

We note that (a⊗ b)ij = aibj . Therefore, the expression above implies that

∂J

∂W
=

∂J

∂y
⊗ x, (4)

where ⊗ denotes the vector outer product.

6. In the usual way, define ∂J/∂x ∈ Rd, whose ith entry is ∂J/∂xi. Show that

∂J

∂x
= W⊤ ∂J

∂y
.

Note: If x is just data, technically we won’t need this derivative. However, in a multilayer
perceptron, x may actually be the output of a previous hidden layer, in which case we will
need to propagate the derivative through x as well.

DS-GA-1003 - Spring 2023 10

Proof. By the chain rule, we can can compute that

∂J

∂xi
=

m∑
r=1

∂J

∂yr

∂yr
∂xi

=

m∑
r=1

∂J

∂yr

∂

∂xi

(
d∑

l=1

Wrlxl + br

)
=

m∑
r=1

∂J

∂yr

d∑
l=1

∂ (Wrlxl)

∂xi

=

m∑
r=1

∂J

∂yr

d∑
l=1

δilWrl =

m∑
r=1

∂J

∂yr
Wri. (5)

By definition of the vectorized expression, we can thus write that(
∂J

∂x

)
i

=
∂J

∂xi
=

m∑
r=1

∂J

∂yr
Wri =

m∑
r=1

(
W⊤)

ir

(
∂J

∂y

)
r

=

(
W⊤ ∂J

∂y

)
i

. (6)

The expression above then implies that

∂J

∂x
= W⊤ ∂J

∂y
, (7)

as desired, so the proof is complete.

7. Show that ∂J/∂b = ∂J/∂y, where ∂J/∂b is defined in the usual way.

Proof. By the chain rule, we can can compute that

∂J

∂bi
=

m∑
r=1

∂J

∂yr

∂yr
∂bi

=

m∑
r=1

∂J

∂yr

∂

∂bi

(
d∑

l=1

Wrlxl + br

)
=

m∑
r=1

∂J

∂yr

∂br
∂bi

=

m∑
r=1

∂J

∂yr
δir =

∂J

∂yi
. (8)

By definition of the vectorized expression, we can thus write that(
∂J

∂b

)
i

=
∂J

∂bi
=

∂J

∂yi
=

(
∂J

∂y

)
i

. (9)

The expression above then implies that

∂J

∂x
=

∂J

∂y
, (10)

as desired, so the proof is complete.

Elementwise Transformers

Our nonlinear activation function nodes take an array (e.g. a vector, matrix, higher-order tensor,
etc), and apply the same nonlinear transformation σ : R → R to every element of the array.
Let’s abuse notation a bit, as is usually done in this context, and write σ(A) for the array that
results from applying σ(·) to each element of A. If σ is differentiable at x ∈ R, then we’ll write
σ′(x) for the derivative of σ at x, with σ′(A) defined analogously to σ(A).

Suppose the objective function value J is written as J = f(σ(A)), for some function f : S 7→ R,
where S is an array of the same dimension as σ(A) and A. As before, we want to find the array

DS-GA-1003 - Spring 2023 11

∂J/∂A for any A. Suppose for some A we have already computed the array ∂J/∂S = ∂f(S)/∂S
for S = σ(A). At this point, we’ll want to use the chain rule to figure out ∂J/∂A. However,
because we’re dealing with arrays of arbitrary shapes, it can be tricky to write down the chain
rule. Appropriately, we’ll use a tricky convention: We’ll assume all entries of an array A are
indexed by a single variable. So, for example, to sum over all entries of an array A, we’ll just
write

∑
i Ai.

8. Show that ∂J/∂A = ∂J/∂S ⊙ σ′(A), where we’re using ⊙ to represent the Hadamard
product. If A and B are arrays of the same shape, then their Hadamard product A⊙B
is an array with the same shape as A and B, and for which (A⊙B)i = AiBi. That is, it’s
just the array formed by multiplying corresponding elements of A and B. Conveniently,
in numpy if A and B are arrays of the same shape, then A * B is their Hadamard product.

