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1/24 Lecture

0 What is Machine Learning

Machine learning problems. Given an input x, predict an output y.

• Binary classification problem: There are two possible outputs.

• Multiclass classification problem: Choose an output out of a discrete set of possible outputs.

• Probabilistic classification or soft classification problem.

• Regression problem: The output is continuous.

Rule-based approach. Study the problem, write rules, evaluate, and analyze errors. Repeat these steps until the
evaluated result can be launched. Rule-based approaches are generally interpretable and can produce reliable answers.
However, rules does not generalize to unanticipated input combinations and do not naturally handle uncertainty.
Moreover, it is labor-intensive to build and hard to scale.

The machine learning approach. We have the machine learn on its own from training data, which contains
many examples of input-output pairs. Learning from training data of this form is called supervised learning.
A machine learning algorithm learns from the training data, which outputs a predictions function that produces
output y given input x. The success of machine learning depends on the availability of large amounts of data and
generalization to unseen examples.

Beyond prediction.

• Unsupervised learning: Finding structures in data, e.g., clustering.
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• Reinforcement learning: Optimizing long-term objective, e.g., Go.

• Representation learning: Learning good features of real-world objects, e.g., text.

1 Statistical Learning Theory

1.1 Decision Theory

In data science problems, we generally needs to make a decision, take an action, or produce an output. Decision
theory is about finding “optimal” actions, under various definitions of optimality.

Typical sequence of events. Observe input x, take action a, observe outcome y, and evaluate action in relation
to the outcome. The input space is denoted X , action space A , and outcome space Y .

Definition 1.1. A prediction function (or decision function) gets input x ∈X and produces an action a ∈ A ,
that is,

f : X → A , x 7→ f(x). (1)

Definition 1.2. A loss function evaluates an action in the context of the outcome y, that is,

ℓ : A × Y → R, (a, y) 7→ ℓ(a, y). (2)

Evaluating a prediction function. The goal is to find the optimal prediction function. Intuitively, if we can
evaluate how good a prediction function is, we can turn this into an optimization problem. However, the loss function
l evaluates only a single action. We will need to evaluate the prediction function as a whole. For this, we refer to
the standard statistical learning theory framework.

1.2 Statistical Learning Theory

Define a space where the prediction function is applicable. Assume that there is a data generating function PX ×Y .
Also assume that all input-output pairs (x, y) are generated independently and identically distributed from PX ×Y .

Definition 1.3. The risk of a prediction function f : X → A is

R(f) = E(x,y)∼PX ×Y
[ℓ(f(x), y)]. (3)

In words, it is the expected loss of f over PX ×Y .

Definition 1.4. A Bayes prediction function f∗ : X → A is a function that achieves the minimal risk among
all possible functions, that is,

f∗ ∈ argminf R(f), (4)

where the minimum is taken over all functions from X to A .

The risk of a Bayes function is called the Bayes risk, and a Bayes prediction function is often called the “target
function”, since it is the best prediction function we can possibly produce. Note however, that we cannot actually
compute the risk function since we do not know PX ×Y . However, we can estimate it. Assume that we have
sample data Dn = {(x1, y1), · · · , (xn, yn)} drawn independently and identically distributed from PX ×Y , and we
draw inspiration from the strong law of large numbers: If z1, · · · , zn are independently and identically distributed
with expected value Ez, then

P

[
lim
n→∞

1

n

n∑
i=1

zi = Ez

]
= 1. (5)

Definition 1.5. The empirical risk of f : X → A with respect to a sample Dn is

R̂n(f) =
1

n

n∑
i=1

ℓ(f(xi), yi). (6)
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By the strong law of numbers, we know that limn→∞ R̂n(f) = R(f) almost surely.

Definition 1.6. A function f̂ is an empirical risk minimizer if

f̂ ∈ argminf R̂n(f), (7)

where the minimum is taken over all functions from f : X → A .

1.3 Constrained Empirical Risk Minimization

Empirical risk minimization only memorizes the data (risk can be very different from empirical risk depending on the
samples and the distribution). In order to improve generalization from the training inputs to new inputs, we need
to smooth things out. One approach is constrained empirical risk minimization, which instead of minimizing
empirical risk over all prediction functions, constrains the search to a particular subset of the space of functions,
called a hypothesis space.

Definition 1.7. A hypothesis space F is a set of prediction functions from X to A that we consider when
applying empirical risk minimization.

A hypothesis space is desired to include only those functions that have the desired “singularity”, e.g., smoothness,
simplicity, etc., and are easy to work with.

Given a hypothesis space F and a set of prediction functions mapping X to A , an empirical risk minimizer in
F is a function f̂n such that

f̂n ∈ argminf∈F

1

n

n∑
i=1

ℓ(f(xi), yi). (8)

A risk minimizer in F is a function fF such that

fF ∈ argminf∈F E[ℓ(f(x), y)]. (9)

Definition 1.8. The excess risk compares the risk of f to the Bayes optimal f∗, that is,

Excess Risk(f) = R(f)−R(f∗). (10)

The excess risk of the empirical risk minimizer f̂n can thus be decomposed as

Excess Risk(f̂n) = R(f̂n)−R(f∗) = R(f̂n)−R(fF )︸ ︷︷ ︸
estimation error

+ R(fF )−R(f∗)︸ ︷︷ ︸
approximation error

. (11)

We shall notice that there is a tradeoff between estimation error and approximation error.

• The approximation error R(fF ) − R(f∗) is a property of the class F , acting as the penalty for restricting
consideration only to F (rather than considering all possible functions). Therefore, bigger F generally means
smaller approximation error.

• The estimation error R(f̂n)−R(fF ) is the performance hit for choosing f using finite training data (equivalently,
for minimizing the empirical risk rather than the true risk). Moreover, with smaller F we often expect smaller
estimation error.

In practice, however, we do not find the empirical risk minimizer f̂n ∈ F . Instead, we find f̃n ∈ F that we hope is
good enough. The excess risk of f̃n can thus be decomposed as

Excess Risk(f̃n) = R(f̃n)−R(f∗) = R(f̃n)−R(f̂n)︸ ︷︷ ︸
optimization error

+R(f̂n)−R(fF )︸ ︷︷ ︸
estimation error

+ R(fF )−R(f∗)︸ ︷︷ ︸
approximation error

. (12)
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2 Gradient Descent

We assume that the objective function f : Rd → R is differentiable, and we want to find

x∗ = argminx∈Rd f(x). (13)

Given that f is differentiable at x0 ∈ Rd, The gradient of f at the point x0, denoted ∇xf(x0), is the direction in
which f(x) increases the fastest, if we start from x0.

2.1 Gradient Descent

Given that the gradient is the direction of steepest ascent, to reach a local minimum as fast as possible, we want to
go in the opposite direction from the gradient. The method of gradient descent is described as in Algorithm 1.

Algorithm 1 Gradient Descent

1: Initialize x← 0;
2: repeat
3: x← x− η∇f(x);
4: until the stopping criterion is satisfied;

Note that a fixed step size η will work eventually, as long as it is small enough. On the other hand, if η is too large,
the optimization process may diverge. We will introduce the convergence theorem for fixed step size below.

Theorem 2.1. Suppose f : Rd → R is convex and differentaible, and ∇f is Lipschitz continuous with constant
L > 0, i.e., for any x, x′ ∈ Rd, it holds that

∥∇f(x)−∇f(x′)∥ ≤ L ∥x− x′∥ . (14)

Then the gradient descent with fixed step size η ≤ L−1 converges. In particular,

f(x(k))− f(x∗) ≤
∥∥x(0) − x∗∥∥2

2ηk
. (15)

Stopping criterion. Recall that ∇f(x) = 0 at a local minimum. Therefore, gradient descent should wait until
∥∇f(x)∥2 ≤ ϵ for some chosen ϵ. However, there are some conditions for an early stopping. If we evaluate the loss
on validation data after each iteration, we may want to stop when the loss no longer improves (or even gets worse).

2.2 Stochastic Gradient Descent

Suppose that F =
{
fw : X → A ; w ∈ Rd

}
is the hypothesis space of functions, parametrized by w ∈ Rd. Finding

an empirical risk minimizer entails finding a w that minimizes

R̂n(w) =
1

n

n∑
i=1

ℓ(fw(xi), yi). (16)

Suppose that ℓ(fw(xi), yi) is differentiable as a function of w, then we can do gradient descent on R̂n(w). At each
iteration, we compute the gradient at the current w, that is,

∇R̂n(w) =
1

n

n∑
i=1

∇wℓ(fw(xi), yi). (17)

However, note that we have to iterate over all n training points to take a single step, which is O(n) for each iteration,
which will not scale to “big data”. Therefore, instead of using gradient, we can use a noisy estimate of the gradient.
The intuition behind this is that gradient descent is an iterative procedure, so at every step, we will have a chance
to recover from previous missteps.
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Minibatch gradient. The full gradient for the empirical risk is

∇R̂n(w) =
1

n

n∑
i=1

∇wℓ(fw(xi), yi), (18)

which is an average over the full batch of data Dn = {(x1, y1), · · · , (xn, yn)}. Now take a random subsample
{(xm1

, ym1
), · · · , (xmN

, ymN
)} of size N , which we call a minibatch. The minibatch gradient is then

∇R̂N (w) =
1

N

N∑
i=1

∇wℓ(fw(xmi
), ymi

). (19)

Based on the minibatch gradient, the method of minibatch gradient descent is described as in Algorithm 2.

Algorithm 2 Minibatch Gradient Descent

1: Initialize w ← 0;
2: repeat
3: Randomly choose N points {(xi, yi)}Ni=1 ⊆ Dn;

4: w ← w − η
(

1
N

∑N
i=1∇wℓ(fw(xmi), ymi)

)
;

5: until the stopping criterion is satisfied;

The comparison between using the full batch and some minibatch is shown as in Figure 1. We can see that stochastic
methods work well far from the optimum but struggle close to the optimum.

Figure 1: The comparison between gradient descents using the full batch and sampling a random minibatch.

Properties of the minibatch gradient. The minibatch gradient is an unbiased estimator for the (full) batch
gradient. This means that

E[∇R̂N (w)] = ∇R̂n(w). (20)

The bigger the minibatch, the better the estimation. We have that

Var[∇R̂N (w)] =
1

n
Var[∇R̂1(w)]. (21)

There is a tradeoff on the size of the minibatch. If we choose larger sizes, the estimation of the gradient will be better,
but the processing will be slower. On the other hand, if we choose smaller sizes, we will get worse estimation of the
gradient, but the processing will be quite fast. Also note that due to vectorization, we can oftern get minibatches of
certain sizes for free.

Convergence of stochastic gradient descent. Stochastic gradient descent is just minibatch gradient descent
with N = 1. That is, we use a single randomly chosen point to determine the step direction. Theoretically, gradient
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descent is much faster than stochastic gradient descent in convergence rate. It is much faster to add a digit of
accuracy, but most of that advantage comes into play once we are already close to the minimum. However, in many
machine learning we do not care about optimizing to high accuracy. For stochastic gradient descent, a fixed step
size can work well in practice. Another typical approach is to keep a fixed step size but reduce by constant factor
whenever validation performance stops improving. Other trick can be found in Bottou 2012, Stochastic Gradient
Descent Tricks.

Remark 2.2. Given inconsistency in terminology these days, always clarify the batch (minibatch) size.

3 Loss Functions

3.1 Regression Loss Functions

Examples of regression problems include predicting the stock price given history prices, predicting medical cost of
given age, sex, region, BMI, etc., and predicting the age of a person based on their photos. We have the input space
X = Rd, the action space A = R, and the outcome space Y = R. We denote ŷ as the predicted value (the action),
and denote y as the actual observed value (the outcome).

Distance-based loss. A loss ℓ(ŷ, y) is called distance-based if it only depends on the residual and is zero when
the residual is zero. That is, ℓ(ŷ, y) = ψ(y − ŷ) for some ψ : R→ R with ψ(0) = 0. Note that distance-based losses
are translation-invariant, but sometimes we nay not want to use a translation-invariant loss. A relative error

ℓ(ŷ, y) =
ŷ − y
y

(22)

is a more natural loss, and is not translation-invariant.

Some losses for regression. Let r = y − ŷ be the residual.

• Square or l2 loss: ℓ(r) = r2.

• Absolute or Laplace or l1 loss: ℓ(r) = |r|.

• Huber loss: ℓ(r) = r2/2 for |r| ≤ δ, and ℓ(r) = δ(|r| − δ/2) for |r| > δ. Huber loss is quadratic for small r and
linear for large r. While l2 loss is not robust (too much affected by outliers) and l1 loss is not differentiable,
Huber loss is both robust and differentiable.

3.2 Classification Loss Functions

Examples of classification problems include predicting whether the image contains a cat and predicting whether the
email is SPAM. We have the input space X = Rd, the outcome space Y = {−1, 1}, and the action space A = R
(easier to work with than A = {−1, 1}). If f(x) > 0, we predict 1, and otherwise we predict −1.

Definition 3.1. In this context, the real-valued prediction function f : X → A = R is called the score function,
and the value f(x) is called the score for the input x.

Note that the magnitude of the score can be interpreted as our confidence of our prediction.

Definition 3.2. The margin (or functional margin) for a predicted score ŷ and the true class y ∈ {−1, 1} is yŷ.

The margin is often written as yf(x), where f is the score function. The margin is a measure of how correct we are.
If y and ŷ has the same sign, then the prediction is correct and the margin is positive. On the other hand, if y and ŷ
have different signs, then the prediction is incorrect and the margin is negative. Our goal is to maximize the margin,
and most classification losses depend only on the margin, namely margin-based losses.
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Some losses for classification. Let m = yf(x) be the margin.

• Zero-One loss: ℓ(m) = 1m≤0. However, the empirical risk for the 0-1 loss is

R̂n(f) =
1

n

n∑
i=1

1yif(xi)≤0, (23)

which is non-convex, not differentiable, and not even continuous. Therefore, minimizing empirical 0-1 risk is
computationally infeasible, and optimization is NP-hard.

• SVM or hinge loss: ℓ(m) = max {1−m, 0}. The hinge loss is convex and upper bounds the 0-1 loss. However,
it is not differentiable at m = 1.

• Logistic or log loss: ℓ(m) = log(1 + exp(−m)). The logistic loss is differentiable, and it always rewards a
larger margin (the loss is never 0).

The plots of these classification losses are shown as in Figure 2.

Figure 2: The comparison among different losses for classification introduced above.

2/7 Lecture

4 Feature Selection and Regularization

4.1 Feature Selection

Recall the trade-off between approximation error and estimation error. Bigger F can provide better approximation
but may lead to overfit (needs more samples); smaller F is less likely to overfit but can be far from the true function.
To control the size of F , we need some measure of its complexity: the number of variables/features, the degree of
the polynomial, etc.

General approach. Learn a sequence of models varying in complexity from the training data F1 ⊂ F2 ⊂ · · · ⊂
Fn ⊂ · · ·F . For instance, F can be the family of all polynomials and Fd can be all polynomials with degree ≤ d.
Then, select one of these models based on a score (e.g., validation error). However, this approach can be really
expensive. Consider feature selection in linear regression, where F denotes the linear functions using all features
and Fd denotes the linear functions using fewer than d features. Clearly we would have to iterate over all subsets
which is exponential.

Greedy selection approach. The forward greedy selection algorithm is described as in Algorithm 3

8



Algorithm 3 Forward Greedy Selection

1: Initialize S ← ∅;
2: repeat
3: for each feature i /∈ S do
4: Learn a model using features S ∪ {i};
5: Compute the score of the model αi;
6: end for
7: j ← argmaxi/∈S αi;
8: S ← S ∪ {j} unless αj does not improve the current best score;
9: until αj does not improve the current best score;

There is also a backward greedy selection scheme which starts with all features and continuously removes the worst.
Note that forward and backward greedy selection algorithms do not guarantee to find the best solution, and do not
in general result in the same subset.

4.2 l2 and l1 Regularization

An objective function that balances the number of features and the prediction performance is

Score(S) = Training Loss(S) + λ|S|, (24)

where larger λ can penalize complex models more heavily. Normally, we would find λ using the validation data.

Definition 4.1 (Tikhonov regularization). For complexity measure Ω : F → [0,∞) and a fixed λ > 0, the objective
under Tikhonov regularization can be formalized as

min
f∈F

(
1

n

n∑
i=1

ℓ(f(xi), yi) + λΩ(f)

)
. (25)

Linear regression with l2 regularization. We have a linear model F =
{
f : Rd → R; f(x) = w⊤x, w ∈ Rd

}
,

with the square loss function ℓ(ŷ, y) = (y − ŷ)2 and training data Dn = {(x1, y1), · · · , (xn, yn)}. The linear least
squares regression is the empirical risk minimizer for square loss over F , which is

ŵ = argminw∈Rd

1

n

n∑
i=1

(
w⊤xi − yi

)2
. (26)

This often overfits, especially when d is large compared with n. For instance, in NLP one can have 1000000 features
for 10000. documents. Therefore, we want to penalize large weights by

ŵ = argminw∈Rd

(
1

n

n∑
i=1

(
w⊤xi − yi

)2
+ λ ∥w∥22

)
. (27)

This is also known as ridge regression. Note that l2 regularization reduces sensitivity to changes in input. To see
this, we can use the Cauchy-Schwarz inequality to compute that∣∣∣f̂(x+ h)− f̂(x)

∣∣∣ = ∣∣w⊤(x+ h)− w⊤x
∣∣ = ∣∣w⊤h

∣∣ ≤ ∥w∥2 ∥h∥2 . (28)

This proves a bound on the maximum rate of change of f̂ , thus penalizing large ∥w∥22 is penalizing f̂ with too large
rate of change which often means overfitting. Now we compare linear regression and ridge regression:

Linear regression Ridge regression

L(w) = 1
2 ∥Xw − y∥

2
2 Objective L(w) = 1

2 ∥Xw − y∥
2
2 +

λ
2 ∥w∥

2
2

∇L(w) = X⊤(Xw − y) Gradient ∇L(w) = X⊤(Xw − y) + λw
X⊤Xw = X⊤y Closed-form solution (X⊤X + λI)w = X⊤y

note: (X⊤X + λI) is always invertible

(29)
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Linear regression with l1 regularization. Linear regression with l1 regularization, also called Lasso regression,
penalizes large weights by

ŵ = argminw∈Rd

(
1

n

n∑
i=1

(
w⊤xi − yi

)2
+ λ ∥w∥1

)
. (30)

Constrained versus penalized. Recall the difference between constrained empirical risk minimization (Ivanov)
and penalized empirical risk minimization (Tikhonov). For complexity measure Ω : F → [0,∞) and a fixed r ≥ 0,
Ivanov regularization can be formulated as

min
f∈F

1

n

n∑
i=1

ℓ(f(xi), yi), such that Ω(f) ≤ r. (31)

On the other hand, for the same complexity measure Ω and a fixed λ > 0, Tikhonov regularization is formulated as

min
f∈F

(
1

n

n∑
i=1

ℓ(f(xi), yi) + λΩ(f)

)
. (32)

Here, r and λ has the same role. Let L : F → R be any performance measure of f (e.g., the empirical risk of f). For
many L and Ω, Ivanov and Tikhonov are equivalent: any solution f∗ we can get from Ivanov, we can also get from
Tikhonov and vice versa. The conditions for this equivalence can be derived from the Lagrangian duality theory,
and in practice, both approaches are effective: we will use whichever one is more convenient for training or analysis.

4.3 Sparsity

Consider F = {f ; f(x) = w1x1 + w2x2}, then we can represent each function in F as a point (w1, w2) ∈ R2. We
know that the Ivanov regularization constraint with l1 regularization is the closure of the diamond |w1| + |w2| = r,
and that with l2 regularization is the closure of the circle w2

1 + w2
2 = r2. As we can see in Figure 3, where the red

lines represent the contours of the empirical risk R̂n(w) =
∑n

i=1

(
w⊤xi − yi

)2
and the blue regions represent the area

satisfying the complexity constraints, l1 solutions tend to touch the corners, where w1 = 0.