Proof. By the chain rule, we can compute that

∂J

∂Ai
=
∑
j

∂J

∂Sj

∂Sj

∂Ai
=

∂J

∂Si

∂Si

∂Ai
=

∂J

∂Si
σ′(Ai). (11)

By definition of the vectorized expressions, we can thus write that(
∂J

∂A

)
i

=
∂J

∂Ai
=

∂J

∂Si
σ′(Ai) =

(
∂J

∂S
⊙ σ′(A)

)
i

. (12)

The expression above then implies that

∂J

∂A
=

∂J

∂S
⊙ σ′(A), (13)

as desired, so the proof is complete.

MLP Implementation

9. Complete the class AffineNode in nodes.py. Be sure to propagate the gradient with
respect to x as well, since when we stack these layers, x will itself be the output of another
node that depends on our optimization parameters. If your code is correct, you should be
able to pass test AffineNode in mlp regression.t.py. Please attach a screenshot that
shows the test results for this question.

Solution. The class AffineNode can be implemented as follows.

1 class AffineNode(object):

2 def __init__(self , W, x, b, node_name):

3 """ Initialize a node computing affine transformation.

4

5 Parameters

6 ----------

7 W : node object with W.out being np.ndarray of shape (m, d)

8 Reference to the node providing matrix input to this node.

9 x : node object with x.out being np.array of shape (d,)

10 Reference to the node providing vector input to this node.

11 b : node object with b.out being np.array of shape (m,)

12 Reference to the node providing offset input to thie node.

13 node_name : str

14 The name of this node.

DS-GA-1003 - Spring 2023 12

15

16 Attributes

17 ----------

18 out : np.array

19 The output of this node.

20 d_out : np.array

21 The partial derivatives of the graph output (i.e., objective)

22 with respect to the output of this node

23 """

24 self.W = W

25 self.x = x

26 self.b = b

27 self.node_name = node_name

28 # Setting additional atttributes as documented

29 self.out = None

30 self.d_out = None

31

32 def forward(self):

33 """ Forwards one step.

34

35 This sets `out ` of the current node , so we move forward one step.

36 It also initialized `d_out ` to be updated in the backward round.

37 It returns the output of this node which is to be computed.

38

39 Returns

40 -------

41 out : np.array

42 The output of this node.

43 """

44 # The outputs of W, x, and b are the inputs of the current node

45 # The current node then outputs Wx + b

46 self.out = np.dot(self.W.out , self.x.out) + self.b.out

47 # The partial derivative should have the same dimension as the

48 # output of this node (with respect to which derivative is taken)

49 self.d_out = np.zeros(self.out.shape)

50 return self.out

51

52 def backward(self):

53 """ Backwards one step.

54

55 This sets `d_out ` of its predecessors providing inputs to this node.

56 It returns partial derivative of the graph output (i.e., objective)

57 with respect to this node which is computed by its successor.

58

59 Returns

60 -------

61 d_out : np.array

62 The partial derivatives of the graph output (i.e., objective)

63 with respect to the output of this node.

64 """

65 # pJ/pWin is given by outer(pJ/pout , xin) :cite:`HW7 Q5`
66 # pJ/pout is just `d_out ` of the current node

67 self.W.d_out += np.outer(self.d_out , self.x.out)

68 # pJ/pxin is given by dot(W^T, pJ/pout) :cite:`HW7 Q6`
69 self.x.d_out += np.dot(self.W.out.T, self.d_out)

70 # pJ/pbin is given by pJ/pout :cite:`HW7 Q7`
71 self.b.d_out += self.d_out

72 return self.d_out

73

74 def get_predecessors(self):

75 """ Gets the predecessors.

DS-GA-1003 - Spring 2023 13

76

77 Returns

78 -------

79 predecessors : list (of nodes)

80 The list of predecessors , i.e., the nodes that provide input to

81 the current node. Normally the affine transformation node has

82 three predecessors.

83 """

84 return [self.W, self.x, self.b]

The result of running test L2NormPenaltyNode is shown as follows.

> python mlp_regression.t.py TestNodes.test_AffineNode

DEBUG: (Node affine) Max rel error for partial deriv w.r.t. W is

1.5544356312464695e-08.

DEBUG: (Node affine) Max rel error for partial deriv w.r.t. x is

2.256338571093939e-08.