Figure 3: Estimation pictures for the lasso regression (with l1 regularization, left) and the ridge regression (with l2
regularization, right).

For l2 regularization, as wi becomes smaller, there is less and less penalty. The gradient, which determines the pace
of the optimization, decreases as wi approaches zero, and there is less incentive to make a small weight exactly equal
to zero. On the other hand, for l1 regularization, the gradient stays the same as the weights approach zero, and
tends to push the weights to exactly zero even if they are already small, as is shown in Figure 3.

lq regularization. We can generalize to lq norm such that ∥w∥qq =
∑n

i=1 |wi|q. Note that ∥w∥q is a norm only if
q > 1. The larger q, the closer the contour to a rectangle. The smaller q, the closer the contour to a cross. Therefore,
when q < 1, the lq constraint is not convex, and thus hard to optimize (Lasso is good enough in practice regarding
sparsity). Also note that the l0 norm is defined as the number of non-zero weights, i.e., subset selection.
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4.4 Minimizing the Lasso Objective

The ridge regression objective is differentiable, and there is a closed form solution. However, the Lasso objective

min
w∈Rd

n∑
i=1

(
w⊤xi − yi

)2
+ λ ∥w∥1 (33)

is not differentiable since ∥w∥1 is not differentiable. Therefore, we will need some other approaches to find the
minimum, including quadratic programming, projected stochastic gradient descent, and coordinate descent.

Quadratic programming. For any a ∈ R, we denote its positive part as a+ and its negative part as a−, then
clearly a = a+ − a− and |a| = a+ + a−. Generalizing this notation to Rd, we can reformulate the Lasso objective as

min
w+,w−

n∑
i=1

(
(w+ − w−)⊤xi − yi

)2
+ λ · 1⊤(w+ + w−), subject to w+

i ≥ 0, w−
i ≥ 0, ∀i. (34)

This objective is differentiable (and in fact, convex and quadratic). Therefore, this is a convex quadratic program
with linear constraints. Quadratic programming is a very well understood problem, and we can plug this formulation
directly into a generic quadratic programming solver. However, note that this formulation does not include the
constraint that w+

i and w−
i are the positive and negative parts of some w, but it turns out that such a constraint is

not necessary. Indeed, we can prove that the previous reformulation is equivalent to the following:

min
w

min
a,b

n∑
i=1

(
(a− b)⊤xi − yi

)2
+ λ · 1⊤(a+ b), subject to ai ≥ 0, bi ≥ 0, ai − bi = wi, ai + bi = |wi|, ∀i. (35)

Projected stochastic gradient descent. Now that we have a differentiable objective, we could also use gradient
descent. However, to handle the constraints, we must project w+ and w− into the constraint set after each step. In
other words, if any component of w+ or w− becomes negative after some step, we set it back to 0.

Coordinate descent. The goal is to minimize L(w) = L(w1, · · · , wd) over w = (w1, · · · , wd) ∈ Rd. In gradient de-
scent or stochastic gradient descent, each step potentially changes all entries of w. However, in coordinate descent,
each step adjusts only a single coordinate wi. The coordinate descent algorithm is described as in Algorithm 4.

Algorithm 4 Coordinate Descent

1: Initialize w ← 0;
2: repeat
3: Choose a coordinate j ∈ {1, · · · , d};
4: wj ← argminwj

L(w1, · · · , wj , · · · , wd);
5: until the stopping criterion is satisfied;

Note that if the coordinate is chosen uniformly at random, then the algorithm is stochastic coordinate descent.
If the coordinate is chosen based on a cyclic order, then the algorithm is cyclic coordinate descent. In general, the
coordinate descent method is feasible since the Lasso objective coordinate minimization has a closed form solution.
If

ŵj = argminwj∈R

n∑
i=1

(
w⊤xi − yi

)2
+ λ ∥w∥1 , (36)

then we have that

ŵj =


(cj + λ)/aj , if cj ∈ (−∞,−λ),
0, if cj ∈ [−λ, λ],
(cj − λ)/aj , if cj ∈ (λ,∞),

(37)

where

aj = 2

n∑
i=1

x2i,j , cj = 2

n∑
i=1

xi,j
(
yi − w⊤

−jxi,−j

)
, (38)
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xi,j is the jth component of xi, w−j is w without the jth component, and xi,−j is xi without the jth component.
In general, coordinate descent is not competitive with gradient descent, since its convergence rate is slower and the
iteration cost is similar. However, it works very well for certain problems, with example applications such as the
Lasso regression and support vector machines (SVM).

2/14 Lecture

5 Support Vector Machines (SVM)

5.1 The SVM Objective

There are generally two ways to derive the SVM optimization problem, that is, by maximizing the (geometric) margin
or by minimizing the hinge loss with l2 regularization.

5.1.1 Maximum Margin Classifier

Consider a linearly separable dataset D , and we want to find a separating hyperplane such that w⊤xi > 0 for all xi
where yi = 1 and w⊤xi < 0 for all xi where yi = −1. We introduce the perceptron algorithm described as in
Algorithm 5, which guarantees to find a zero-error classifier (if exists) in finite steps.

Algorithm 5 Perceptron

1: Initialize w ← 0;
2: repeat
3: for (xi, yi) ∈ D do
4: if yiw

⊤xi < 0 (implying a wrong prediction) then
5: w ← w + yixi;
6: end if
7: end for
8: until the stopping criterion is satisfied (there does not exist misclassified examples);

However, for separable data, there are infinitely many zero-error classifiers, and the perceptron algorithm does not
return a unique solution. In this case, we would prefer the classifier that is farthest from both classes of points, and
the distance is measured by the geometric margin representing the smallest distance between the hyperplane and
the points. Let us formalize the problem.

Definition 5.1. We say that D = {(xi, yi)}ni=1 is linearly separable if there exists w ∈ Rd and b ∈ R, such that

yi(w
⊤xi + b) > 0, ∀i ∈ {1, · · · , n} . (39)

The set
{
v ∈ Rd; w⊤v + b = 0

}
is called the separating hyperplane.

Definition 5.2. Let H be a hyperplane that separates the dataset D = {(xi, yi)}ni=1. The geometric margin of
this hyperplane is

min
i
d(xi, H), (40)

the distance from the hyperplane to the closest data point.

We want to maximize the geometric margin, and given separating hyperplane H =
{
v; w⊤v + b = 0

}
, the objective

can be written as

maximize min
i
d(xi, H) = min

i

∣∣∣∣w⊤xi + b

∥w∥2

∣∣∣∣ = min
i

yi(w
⊤xi + b)

∥w∥2
. (41)

By moving the inner minimization problem, we can reformulate the problem as

maximize M,

subject to
yi(w

⊤xi + b)

∥w∥2
≥M, ∀i. (42)
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Fixing the norm ∥w∥2 to M−1, we can obtain

maximize
1

∥w∥2
,

subject to yi(w
⊤xi + b) ≥ 1, ∀i, (43)

which is equivalent to

minimize
1

2
∥w∥22 ,

subject to yi(w
⊤xi + b) ≥ 1, ∀i. (44)

Note that yi(w
⊤xi+b) is the (functional) margin. In other words, we want to find the minimum norm solution which

has a margin of at least 1 on all examples.

Soft-margin SVM. It is possible that the dataset is not separable, i.e., for any w where will be points with a
negative margin. Therefore, we introduce slack variables to penalize small margins, such that

minimize
1

2
∥w∥22 +

C

n

n∑
i=1

ξi,

subject to yi(w
⊤xi + b) ≥ 1− ξi, ∀i,

ξi ≥ 0, ∀i. (45)

If ξi = 0 for all i, then the problem is reduced to hard-margin SVM. If ξi = 1, it means that xi lies on the decision
hyperplane. If ξi > 1, it means that xi is past ξi − 1 margin width beyond the decision hyperplane. Some examples
are shown as in Figure 4.

Figure 4: The implication of different values of ξ in soft margin SVM.

5.1.2 Minimizing the Hinge Loss

Recall that the SVM (or hinge) loss is defined as

ℓhinge(m) = max {1−m, 0} = (1−m)+, (46)

the “positive part” of 1 −m where m = yf(x) is the margin. Hinge is a convex but not differentiable at m = 1.
Moreover, it imposes a “margin error” only when m < 1. Using empirical risk minimization with l2 regularization
in Tikhonov style and the hinge loss, the SVM prediction function is the solution to

min
w∈Rd,b∈R

1

2
∥w∥22 +

C

n

n∑
i=1

max
{
0, 1− yi(w⊤xi + b)

}
. (47)
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The objective function is not differentiable because of the max operator, so we need to reformulate the problem as

minimize
1

2
∥w∥22 +

C

n

n∑
i=1

ξi,

subject to ξi ≥ max
{
0, 1− yi(w⊤xi + b)

}
, ∀i, (48)

which is equivalent to

minimize
1

2
∥w∥22 +

C

n

n∑
i=1

ξi,

subject to ξi ≥ 1− yi(w⊤xi + b), ∀i,
ξi ≥ 0, ∀i. (49)

5.2 Subgradient Descent for SVM

The SVM objective function is

J(w) =
1

n

n∑
i=1

ℓhinge(yiw
⊤xi) + λ ∥w∥22 , (50)

where ℓhinge(m) = max {0, 1−m}. It is not differentiable, but think of gradient descent first. The gradient can be
expressed as

∇wJ(w) = ∇w

(
1

n

n∑
i=1

ℓhinge(yiw
⊤xi) + λ ∥w∥22

)
=

1

n

n∑
i=1

∇wℓhinge(yiw
⊤xi) + 2λw. (51)

The derivative of the hinge loss ℓhinge(m) = max {0, 1−m} is

ℓ′hinge(m) =


0, if m > 1,

undefined, if m = 1,

−1, if m < 1.

(52)

By the chain rule, we thus have that

∇wℓhinge(yiw
⊤xi) = ℓ′hinge(yiw

⊤xi) · yixi =


0, if yiw

⊤xi > 1,

undefined, if yiw
⊤xi = 1,

−yixi, if yiw
⊤xi < 1,

(53)

and thus if yiw
⊤xi ̸= 1 for all i, then

∇wJ(w) =
1

n

∑
yiw⊤xi<1

(−yixi) + 2λw, (54)

but ∇wJ(w) is undefined otherwise.

Subgradient. Recall the definition that if f : Rd → R is convex and differentiable, then for any x, y ∈ Rd,

f(y) ≥ f(x) = ∇f(x)⊤(y − x). (55)

This inspires the following definition.

Definition 5.3. A vector g ∈ Rd is a subgradient of a convex function g : Rd → R at x, if for all z ∈ Rd,

f(z) ≥ f(x) + g⊤(z − x). (56)
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An illustration of the definition of subgradient is shown as in Figure 5.

Figure 5: An illustration of subgradients. The blue curve is the graph of f(x) (not differentiable at x0), and each
red line x 7→ f(x0) + g⊤(x− x0) is a global lower bound on f(x), where g is some subgradient of f at x0.

Definition 5.4. The set of all subgradients of f at x is called the subdifferential, denoted as ∂f(x). We say that
f is subdifferentiable at x if there exists at least one subgradient of f at x.

Remark 5.5. For convex functions, f is differentiable at x if and only if ∂f(x) = {∇f(x)}. Moreover, the subdif-
ferential of the convex function f is always non-empty. Finally, x is a global optimum if and only if 0 ∈ ∂f(x). For
non-convex functions, the subdifferential may be empty (if there exists no global underestimator).

Rules for computing subdifferential. Assume that f , f1, and f2 are convex functions.

• Non-negative scaling: ∂(αf)(x) = α∂f(x), for α > 0.

• Summation: ∂(f1 + f2)(x) = ∂f1(x) + ∂f2(x), comprehended as the Minkowski sum.

• Composing with affine functions: ∂f(Ax+ b) = A⊤∂f(z), where z = Ax+ b.

• Convex combinations of argmax gradients:

∂(max {f1, f2})(x) =


{∇f1(x)} , if f1(x) > f2(x),

{θ∇f1(x) + (1− θ)∇f2(x); θ ∈ [0, 1]} , if f1(x) = f2(x),

{∇f2(x)} , if f1(x) < f2(x).

(57)

Therefore, we can compute the gradient of the objective function

J(w) =
1

n

n∑
i=1

max
{
0, 1− yiw⊤xi

}
+ λ ∥w∥22 (58)

as

∂wJ(w) =


{2λw} , if yiw

⊤xi > 1,

{(1− θ)(−yixi) + 2λw; θ ∈ [0, 1]} , if yiw
⊤xi = 1,

{−yixi + 2λw} , if yiw
⊤xi < 1.

(59)

Subgradient descent. We know that the gradient always points to the direction of fastest ascent, but this is not
necessarily the case for subgradients. If we move along the opposite direction of some subgradient in each step, this
can increase the objective, but in the long term, we will get closer to the minimizer if f is convex and the learning
rate is small enough. The method of stochastic subgradient descent is described as in Algorithm 6. Specifically,
we take the following subgradient from the subdifferential computed as in (59):

1yiw⊤xi<1(−yixi) + 2λw, (60)

so the updating step can be expressed as

w ← w + η1yiw⊤xi<1(yixi)− 2ηλw = (1− 2ηλ)w + η1yiw⊤xi<1(yixi). (61)
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Algorithm 6 Stochastic Subgradient Descent (Pegasos)

1: Initialize w ← 0, t← 0;
2: repeat
3: Randomly shuffle the data D = {(xi, yi)}ni=1;
4: for j = 1, · · · , n do
5: t← t+ 1, η ← 1/λt;
6: if yjw

⊤xj < 1 then
7: w ← (1− 2ηλ)w + ηyjxj ;
8: else
9: w ← (1− 2ηλ)w;

10: end if
11: end for
12: until the stopping criterion is satisfied;

Note that subgradients do not necessarily converge to as we get closer to the minimizer w∗, and that is why we used
decreasing step sizes (e.g., O(t−1) or O(t−1/2)). Also, subgradient methods are much slower than gradient descent,
i.e., O(ϵ−2) versus O(ϵ−1) for convex functions.

5.3 The Dual Problem

In addition to subgradient descent, we can directly solve the optimization problem using a quadratic programming
solver. Recall that the SVM optimization problem is equivalent to

minimize
1

2
∥w∥22 +

C

n

n∑
i=1

ξi,

subject to ξi ≥ 1− yi(w⊤xi + b), ∀i,
ξi ≥ 0, ∀i, (62)

where the objective function is differentiable, with n+ d+ 1 unknowns and 2n affine constraints.

Why we care about the dual. The general (inequality-constrained) optimization problem can be formulated as

minimize f0(x),

subject to fi(x) ≤ 0, ∀i ∈ {1, · · · ,m} . (63)

The Lagrangian for this optimization problem is

L(x, λ) = f0(x) +

m∑
i=1

λifi(x), (64)

where λi are called the Lagrange multipliers (also called the dual variables). The Lagrange dual function is
then defined as

g(λ) = inf
x
L(x, λ), (65)

which is concave and satisfies the lower bound property: if λ ≥ 0, then g(λ) ≤ p∗, where p∗ is the optimal
value of the optimization problem. Note however that g(λ) could be −∞, implying an uninformative lower bound.
Therefore, for any primal form optimization problem as in (63), there is a recipe for constructing a corresponding
Lagrangian dual problem, that is,

maximize g(λ),

subject to λi ≥ 0, ∀i ∈ {1, · · · ,m} . (66)

Note that this is still a convex optimization problem. Moreover, the dual variables often have interesting and relevant
interpretations, and provide certificates for optimality. Denote d∗ as the optimal value for the dual problem. We
always have p∗ ≥ d∗ which is called weak duality, and if p∗ = d∗, we say that the problems have strong duality, and
this is fairly typical for convex problems.
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The SVM dual problem. Recall the SVM optimization problem, and we can rewrite the constraint to that it
can be formulated as

minimize
1

2
∥w∥22 +

C

n

n∑
i=1

ξi,

subject to 1− yi(w⊤xi + b)− ξi ≤ 0, ∀i,
− ξi ≤ 0, ∀i, (67)

The dual problem of the SVM optimization problem can be formulated as

maximize inf
w,b,ξ

(
1

2
∥w∥22 +

C

n

n∑
i=1

ξi +

n∑
i=1

αi(1− yi(w⊤xi + b)− ξi) +
n∑

i=1

λi(−ξi)

)
,

subject to αi ≥ 0, ∀i,
λi ≥ 0, ∀i, (68)

which can be rewritten as

maximize inf
w,b,ξ

(
1

2
w⊤w +

n∑
i=1

ξi

(
C

n
− αi − λi

)
+

n∑
i=1

αi(1− yi(w⊤xi + b))

)
=: inf

w,b,ξ
L(w, b, ξ, α, λ),

subject to αi ≥ 0, ∀i,
λi ≥ 0, ∀i. (69)

Note that

∂wL = 0 ⇐⇒ w −
n∑

i=1

αiyixi = 0 ⇐⇒ w =

n∑
i=1

αiyixi, (70)

∂bL = 0 ⇐⇒ −
n∑

i=1

αiyi = 0 ⇐⇒
n∑

i=1

αiyi = 0, (71)

∂ξiL = 0 ⇐⇒ C

n
− αi − λi = 0 ⇐⇒ αi + λi =

C

n
, ∀i. (72)

Substituting these conditions, we have that

L(w, b, ξ, α, λ) =
1

2

∑
i,j

αiαjyiyjx
⊤
i xj +

n∑
i=1

αi −
∑
i,j

αiαjyiyjx
⊤
i xj =

n∑
i=1

αi −
1

2

∑
i,j

αiαjyiyjx
⊤
i xj . (73)

Therefore, we can write that

inf
w,b,ξ

L(w, b, ξ, α, λ) =

{∑n
i=1 αi − 1

2

∑
i,j αiαjyiyjx

⊤
i xj , if

∑n
i=1 αiyi = 0, and αi + λi =

C
n , ∀i,

−∞, otherwise.
(74)

The dual problem can thus be finally reformulated as

sup
α,λ

 n∑
i=1

αi −
1

2

∑
i,j

αiαjyiyjx
⊤
i xj

 , (75)

such that
n∑

i=1

αiyi = 0, αi ∈
[
0,
C

n

]
, ∀i. (76)

Insights from the dual problem. Given the solution α∗ to the dual problem, the primal solution would be
w∗ =

∑n
i=1 α

∗
i yixi by (70). Note that α∗

i ∈ [0, C/n], so that C controls the maximum weight on each example. Given
that the SVM dual problem has strong duality, we must have that

α∗
i (1− yif∗(xi)− ξ∗i ) = 0, λ∗i ξ

∗
i =

(
C

n
− α∗

i

)
ξ∗i = 0, (77)

since those are the terms that give the complementary slackness in the dual problem, and recall that λ∗i +α
∗
i = C/n.

Now recall that ξ∗i = max {0, 1− yif∗(xi)} is the hinge loss on (xi, yi), so we can observe the following:
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• If yif
∗(xi) > 1, then the margin loss is ξ∗i = 0, so we must have α∗

i = 0 by the left-hand equation of (77).

• If yif
∗(xi) < 1, then the margin loss is ξ∗i > 0, so we must have αi = C/n by the right-hand equation of (77).

• If α∗
i = 0, then ξ∗i = 0 by the right-hand equation of (77), which implies no loss, so yif

∗(xi) ≥ 1.

• If α∗
i ∈ (0, C/n), then ξi = 0 by the right-hand equation of (77), and further 1− yif∗(xi) = 0 by the left-hand

equation of (77).

• If α∗
i = C/n, then ξ∗i = 1− yif∗(xi) by the left-hand equation of (77), which implies yif

∗(xi) ≤ 1.