DEBUG: (Node affine) Max rel error for partial deriv w.r.t. b is

2.8043131803233403e-09.

.

--

Ran 1 test in 0.003s

OK

10. Complete the class TanhNode in nodes.py. As you’ll recall, tanh′(x) = 1− tanh2 x. Note
that in the forward pass, we’ll already have computed tanh of the input and stored it in
self.out. So make sure to use self.out and not recalculate it in the backward pass. If
your code is correct, you should be able to pass test TanhNode in mlp regression.t.py.
Please attach a screenshot that shows the test results for this question.

Solution. The class TanhNode can be implemented as follows.

1 class TanhNode(object):

2 def __init__(self , a, node_name):

3 """ Initialize a node computing hyperbolic tangent function.

4

5 Parameters

6 ----------

7 a : node object with a.out being np.array

8 Reference to the node providing input to this node.

9 node_name : str

10 The name of this node.

11

12 Attributes

13 ----------

14 out : np.array

15 The output of this node.

16 d_out : np.array

17 The partial derivatives of the graph output (i.e., objective)

18 with respect to the output of this node.

19 """

20 self.a = a

21 self.node_name = node_name

22 # Setting additional attributes as documented

23 self.out = None

24 self.d_out = None

DS-GA-1003 - Spring 2023 14

25

26 def forward(self):

27 """ Forwards one step.

28

29 This sets `out ` of the current node , so we move forward one step.

30 It also initializes `d_out ` to be updated in the backward round.

31 It returns the output of this node which is to be computed.

32

33 Returns

34 -------

35 out : np.array

36 The output of this node.

37 """

38 # The output of a is the input of the current node

39 # The current node then outputs tanh(a)

40 self.out = np.tanh(self.a.out)

41 # The partial derivative should have the same dimension as the

42 # output of this node (with respect to which derivative is taken)

43 self.d_out = np.zeros(self.out.shape)

44 return self.out

45

46 def backward(self):

47 """ Backwards one step.

48

49 This sets `d_out ` of its predecessor providing input to this node.

50 It returns partial derivative of the graph output (i.e., objective)

51 with respect to this node which is computed by its successor.

52

53 Returns

54 -------

55 d_out : np.array

56 The partial derivatives of the graph output (i.e., objective)

57 with respect to the output of this node.

58 """

59 # By chain rule , we can compute pJ/pin = pJ/pout * pout/pin

60 # pJ/pout is just `d_out ` of the current node

61 # pJ/pin is tanh '(x) = 1 - tanh ^2(x), and since the output of this

62 # node is tanh(x), it can be simplified as 1 - out^2

63 self.a.d_out += self.d_out * (1 - self.out ** 2)

64 return self.d_out

65

66 def get_predecessors(self):

67 """ Gets the predecessors.

68

69 Returns

70 -------

71 predecessors : list (of nodes)

72 The list of predecessors , i.e., the nodes that provide input to

73 the current node. Normally the tanh node has only one

predecessor.

74 """

75 return [self.a]

The result of running test TanhNode is shown as follows.

> python mlp_regression.t.py TestNodes.test_TanhNode

DEBUG: (Node tanh) Max rel error for partial deriv w.r.t. a is

1.268954386373119e-08.

.

--

DS-GA-1003 - Spring 2023 15

Ran 1 test in 0.001s

OK

11. Implement an MLP by completing the skeleton code in mlp regression.py and making
use of the nodes above. Your code should pass the tests provided in mlp regression.t.py.
Note that to break the symmetry of the problem, we initialize our weights to small random
values, rather than all zeros, as we often do for convex optimization problems. Run the
MLP for the two settings given in the main() function and report the average training
error. Note that with an MLP, we can take the original scalar as input, in the hopes that
it will learn nonlinear features on its own, using the hidden layers. In practice, it is quite
challenging to get such a neural network to fit as well as one where we provide features.

Solution. The init method of the class MLPRegression can be implemented as follows.
It constructs and stores the ComputationGraphFunction instance in self.graph.

1 class MLPRegression(BaseEstimator , RegressorMixin):

2 def __init__(

3 self ,

4 num_hidden_units =10,

5 step_size =5e-3,

6 init_param_scale =0.01,

7 max_num_epochs =5000,

8):

9 """ Initializes an MLP regression object with computation graph.