To summarize, the relations between the margin and the example weights αi are

α∗
i = 0 =⇒ yif

∗(xi) ≥ 1, (78)

0 < α∗
i < C/n =⇒ yif

∗(xi) = 1, (79)

α∗
i = C/n =⇒ yif

∗(xi) ≤ 1, (80)

and

yif
∗(xi) < 1 =⇒ α∗

i = C/n, (81)

yif
∗(xi) = 1 =⇒ α∗

i ∈ [0, C/n], (82)

yif
∗(xi) > 1 =⇒ α∗

i = 0. (83)

The xi corresponding to α∗
i > 0 are called the support vectors, and few margin errors or “on the margin” examples

implies the sparsity in the input examples. Why?

2/21 Lecture

6 Kernel Methods

6.1 Feature Maps

Our general learning theory setup makes no assumptions on the input space X , but we require X = Rd for the
specific methods we have developed, including ridge regression, Lasso regression, and SVMs. Our hypothesis space
for all of these was affine functions on Rd, i.e.,

F =
{
x 7→ w⊤x+ b; w ∈ Rd, b ∈ R

}
. (84)

However, in many occasions we want to use inputs not natively in Rd, for instance text documents, image files, sound
recordings, DNA sequences, etc. However, everything in a computer is a sequence of numbers. The ith entry of each
sequence should have the same “meaning”.

Definition 6.1. Mapping an input from X to a vector in Rd is called feature extraction or featurization.

We use a feature map ϕ : X → Rd to map into the feature space Rd, and use the same hypothesis space as
before on the feature space. For linear models, to grow the hypothesis space, we must add features. Sometimes we
say that a larger hypothesis space is more expressive, i.e., it can fit more relationships between input and action.

Handling nonlinearity with linear models. For linear predictors, it is important how features are added. The
relation between a feature and the label may not be linear. Three types of nonlinearities can cause problems, which
include non-monotonicity, saturation, and interactions between features.

• Non-monotonicity: Let the feature map ϕ(x) = (1, temperature(x)). The action is to predict health score
y ∈ R (positive is good), and the hypothesis F is the collection of all affine functions of temperature. The
issue is, health is not an affine function of temperature, since both very high and very low temperatures are
bad. One solution is to say ϕ(x) = (1, (temperature(x) − 37)2), where 37 is the “normal” temperature is
Celcius. However this may require manually-specified domain knowledge. An easier way to do this is to put
ϕ(x) = [1, temperature(x), temperature(x)2]. This is in fact more expressive than the previous solution.
The general rule is, features should be simple building blocks that can be pieced together.
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• Saturation: Suppose we are finding products relevant to a user’s query. The input will be product x, and
the action is to score the relevance of x to the user’s query. Now let the feature map be ϕ(x) = (1, N(x)),
where N(x) denotes the number of people who bought x. We expect a monotonic relationship between N(x)
and the relevance, but we also expect diminishing return. To achieve this, we can use smooth nonlinear
transformations such as ϕ(x) = (1, log(1+N(x))). Discretization can be another solution, for instance, ϕ(x) =
(10≤N(x)<10,110≤N(x)<100, · · · ).

• Interactions: Say we take patient information x and score the health status y ∈ R (higher is better).
Let the feature map be ϕ(x) = (height(x), weight(x)). The issue here is, we need some interaction be-
tween height and weight, since the weight relative to the height is important. One way to do this is to
use the “ideal weight” formula weight(x) = 52 + 1.9(height(x) − 60), but again this requires additional
information. A stupid but more flexible way is to simply include all the second order features, such that
ϕ(x) = (1, height(x), weight(x), height(x)2, weight(x)2, height(x) · weight(x)). The general principle is,
simpler building blocks can replace a single “smart” feature.

If we want to deal well with the three previously mentioned issues, we will need large feature spaces. Especially,
interaction terms are useful building blocks to model nonlinearities in features, but dealing with high dimensions can
lead to huge number of cross terms. Very large feature spaces then have two potential issues, including the overfitting
problem and the high memory and computational costs. The solution to overfitting is simple: we just handle with
regularization. The solution to high cost is trickier: we will use kernel methods, as we will discuss later.

6.2 The Kernel Trick

Let ψ : X → Rd be a feature map. Recall that the SVM objective (with an explicit feature map) can be written as

lim
w∈Rd

(
1

2
∥w∥2 + C

n

n∑
i=1

max
{
0, 1− yiw⊤ψ(xi)

})
. (85)

The computation is costly if d is large, for instance, with high-degree monomials. Now recall that by Lagrangian
duality, this is equivalent to solving the dual problem

maximize

n∑
i=1

αi −
1

2

∑
i,j

αiαjyiyjψ(xi)
⊤ψ(xj), (86)

such that
n∑

i=1

αiyi = 0, αi ∈
[
0,
C

n

]
, ∀i. (87)

If α∗ is an optimal value, then

w∗ =

n∑
i=1

α∗
i yiψ(xi), f̂(x) =

n∑
i=1

α∗
i yiψ(xi)

⊤ψ(xj). (88)

A key observation here is that ψ(x) only shows up in inner products with some other ψ(x′) for both training and
inference. Therefore, we introduce degree-2 monomials using ψ : R2 → R3, such that ψ(x1, x2) = (x21,

√
2x1x2, x

2
2).

The inner product is then

ψ(x)⊤ψ(x′) = x21x
′2
1 + (

√
2x1x2)(

√
2x′1x

′
2) + x22x

′2
2 = (x1x

′
1 + x2x

′
2)

2 = (x⊤x′)2. (89)

Consequently, we can calculate the inner product ψ(x)⊤ψ(x′) in the original input space without even accessing the
features ψ(x). Now, consider monomials up to degree-2, such that (x1, x2) 7→ (1,

√
2x1,
√
2x2, x

2
1,
√
2x1x2, x

2
2). The

inner product can be computed as

ψ(x)⊤ψ(x′) = 1 + 2x1x
′
1 + 2x2x

′
2 + x21x

′2
1 + 2x1x2x

′
1x

′
2 + x22x

′2
2 = (1 + x1x

′
1 + x2x

′
2)

2 = (1 + x⊤x′)2. (90)

More generally, for feature maps producing monomials up to degree-p, we have that

ψ(x)⊤ψ(x′) = (1 + x⊤x′)p. (91)

Using this kernel trick, we can do implicit computation in O(d) rather than doing explicit computation on features
which takes O(dp). Next we will formalize these observations.
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Kernel function. Let X be the input space and H be the feature space, which is a Hilbert space such as Rd.
For the feature map ψ : X →H , the corresponding kernel function is

k(x, x′) = ⟨ψ(x), ψ(x′)⟩ , (92)

where ⟨·, ·⟩ denotes the inner product associated with H . The reason why we introduce this kernel function notation
is that, we can sometimes evaluate k(x, x′) without explicitly computing ψ(x) and ψ(x′). We will formalize the
occasions where we can use this kernel function trick to improve computational complexity.

Definition 6.2. A method is kernelized if every feature vector ψ(x) only appears inside an inner product with
another feature vector ψ(x′). This applies to both the optimization problem and the prediction function.

Definition 6.3. The kernel matrix for a kernel k on x1, · · · , xn ∈X is

K = (k(xi, xj))i,j =

k(x1, x1) · · · k(x1, xn)
...

. . .
...

k(xn, x1) · · · k(xn, xn)

 ∈ Rn×n. (93)

In machine learning, this is also called a Gram matrix, but traditionally (in linear algebra), Gram matrices are
defined without reference to a kernel or feature map. The kernel matrix summarizes all the information we need
about the training inputs x1, · · · , xn to solve a kernelized optimization problem. In the kernelized SVM, for instance,
we can replace ψ(xi)

⊤ψ(xj) with Kij , so as to obtain the alternative form of the dual problem

maximize

n∑
i=1

αi −
1

2

∑
i,j

αiαjyiyjKij , (94)

such that
n∑

i=1

αiyi = 0, αi ∈
[
0,
C

n

]
, ∀i. (95)

Furthermore, if α∗ is an optimal value, then

w∗ =

n∑
i=1

α∗
i yiψ(xi), f̂(x) =

n∑
i=1

α∗
i yiKij . (96)

The kernel trick is especially useful when d≫ n, but note that computing the kernel matrix may still depends on d
and the essence of the trick is getting around this O(d) dependence.

6.3 Example Kernels

One way to get a kernel is to explicitly construct ψ(x) : X → Rd (for instance, monomials) and define k(x, x′) =
ψ(x)⊤ψ(x′). Another way is to directly define the kernel function k(x, x′) and verify that it corresponds to
⟨ψ(x), ψ(x′)⟩ for some ψ.Note that it is always useful to think of the kernel k(x, x′) as a similarity score for
x and x′. There are many theorems to help us with the second approach.

Positive semidefinite kernels. Recall that in linear algebra, a real, symmetric matrix M ∈ Rn×n is positive
semidefinite if for any x ∈ Rn, we have that x⊤Mx ≥ 0. Moreover, the following conditions are each necessary and
sufficient for a symmetric matrix M ot be positive semidefinite.

• M can be factorized as M = R⊤R for some matrix R.

• All eigenvalues of M are nonnegative.

Definition 6.4. A symmetric function k : X ×X → R is a positive definite kernel on X if for any finite set
{x1, · · · , xn} ∈X , the kernel matrix on this set

K = (k(xi, xj))i,j =

k(x1, x1) · · · k(x1, xn)
...

. . .
...

k(xn, x1) · · · k(xn, xn)

 , (97)

is a positive semidefinite matrix.
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Note that symmetry in this definition means that k(x, x′) = k(x′, x) for any x, x′ ∈ X . An equivalent definition is
that for any finite set {x1, · · · , xn} ∈X , we have that

n∑
i=1

n∑
j=1

αiαjk(xi, xj) ≥ 0, (98)

given αi ∈ R for all i ∈ {1, · · · , n}. Now let us move on to see why we are interested in positive definite kernels.

Theorem 6.5 (Mercer’s Theorem). A symmetric function k(x, x′) can be expressed as an inner product

k(x, x′) = ⟨ψ(x), ψ(x′)⟩ (99)

for some feature map ψ if and only if k(x, x′) is positive semidefinite.

Generating new kernels. Though given Mercer’s theorem, proving that a kernel function is positive semidefinite
is typically not easy. However, we can construct new kernels from valid kernels. Suppose that k, k1, k2 : X ×X → R
are positive definite kernels, then the following are also positive definite kernels.

• Nonnegative scaling: k̃(x, x′) = αk(x, x′) for α ≥ 0.

• Sum: k̃(x, x′) = k1(x, x
′) + k2(x, x

′).

• Product: k̃(x, x′) = k1(x, x
′)k2(x, x

′).

• Recursion: k̃(x, x′) = k(ψ(x), ψ(x′)) for any function ψ.

• Transformation: k̃(x, x′) = f(x)f(x′) for any 1-dimensional feature map f .

Common kernels.

• Linear kernel: The input space is X = Rd, and the feature space is H = Rd with standard inner product.
Consider the feature map ψ(x) = x, then the kernel is k(x, x′) = x⊤x′.

• Quadratic kernel: The input space is X = Rd, and the feature space is H = RD, where D = d +
(
d
2

)
.

Consider the feature map

ψ(x) = (x1, · · · , xd, x21, · · · , x2d,
√
2x1x2, · · · ,

√
2xixj , · · · ,

√
2xd−1xd), (100)

then for any x, x′ ∈ Rd, we have that

k(x, x′) = ⟨ψ(x), ψ(x′)⟩ = ⟨x, x′⟩+ ⟨x, x′⟩2 . (101)

The computation cost for inner product with explicit mapping would be O(d2) since D = d+
(
d
2

)
≈ d2/2, but

the computation cost for implicit kernel calculation is just O(d).

• Polynomial kernel (in Rd): The input space is X = Rd, and consider a feature map with all monomials up
to degree M . An example is (90) for the SVM objective. The kernel function would then be

k(x, x′) = (1 + ⟨x, x′⟩)M . (102)

The computation cost for implicit kernel calculation is the same for any M , but the cost of explicit inner
product computation grows rapidly inM , so using kernel tricks would be a great improvement to computational
complexity especially when M is large (i.e., the feature space is large).

• Radial Basis Function (RBF) / Gaussian Kernel: The input space is X = Rd, and the RBF (Gaussian)
kernel is defined as

k(x, x′) = exp

(
−∥x− x′∥2

2σ2

)
, (103)

where σ2 is known as the bandwidth parameter. This is probably the most common nonlinear kernel to use.
We will go back to this later.
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Some Linear Algebra: Inner Product Spaces and Hilbert Spaces

Definition 6.6. An inner product space over R is a vector space V with an inner product, defined as a mapping

⟨·, ·⟩ : V × V → R, (104)

which has the following properties: for all x, y, z ∈ V and a, b ∈ R, we have that

• Symmetry: ⟨x, y⟩ = ⟨y, x⟩.

• Linearity: ⟨ax+ by, z⟩ = a ⟨x, z⟩+ b ⟨y, z⟩.

• Positive-definiteness: ⟨x, x⟩ ≥ 0, and ⟨x, x⟩ = 0 if and only if x = 0V .

Inner products are nice because that give us notions of “size”, “distance”, and “angle” in the vector space. For an
inner product space, we can define a norm as ∥x∥ =

√
⟨x, x⟩.

Definition 6.7. Two vectors x and x′ are orthogonal if ⟨x, x′⟩ = 0, which we denote by x ⊥ x′. Moreover, a vector
x is orthogonal to a set S if x ⊥ s for all s ∈ S, which we denote by x ⊥ S.
Theorem 6.8 (Pythagorean Theorem). If x ⊥ x′, then ∥x+ x′∥2 = ∥x∥2 + ∥x′∥2.

Proof. For any vectors x ⊥ x′, we have that ⟨x, x′⟩ = ⟨x′, x⟩ = 0. Therefore, we can compute that

∥x+ x′∥2 = ⟨x+ x′, x+ x′⟩ = ⟨x, x⟩+ ⟨x, x′⟩+ ⟨x′, x⟩+ ⟨x′, x′⟩ = ⟨x, x⟩+ ⟨x′, x′⟩ = ∥x∥2 + ∥x′∥2 , (105)

as desired.

Definition 6.9. A Hilbert space is a complete inner product space.

For instance, any finite dimensional inner product space is a Hilbert space.

6.4 The Representer Theorem

Recall the SVM dual problem, where given the dual solution α∗, the primal solution is w∗ =
∑n

i=1 α
∗
i yixi, a linear

combination of training inputs x1, · · · , xn. In mathematics, we denote w∗ ∈ span(x1, · · · , xn). We also recall the
ridge regression solution for λ > 0, which is

w∗ = argminw∈Rd

1

n

n∑
i=1

(w⊤xi − yi)2 + λ ∥w∥22 . (106)

This has a closed form solution

w∗ = (X⊤X + λI)−1X⊤y, (107)

where X is the design matrix with x1, · · · , xn as rows. With some rearrangement of terms, we can write that

w∗ = X⊤
(
1

λ
y − 1

λ
Xw∗

)
︸ ︷︷ ︸

=:α∗

= X⊤α∗ =

n∑
i=1

α∗
i xi, (108)

so again w∗ ∈ span(x1, · · · , xn). Therefore, rather than minimizing over all of w ∈ Rd, we can instead minimize over
span(x1, · · · , xn), such that

w∗ = argminw∈span(x1,··· ,xn)

1

n

n∑
i=1

(w⊤xi − yi)2 + λ ∥w∥22 . (109)

This is equivalent to finding

α∗ = argminα∈Rn

1

n

n∑
i=1

((X⊤α)⊤xi − yi)2 + λ
∥∥X⊤α

∥∥2
2
, (110)

and to retrieve w∗ from this reparametrized optimization problem, we just need to take w∗ = X⊤α∗. Also note that
we have changed the dimension of our optimization variable from d to n. Consider the situation where we have very
large dimensional feature space (for instance, using high-order monomial interaction terms as features). Within this
reparametrization, we can then reduce the computational complexity significantly since d≫ n. To this end, for SVM
and ridge regression, we have found that the solution is in the span of the data. In the rest of this section we will
introduce the representer theorem, which shows that this “span of data” result occurs far more generally.

22



Generalized objective. We consider the generalized objective

min
w∈H

R(∥w∥) + L(⟨w, x1⟩ , · · · , ⟨w, xn⟩), (111)

where w, x1, · · · , xn ∈H for some Hilbert space H (typically Rd), ∥·∥ denotes the norm corresponding to the inner
product on H , R : [0,∞) → R is a non-decreasing regularization term, and L : Rn → R is an arbitrary loss
term. For instance, in the SVM objective,

R : x 7→ 1

2
x2, L : (ξ1, · · · , ξn) 7→

C

n

n∑
i=1

max {0, 1− yiξi} (112)

As another example, in ridge regression,

R : x 7→ λx2, L : (ξ1, · · · , ξn) 7→
1

n

n∑
i=1

(ξi − yi)2. (113)

Now we introduce the representer theorem as follows.

Theorem 6.10 (Representer Theorem). Let J be the generalized objective defined as above, then it has a minimizer
of the form

w∗ =

n∑
i=1

αixi. (114)

Given the representer theorem, just as before, we can look for w∗ only in the span of the data, so that

w∗ = min
w∈span(x1,··· ,xn)

R(∥w∥) + L(⟨w, x1⟩ , · · · , ⟨w, xn⟩). (115)

Again, parametrizing as before, we have that

α∗ = argminα∈Rn R

(∥∥∥∥∥
n∑

i=1

αixi

∥∥∥∥∥
)

+ L

(〈
n∑

i=1

αixi, x1

〉
, · · · ,

〈
n∑

i=1

αixi, xn

〉)
. (116)

Reparametrizing the generalized objective. Define the training score function s : Rd → R by

s(w) =

⟨w, x1⟩...
⟨w, xn⟩

 , (117)

We can then rewrite the generalized objective function as

J(w) = R(∥w∥) + L(s(w)). (118)

By the representer theorem, it is sufficient to minimize J(w) for w ∈ span(x1, · · · , xn), so that we can simply minimize

J0(α) = R


∥∥∥∥∥

n∑
i=1

αixi

∥∥∥∥∥︸ ︷︷ ︸
norm piece

+ L

s
(

n∑
i=1

αixi

)
︸ ︷︷ ︸

score piece

 , α ∈ Rn. (119)

For the norm piece, we have that∥∥∥∥∥
n∑

i=1

αixi

∥∥∥∥∥
2

=

〈
n∑

i=1

αixi,

n∑
j=1

αjxj

〉
=

n∑
i=1

n∑
j=1

αiαj ⟨xi, xj⟩ = α⊤Kα. (120)
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For the score piece, we have that

s

(
n∑

i=1

αixi

)
=

⟨
∑n

i=1 αixi, x1⟩
...

⟨
∑n

i=1 αixi, xn⟩

 =


∑n

i=1 αi ⟨xi, x1⟩
...∑n

i=1 αi ⟨xi, xn⟩

 =

⟨x1, x1⟩ · · · ⟨x1, xn⟩...
. . .

...
⟨xn, x1⟩ · · · ⟨xn, xn⟩


α1

...
αn

 = Kα. (121)

Putting the two pieces together, we can rewrite the reparametrized generalized objective as

J0(α) = R
(√

α⊤Kα
)
+ L(Kα), α ∈ Rn. (122)

Again, note that all information needed about the training input x1, · · · , xn is summarized in the Gram matrix K,
and we are now minimizing over Rn rather than Rd. If d≫ n, then this can reduce the computational complexity a
lot. Finally to make a prediction, we just need to compute

f̂(x) = ⟨w∗, x⟩ =

〈
n∑

i=1

α∗
i xi, x

〉
=

n∑
i=1

α∗
i ⟨xi, x⟩ . (123)

If x is among the training input x1, · · · , xn, then again we do not need any other information aside from K. If we
need to make a new prediction, however, we may need to touch all the training inputs x1, · · · , xn. To do this, define
for any x ∈H that

kx =

⟨x1, x⟩...
⟨xn, x⟩

 , (124)

so we can write f̂(x) = k⊤x α
∗.