10

11 We want to build a computation graph for the multilayer perceptron

12 objective , with a single hidden layer and a square loss.

13

14 - Take parameter b1 of size (m,), parameter W1 of size (m, d),

15 and data x of size (d,), and make the affine transform to get

16 the first hidden layer :math:`L = W1x + b1 `;
17

18 - Take interim result L of size (m,) and make the tanh transform

19 to get the second hidden layer :math:`h = tanh(L)`;
20

21 - Take parameter b2 of size (1,), parameter w2 of size (1, m),

22 and interim result h of size (m,), and make the affine transform

23 to get the prediction :math:`f = w2h + b2 `;
24

25 - Take data y of size (1,) and prediction f of size (1,), and take

26 the squared difference to get the objective :math:`J = (f-y)^2`.
27

28 Parameters

29 ----------

30 num_hidden_units : integral

31 The number of hidden units in each hidden layer. We consider a

32 single hidden layer in this class.

33 step_size : real

34 The learning rate , which should be nonnegative.

35 init_param_scale : real

36 The global scaler for the initial parameters , which should be

37 nonnegative.

38 max_num_epochs : integral

39 The maximum number of epochs , which should be nonnegative.

40

41 Attributes

42 ----------

43 graph : ComputationGraphFunction object

DS-GA-1003 - Spring 2023 16

44 The computation graph instance for MLP regression.

45 """

46 self.num_hidden_units = num_hidden_units

47 self.step_size = step_size

48 self.init_param_scale = init_param_scale

49 self.max_num_epochs = max_num_epochs

50

51 # Constructing the input nodes

52 # The input vector x

53 self._x = nodes.ValueNode(node_name="x")

54 # The response scalar y

55 self._y = nodes.ValueNode(node_name="y")

56

57 # Constructing the parameter nodes

58 # The parameter matrix W1 (the 1st affine)

59 self._W1 = nodes.ValueNode(node_name="W1")

60 # The vector bias parameter b1 (the 1st affine)

61 self._b1 = nodes.ValueNode(node_name="b1")

62 # The parameter vector w2 (the 2nd affine)

63 self._w2 = nodes.ValueNode(node_name="w2")

64 # The scalar bias parameter b2 (the 2nd affine)

65 self._b2 = nodes.ValueNode(node_name="b2")

66

67 # Constructing the interim computation nodes

68 # Compute :math:`L = W1x + b1 `
69 self._hidden_L = nodes.AffineNode(

70 W=self._W1 , x=self._x , b=self._b1 , node_name=":hidden:"

71)

72 # Compute :math:`h = tanh(L)`
73 self._hidden_h = nodes.TanhNode(

74 a=self._hidden_L , node_name=":hidden:"

75)

76 # Compute :math:`f = w2h + b2 `
77 self._prediction = nodes.VectorScalarAffineNode(

78 x=self._hidden_h , w=self._w2 , b=self._b2 , node_name="prediction"

79)

80 # Compute :math:`J = (f-y)^2`
81 self._objective = nodes.SquaredL2DistanceNode(

82 a=self._prediction , b=self._y , node_name="objective"

83)

84

85 # Constructing the computation graph

86 self.graph = graph.ComputationGraphFunction(

87 inputs =[self._x],

88 outcomes =[self._y],

89 parameters =[self._W1 , self._b1 , self._w2 , self._b2],

90 prediction=self._prediction ,

91 objective=self._objective ,

92)

The result of running test mlp regression gradient is shown as follows.

> python mlp_regression.t.py TestNodes.test_mlp_regression_gradient

DEBUG: (Parameter W1) Max rel error for partial deriv

1.4189237423709666e-06.

DEBUG: (Parameter b1) Max rel error for partial deriv

1.6946877248656965e-07.

DEBUG: (Parameter w2) Max rel error for partial deriv

1.0886442160606574e-09.

DS-GA-1003 - Spring 2023 17

DEBUG: (Parameter b2) Max rel error for partial deriv

8.704641947693862e-10.

.