Brief Summary

Recall that our original plan is to find

w∗ ∈ argminw∈H R(∥w∥) + L(⟨w, x1⟩ , · · · , ⟨w, xn⟩), (125)

and our prediction for x is done by calculating f̂(x) = ⟨w∗, x⟩. Now we have proved that the following is equivalent:
we first find

α∗ ∈ argminα∈Rn R
(√

α⊤Kα
)
+ L(Kα), (126)

and predict via f̂(x) = k⊤x α
∗, where

K =

⟨x1, x1⟩ · · · ⟨x1, xn⟩...
. . .

...
⟨xn, x1⟩ · · · ⟨xn, xn⟩

 , kx =

⟨x1, x⟩...
⟨xn, x⟩

 . (127)

Also, remember our new recipe for optimizing the model and making the prediction.

• Recognize the kernelized problem: ψ(x) occurs only in the inner products ψ(x)⊤ψ(x′).

• Choose a kernel function (recall that it is often comprehended as the “similarity score”).

• Compute the kernel matrix.

• Optimize the model and make predictions by accessing the kernel matrix.

2/28 Lecture

Midterm. Also see announcement on Brightspace.

• Date and time: Mar 7, 2023, 4:55 pm – 6:35 pm (EST).

• Coverage: up to kernel methods (not including this week).

• Review: this week’s lab.

• Difficulty: easier than last year.
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7 Probabilistic Modeling

Probabilistic modeling is a unified framework that covers many models, including but not limited to linear regression,
logistic regression, etc. In probabilistic models, we are learning as statistical inference, providing principled ways
to incorporate belief on the data generating distribution (inductive biases). There are mainly two ways to model how
the data is generated, that is, conditional models P[y|x] and generative models P[x, y]. We will use maximum
likelihood estimation to estimate the parameters of the models, and also compare and contrast between these models.

7.1 Conditional Models

7.1.1 Linear Regression

Linear regression is one of the most important methods in machine learning and statistics. The goal is to predict a
real-valued target y (also called the response) from a vector of features x (also called covariates). Data: Let the

training examples be denoted by D =
{
(x(n), y(n)

}N
n=1

, where x ∈ Rd and y ∈ R. Note that we are using superscripts
for indices of examples and subscripts for indices of dimensions. Model: We use a linear function h (parametrized
by θ) to predict y from x, such that

h(x) =

d∑
i=0

θixi = θ⊤x, (128)

where θ ∈ Rd are the parameters (also called the weights). Note that we have incorporated the bias term (also
called the intercept term) into x, i.e., x0 = 1. Loss Function: We then estimate θ by minimizing the square
loss (the least squares method), such that

J(θ) =
1

N

N∑
n=1

(
y(n) − θ⊤x(n)

)2
. (129)

Note that this loss function is the empirical loss. Matrix Form: Now let X ∈ RN×d be the design matrix whose
rows are the input features, and let y ∈ RN be the vector of all targets. We want to solve

θ̂ = argminθ(Xθ − y)⊤(Xθ − y). (130)

Solution: Note that there is a closed-form solution to this objective, that is, θ̂ = (X⊤X)−1X⊤y. The above is a
brief summary of linear regression that we have deduced before. Now we are going to derive linear regression from
a probabilistic modeling perspective. Suppose that x and y are related through a linear function

y = θ⊤x+ ϵ, (131)

where ϵ is the residual error capturing all unmodeled effects (e.g., noise). The errors are distributed identically
and independently, such that

ϵ ∈ N (0, σ2). (132)

The distribution of Y given X = x is then

P[y|x; θ] = N (θ⊤x, σ2). (133)

We can imagine this as putting a Gaussian bump around the output of the linear predictor. Given a probabilistic
model and a dataset D in which all examples are independent and identically distributed, the maximum likelihood
principle says that we should maximize the (conditional) likelihood of the data, which is defined by

L(θ) = P[D ; θ] =

N∏
n=1

P[y(n)|x(n); θ]. (134)

In practice, we maximize the log likelihood l(θ) (since logarithm can convert products into sums), or equivalently,
minimize the negative log likelihood. Let us find the maximum likelihood solution for our model. Recall that the
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distribution of Y given X = x is given by a normal distribution with mean θ⊤x and variance σ2, then

l(θ) = logL(θ) = log

N∏
n=1

P[y(n)|x(n); θ] =
N∑

n=1

logP[y(n)|x(n); θ]

=

N∑
n=1

log

(
1

σ
√
2π

exp

(
− (y(n) − θ⊤x(n))2

2σ2

))
= N log

1

σ
√
2π
− 1

2σ2

N∑
n=1

(
y(n) − θ⊤x(n)

)2
. (135)

In order to find the maximum likelihood solution, we compute the derivatives of the likelihood with respect to each
parameter, such that

∂l

∂θi
(θ) =

1

σ2

N∑
n=1

(
y(n) − θ⊤x(n)

)
x
(n)
i . (136)

7.1.2 Logistic Regression

Consider binary classification where Y ∈ {0, 1}. We model P[y|x] as a Bernoulli distribution, such that

P[y|x] = h(x)y(1− h(x))1−y. (137)

We will need to parametrize h(x) ∈ (0, 1). To this end, we need a function f to map the linear predictor θ⊤x ∈ R to
(0, 1), where we will use the logistic function such that

f(η) =
1

1 + e−η
. (138)

Note that now we have

P[y|x; θ] =
(
f(θ⊤x)

)y (
1− f(θ⊤x)

)1−y
=

(
1

1 + e−θ⊤x

)y (
1− 1

1 + e−θ⊤x

)1−y

, (139)

so we can compute the log odds as

log
P[1|x; θ]
P[0|x; θ]

= log

1

1+e−θ⊤x

1− 1

1+e−θ⊤x

= log
1

e−θ⊤x
= log eθ

⊤x = θ⊤x, (140)

which implies a linear decision boundary. As for how to extend to multiclass classification, we will discuss more on
that later. Now, similar to linear regression, we estimate θ by maximizing the conditional log likelihood, such that

l(θ) =

N∑
n=1

logP[y(n)|x(n); θ] =
N∑

n=1

(
y(n) log

(
1

1 + e−θ⊤x(n)

)
+ (1− y(n)) log

(
1− 1

1 + e−θ⊤x(n)

))
. (141)

Closed-form solutions are not available to this problem, but we can estimate via gradient descent since this conditional
log likelihood is concave, and maximizing a concave function is equivalent to minimizing a convex function. We can
compute the derivatives of the likelihood with respect to each parameter, such that

∂l

∂θi
(θ) =

N∑
n=1

y(n)
∂

∂θi

(
log

(
1

1 + e−θ⊤x(n)

))
+

N∑
n=1

(1− y(n)) ∂
∂θi

(
log

(
1− 1

1 + e−θ⊤x(n)

))

=

N∑
n=1

y(n)
−e−θ⊤x(n)

1 + e−θ⊤x(n)
(−x(n)i ) +

N∑
n=1

(1− y(n)) 1

1 + e−θ⊤x(n)
(−x(n)i )

=

N∑
n=1

e−θ⊤x(n)

x
(n)
i y(n)

1 + e−θ⊤x(n)
+

N∑
n=1

y(n)x
(n)
i − x(n)i

1 + e−θ⊤x(n)

=

N∑
n=1

(1 + e−θ⊤x(n)

)y(n)x
(n)
i − x(n)i

1 + e−θ⊤x(n)
=

N∑
n=1

(
y(n) − 1

1 + e−θ⊤x(n)

)
x
(n)
i . (142)
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7.1.3 Generalized Regression

If we compare the linear regression and the logistic regression as we have just discussed, their gradients actually
looked very similar, in that the only difference is the coefficient and the logistic regression has an additional logistic
function to map the linear predictor θ⊤x to (0, 1). Moreover, they have the following similarities and differences.
Combine Inputs: Both use the linear predictor θ⊤x for combining inputs. Output: Linear regression outputs a
real number while logistic regression outputs a binary (categorical). Conditional Distribution: Linear regression
assumes a Gaussian distribution, while logistic regression assumes a Bernoulli distribution. Transfer Map: Linear
regression uses the identity map (i.e., it does not transfer θ⊤x) while logistic regression uses the logistic map to
transfer θ⊤x into (0, 1). Mean: The expectation E[y|x; θ] of both regression models is equal to f(θ⊤x), where f is
the transfer map. Given the characteristics above, next we construct a generalized form of regression models.

Generalized regression model. Given input x, we want to predict P[y|x]. For the model, we choose a parametric
family of distributions P[y;λ] with parameters λ ∈ Λ, and choose a transfer map that maps a linear predictor in R
to Λ. In brief, we have that

x︸︷︷︸
∈Rd

parameters−→ θ⊤x︸︷︷︸
∈R

transfer map−→ λ = f(θ⊤x)︸ ︷︷ ︸
∈Λ

. (143)

As for the learning step, we use maximum likelihood estimation, such that

θ̂ ∈ argmaxθ logP[D ;λ] = argmaxθ logP[D ; f(θ⊤x)]. (144)

For prediction, we will use x 7→ f(θ⊤x) to compute the predicted result.

Poisson regression. Say we want to predict the number of people entering a restaurant in New York during lunch
time. The output would thus be the set of all nonnegative integers. Therefore, we can model P[y|x] as a Poisson
distribution1, so that

P[y|x] = λye−λ

y!
=
f(θ⊤x)y · e−f(θ⊤x)

y!
. (145)

The conditional log likelihood can thus be computed as

l(θ) =

N∑
n=1

logP[y(n)|x(n); θ] =
N∑

n=1

(
y(n) log f(θ⊤x(n))− f(θ⊤x(n))− log(y(n)!)