--

Ran 1 test in 0.004s

OK

Using 10 hidden units with no features, step size 10−3, initial parameter scale 5×10−4, and
5000 epochs, the average square error on the training set is 0.2593825310338179. Using
10 hidden units with no features, step size 5× 10−4, initial parameter scale 10−2, and 500
epochs, the average square error on the training set is 0.0844137569476599. The regression
results are shown as in Figure 2.

Figure 2: The result of multilayer perceptron regression.

Multiclass classification with an MLP (Optional)

We consider a generic classification problem with K classes over inputs x of dimension d. Using
a MLP we will compute a K-dimensional vector z representing scores, such that

z = W2 tanh(W1x+ b1) + b2,

with W1 ∈ Rm×d, b1 ∈ Rm, W2 ∈ RK×m and b2 ∈ RK . Our model assumes that x belongs to
class k with probability

exp (zk)∑K
k=1 exp (zk)

,

which corresponds to applying a Softmax to the scores. Given this probabilistic model we can
train the model by minimizing the negative log-likelihood.

12. Implement a Softmax node. We have provided skeleton code for the class SoftmaxNode

in nodes.py. If your code is correct, you should be able to pass test SoftmaxNode in
multiclass.t.py. Please attach a screenshot that shows the test results for this question.

DS-GA-1003 - Spring 2023 18

Solution. The class SoftmaxNode can be implemented as follows.

1 class SoftmaxNode(object):

2 def __init__(self , z, node_name):

3 """ Initialize a node computing the softmax function.

4

5 Parameters

6 ----------

7 z : node object with z.out being np.array

8 Reference to the node providing input to this node.

9 node_name : str

10 The name of this node.

11

12 Attributes

13 ----------

14 out : np.array

15 The output of this node.

16 d_out : np.array

17 The partial derivatives of the graph output (i.e., objective)

18 with respect to the output of this node.

19 """

20 self.z = z

21 self.node_name = node_name

22 # Setting additional attributes as documented

23 self.out = None

24 self.d_out = None

25

26 def forward(self):

27 """ Forwards one step.

28

29 This sets `out ` of the current node , so we move forward one step.

30 It also initializes `d_out ` to be updated in the backward round.

31 It returns the output of this node which is to be computed.

32

33 Returns

34 -------

35 out : np.array

36 The output of this node.

37 """

38 # The output of z is the input of the current node

39 # The current node then outputs softmax(z)

40 # In order to avoid overflow , we refer to the implementation of

41 # `scipy.special.softmax ` v1.10.1 in scipy/special/_logsumexp.py

42 exp_z_shifted = np.exp(self.z.out - np.max(self.z.out))

43 self.out = exp_z_shifted / np.sum(exp_z_shifted)

44 # The partial derivative should have the same dimension as the

45 # output of this node (with respect to which derivative is taken)

46 self.d_out = np.zeros(self.out.shape)

47 return self.out

48

49 def backward(self):

50 """ Backwards one step.

51

52 This sets `d_out ` of its predecessor providing input to this node.

53 It returns partial derivative of the graph output (i.e., objective)

54 with respect to this node which is computed by its successor.

55

56 Returns

57 -------

58 d_out : np.array

59 The partial derivatives of the graph output (i.e., objective)

60 with respect to the output of this node.

DS-GA-1003 - Spring 2023 19

61 """

62 # pJ/pin is given by dot(M, pJ/pout), where the ith diagonal entry

63 # of M is :math:`S_i * (1-S_i)`, and the (i, j)th entry for i != j

64 # of M is :math:`S_i * S_j `
65 # pJ/pout is just `d_out ` of the current node

66 # S is the output of the current node , i.e., `out `
67 M = np.zeros((self.z.out.size , self.out.size))

68 for i in range(self.z.out.size):

69 for j in range(self.out.size):

70 M[i, j] = -self.out[i] * self.out[j] if i != j \

71 else self.out[i] * (1 - self.out[i])

72 self.z.d_out += np.dot(M, self.d_out)

73 return self.d_out

74

75 def get_predecessors(self):

76 """ Gets the predecessors.

77

78 Returns

79 -------

80 predecessors : list (of nodes)

81 The list of predecessors , i.e., the nodes that provide input to

82 the current node. Normally the softmax node has only one

predecessor.

83 """

84 return [self.z]

The result of running test SoftmaxNode is shown as follows.

> python multiclass.t.py TestNodes.test_SoftmaxNode

DEBUG: (Node softmax) Max rel error for partial deriv w.r.t. z is

2.580295092005085e-09.

.

--

Ran 1 test in 0.001s

OK

13. Implement a negative log-likelihood loss node for multiclass classification. We provided
skeleton code for class NLLNode in nodes.py. The test code for this question is combined
with the test code for the next question.

Solution. The class NLLNode can be implemented as follows.

1 class NLLNode(object):

2 def __init__(self , f, y, node_name):

3 """ Initialize a node computing the negative log -likelihood.

4

5 Parameters

6 ----------

7 f : node object with f.out being np.array

8 Reference to the node providing predictions input to this node.

9 y : node object with y.out being np.array

10 Reference to the node providing responses input to this node.

11 node_name : str

12 The name of this node

13

14 Attributes

15 ----------

16 out : np.array

DS-GA-1003 - Spring 2023 20

17 The output of this node.

18 d_out : np.array

19 The partial derivatives of the graph output (i.e., objective)

20 with respect to the output of this node

21 """

22 self.f = f

23 self.y = y

24 self.node_name = node_name

25 # Setting additional attributes as documented

26 self.out = None

27 self.d_out = None

28

29 def forward(self):

30 """ Forwards one step.

31

32 This sets `out ` of the current node , so we move forward one step.

33 It also initialized `d_out ` to be updated in the backward round.

34 It returns the output of this node which is to be computed.

35

36 Returns

37 -------

38 out : np.array

39 The output of this node.

40 """

41 # The outputs of f and y are the inputs of the current node

42 # The current node then outputs the negative log -likelihood

43 # This is taking negative log on the likelihood of the true class

44 self.out = -np.log(self.f.out[self.y.out])

45 # The partial derivative should have the same dimension as the

46 # output of this node (with respect to which derivative is taken)

47 self.d_out = np.zeros(self.out.shape)

48 return self.out

49

50 def backward(self):

51 """ Backwards one step.

52

53 This sets `d_out ` of its predecessors providing inputs to this node.

54 It returns partial derivative of the graph output (i.e., objective)

55 with respect to this node which is computed by its successor.

56

57 Returns

58 -------

59 d_out : np.array

60 The partial derivatives of the graph output (i.e., objective)

61 with respect to the output of this node.

62 """

63 # By chain rule , we can compute pJ/pfin = pJ/pout * pout/pfin

64 # pJ/pout is just `d_out ` of the current node

65 # pJ/pin is -1/f[y] for the true class y and 0 otherwise

66 pred = np.zeros(self.f.out.shape)

67 pred[self.y.out] = 1 / self.f.out[self.y.out]

68 self.f.d_out -= self.d_out * pred

69 # Whether we need to update y is unclear

70 return self.d_out

71

72 def get_predecessors(self):

73 """ Gets the predecessors.

74

75 Returns

76 -------

77 predecessors : list (of nodes)

DS-GA-1003 - Spring 2023 21

78 The list of predecessors , i.e., the nodes that provide input to

79 the current node. Normally the NLL node has two predecessors.

80 """

81 return [self.f, self.y]

14. Implement an MLP instance for multiclass classification by completing the skeleton code
in multiclass.py. Your code should pass the tests in test multiclass provided in
multiclass.t.py. Please attach a screenshot that shows the test results for this question.

Solution. The init method of the class MulticlassClassifier can be implemented as
follows. It constructs and stores the ComputationGraphFunction instance in self.graph.

1 class MulticlassClassifier(BaseEstimator , RegressorMixin):

2 def __init__(

3 self ,

4 num_hidden_units =10,

5 step_size =5e-3,

6 init_param_scale =0.01,

7 max_num_epochs = 1000,

8 num_class=3,

9):

10 """ Initializes an MLP multiclass classifier with computation graph.

11

12 We want to build a computation graph for the multilayer perceptron

13 objective , with a single hidden layer and a square loss.

14

15 - Take parameter b1 of size (m,), parameter W1 of size (m, d),

16 and data x of size (d,), and make the affine transform to get

17 the first hidden layer :math:`L = W1x + b1 `;
18

19 - Take interim result L of size (m,) and make the tanh transform

20 to get the second hidden layer :math:`h = tanh(L)`;
21

22 - Take parameter b2 of size (K,), parameter W2 of size (K, m),

23 and interim result h of size (m,), and make the affine transform

24 to get the third hidden layer :math:`z = W2h + b2 `;
25

26 - Take interim result z of size (K,) and make the softmax transform

27 to get the prediction :math:`f = Softmax(z)`
28

29 - Take data y of size (1,) and prediction f of size (K,), and take

30 the NLL to get the objective :math:`J = NLL(f, y) `.
31

32 Parameters

33 ----------

34 num_hidden_units : integral

35 The number of hidden units in each hidden layer. We consider a

36 single hidden layer in this class.

37 step_size : real

38 The learning rate , which should be nonnegative.

39 init_param_scale : real

40 The global scaler for the initial parameters , which should be

41 nonnegative.

42 max_num_epochs : integral

43 The maximum number of epochs , which should be nonnegative.

44 num_class : integral

45 The number of classes.

46

47 Attributes

DS-GA-1003 - Spring 2023 22

48 ----------

49 graph : ComputationGraphFunction object

50 The computation graph instance for MLP regression.

51 """

52 self.num_hidden_units = num_hidden_units

53 self.step_size = step_size

54 self.init_param_scale = init_param_scale

55 self.max_num_epochs = max_num_epochs

56 self.num_class = num_class

57

58 # Constructing the input nodes

59 # The input vector x

60 self._x = nodes.ValueNode(node_name="x")

61 # The response scalar y

62 self._y = nodes.ValueNode(node_name="y")

63

64 # Constructing the parameter nodes

65 # The parameter matrix W1 (the 1st affine)

66 self._W1 = nodes.ValueNode(node_name="W1")

67 # The vector bias parameter b1 (the 1st affine)

68 self._b1 = nodes.ValueNode(node_name="b1")

69 # The parameter matrix w2 (the 2nd affine)

70 self._W2 = nodes.ValueNode(node_name="W2")

71 # The scalar bias parameter b2 (the 2nd affine)

72 self._b2 = nodes.ValueNode(node_name="b2")

73

74 # Constructing the interim computation nodes

75 # Compute :math:`L = W1x + b1 `
76 self._hidden_L = nodes.AffineNode(

77 W=self._W1 , x=self._x , b=self._b1 , node_name=":hidden:"

78)

79 # Compute :math:`h = tanh(L)`
80 self._hidden_h = nodes.TanhNode(

81 a=self._hidden_L , node_name=":hidden:"

82)

83 # Compute :math:`z = W2h + b2 `
84 self._hidden_z = nodes.AffineNode(

85 W=self._W2 , x=self._hidden_h , b=self._b2 , node_name=":hidden:"

86)

87 # Compute :math:`f = Softmax(z)`
88 self._prediction = nodes.SoftmaxNode(

89 z=self._hidden_z , node_name="prediction"

90)

91 # Compute :math:`J = NLL(f, y)`
92 self._objective = nodes.NLLNode(

93 f=self._prediction , y=self._y , node_name="objective"

94)

95

96 # Constructing the computation graph

97 self.graph = graph.ComputationGraphFunction(

98 inputs =[self._x],

99 outcomes =[self._y],

100 parameters =[self._W1 , self._b1 , self._W2 , self._b2],

101 prediction=self._prediction ,

102 objective=self._objective ,

103)

The result of running test multiclass is shown as follows.

> python multiclass.t.py TestNodes.test_multiclass

DEBUG: (Parameter W1) Max rel error for partial deriv

DS-GA-1003 - Spring 2023 23

5.1741662292183015e-08.

DEBUG: (Parameter b1) Max rel error for partial deriv

8.059693440926508e-08.

DEBUG: (Parameter W2) Max rel error for partial deriv

2.7081779821974406e-07.

DEBUG: (Parameter b2) Max rel error for partial deriv

5.995142302081188e-08.

.

--

Ran 1 test in 0.004s

OK