)
. (146)

The standard approach is to take the transfer map as f(η) = exp(η), so that the conditional log likelihood becomes

l(θ) =

N∑
n=1

(
y(n)θ⊤x(n) − exp(θ⊤x(n))− log(y(n)!)

)
. (147)

Multinomial logistic regression. Say we want to extend the logistic regression to output a classification among
multiple classes {1, · · · , k} rather than just binary (two classes). Therefore, instead of Bernoulli distribution, we can
use the categorical distribution, such that

P[y|x] =
k∏

i=1

λ
[y=i]
i , (148)

where [property] denotes the Iverson bracket, which takes 1 if property evaluates to be true and 0 otherwise. For
this, we will need a predictor λ ∈ Rk, such that its entries add up to 1 (this is our Λ ⊆ Rk). In order to do this, we
use the softmax function as the transfer map, such that

f(s1, · · · , sk) =

(
es1∑k
i=1 e

si
, · · · , esk∑k

i=1 e
si

)
. (149)

1Given a random variable Y ∈ {0, 1, 2, · · · } such that Y ∼ Poisson(λ), we have that

P[Y = k] =
λke−λ

k!
,

where λ > 0 and E[Y ] = λ.
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But then instead of using just θ⊤x as the linear predictor, we now need (θ⊤1 x, · · · , θ⊤k x) instead, so that

x︸︷︷︸
∈Rd

parameters−→ (θ⊤1 x, · · · , θ⊤k x)︸ ︷︷ ︸
∈Rk

transfer map−→ λ = f(θ⊤1 x, · · · , θ⊤k x) =

(
eθ

⊤
1 x∑k

i=1 e
θ⊤
i x
, · · · , eθ

⊤
k x∑k

i=1 e
θ⊤
i x

)
︸ ︷︷ ︸

∈Λ

. (150)

Now we can write that

P[y|x; θ1, · · · , θk] =
k∏

i=1

(
eθ

⊤
i x∑k

j=1 e
θ⊤
j x

)[y=i]

. (151)

7.2 Generative Models

We have learned how to directly map x to y, for instance, using perceptron. We have also just discussed how to
model the conditional distribution P[y|x] using generalized regression models (generalized linear models). Next, we
will model the joint distribution P[x, y], and predict the label for x as argmaxy∈Y P[x, y].

Naive Bayes (NB) models. Let us consider binary text classification (for instance, fake versus genuine review) as
a motivating example. We use the bag-of-words representation of a document, so that binary xi ∈ {0, 1} represents
whether the ith word in our vocabulary exists in the input document. Therefore, the probability of a document x
can be expressed as

P[x|y] = P[x1, · · · , xd|y] = P[x1|y] · P[x2|y, x1] · P[x3|y, x1, x2] · · ·P[xd|y, xd−1, · · · , x1] =
d∏

i=1

P[xi|y, x<i]. (152)

The challenge is, P[xi|y, x<i] is hard to model and estimate, especially for large values of i. The solution is to make
the naive Bayes assumption that features are conditionally independent given the label, so that

P[x|y] =
d∏

i=1

P[xi|y]. (153)

For binary xi, we assume that P[xi|y] follows a Bernoulli distribution, that is,

P[xi = 1|y = 1] = θi,1, P[xi = 0|y = 1] = 1− θi,1, (154)

P[xi = 1|y = 0] = θi,0, P[xi = 0|y = 0] = 1− θi,0. (155)

Therefore, we can write that

P[x, y] = P[x|y]P[y] = P[y]
d∏

i=1

P[xi|y] = P[y]
d∏

i=1

(θi,y1xi=1 + (1− θi,y)1xi=0) . (156)

We consider the likelihood of the data L(θ) =
∏N

n=1 P[x(n), y(n); θ], as opposed to the conditional likelihood that we
have seen in the previous section. Instead of maximizing the likelihood itself, we again maximize the log likelihood,
for which the derivative with respect to each parameter θj,1 can be computed as

∂l

∂θj,1
(θ) =

∂

∂θj,1

N∑
n=1

(
logP[y(n); θ] +

d∑
i=1

log
(
θi,y(n)1

x
(n)
i =1

+ (1− θi,y(n))1
x
(n)
i =0

))

=
∂

∂θj,1

N∑
n=1

log
(
θj,y(n)1

x
(n)
j =1

+ (1− θj,y(n))1
x
(n)
j =0

)
=

∂

∂θj,1

N∑
n=1

log
(
θj,11(x

(n)
j =1)∧(y(n)=1)

+ (1− θj,1)1(x
(n)
j =0)∧(y(n)=1)

)
=

N∑
n=1

1
(x

(n)
j =1)∧(y(n)=1)

− 1
(x

(n)
j =0)∧(y(n)=1)

θj,11(x
(n)
j =1)∧(y(n)=1)

+ (1− θj,1)1(x
(n)
j =0)∧(y(n)=1)

=

N∑
n=1

(
1

θj,1
1
(x

(n)
j =1)∧(y(n)=1)

− 1

1− θj,1
1
(x

(n)
j =0)∧(y(n)=1)

)
. (157)

28



By setting the derivative ∂l(θ)/∂θj,1 equal to zero, we can deduce that

1

θj,1

N∑
n=1

1
(x

(n)
j =1)∧(y(n)=1)

=
1

1− θj,1

N∑
n=1

1
(x

(n)
j =0)∧(y(n)=1)

=⇒ (1− θj,1)
N∑

n=1

1
(x

(n)
j =1)∧(y(n)=1)

= θj,1

N∑
n=1

1
(x

(n)
j =0)∧(y(n)=1)

=⇒ θj,1

(
N∑

n=1

1
(x

(n)
j =0)∧(y(n)=1)

+

N∑
n=1

1
(x

(n)
j =1)∧(y(n)=1)

)
=

N∑
n=1

1
(x

(n)
j =1)∧(y(n)=1)

=⇒ θj,1 =

∑N
n=1 1(x

(n)
j =1)∧(y(n)=1)∑N

n=1 1(x
(n)
j =0)∧(y(n)=1)

+
∑N

n=1 1(x
(n)
j =1)∧(y(n)=1)

=

∑N
n=1 1(x

(n)
j =1)∧(y(n)=1)∑N

n=1 1y(n)=1

. (158)

We can similarly show that

θj,0 =

∑N
n=1 1(x

(n)
j =1)∧(y(n)=0)∑N

n=1 1y(n)=0

, (159)

but the deduction would be analogous to above and thus details will be ignored here. Moreover, we may also assume
that P[y] follows a Bernoulli distribution, such that

P[y = 1] = θ0, P[y = 0] = θ1. (160)

Therefore, we can also show that

θ0 =

∑N
n=1 1y(n)=1∑N

n=1 1y(n)=0 +
∑N

n=1 1y(n)=1

=

∑N
n=1 1y(n)=1

N
, (161)

and the deduction is again analogous to above, by simply writing

P[y(n); θ] = θ01y(n)=1 + (1− θ0)1y(n)=0. (162)

Concluding the naive Bayes models as we have discussed above, we have made an assumption that the features are
conditionally independent given the label. Our recipe for learning a naive Bayes model is then as follows.

• Choose P[xi|y], for instance, a Bernoulli distribution for each binary xi. If the chosen distribution involves k
parameters, and furthermore there are l possible values of y, then we need to estimate kl parameters for this.

• Choose P[y], often a categorical distribution (but in the discussion above, just a Bernoulli distribution). If the
chosen distribution involves m parameters, then we need to estimate these m parameters for this.

• Estimate the parameters via maximum likelihood estimation, same as the strategy for conditional models.

Naive Bayes with continuous inputs. Now we consider a multiclass classification with continuous inputs. Say

P[xi|y] ∼ N (µi,y, σ
2
i,y), P[y = k] = θk. (163)

Denote params = {{µi,y} , {σi,y} , {θk}}. Then, we can compute the likelihood of the data as

P[D ; params] =

N∏
n=1

P[x(n), y(n); params] =
N∏

n=1

P[x(n)|y(n); params] · P[y(n); params]

=

N∏
n=1

P[y(n); params]
d∏

i=1

P[x(n)i |y
(n); params]

=

N∏
n=1

(∑
k

θk1y(n)=k

)
d∏

i=1

1

σi,y(n)

√
2π

exp

(
−
(x

(n)
i − µi,y(n))2

2σ2
i,y(n)

)
. (164)
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The log likelihood would then be

l(params) =

N∑
n=1

(
log

(∑
k

θk1y(n)=k

)
+

d∑
i=1

(
log

1

σi,y(n)

√
2π
−

(x
(n)
i − µi,y(n))2

2σ2
i,y(n)

))
. (165)

If we compute its partial derivatives with respect to each parameter, we have that

∂l

∂µj,k
(params) =

∂

∂µj,k

∑
n:y(n)=k

(
−

d∑
i=1

(x
(n)
i − µi,y(n))2

2σ2
i,y(n)

)

=
∑

n:y(n)=k

∂

∂µj,k

(
−
(x

(n)
j − µj,y(n))2

2σ2
j,y(n)

)
=

∑
n:y(n)=k

x
(n)
j − µj,k

σ2
j,k

, (166)

∂l

∂σj,k
(params) =

∂

∂σj,k

∑
n:y(n)=k

d∑
i=1

(
log

1

σi,y(n)

√
2π
−

(x
(n)
i − µi,y(n))2

2σ2
i,y(n)

)

=
∑

n:y(n)=k

∂

∂σj,k

(
log

1

σj,y(n)

√
2π
−

(x
(n)
j − µj,y(n))2

2σ2
j,y(n)

)

=
∑

n:y(n)=k

(
− 1

σj,k
+

(x
(n)
j − µj,y(n))2

σ3
j,y(n)

)
=

∑
n:y(n)=k

(x
(n)
j − µj,k)

2 − σ2
j,k

σ3
j,k

, (167)

∂l

∂θm
(params) =

∂

∂θm

N∑
n=1

log

(∑
k

θk1y(n)=k

)
=

∂

∂θm
log
(
θm1y(n)=m + (1− θm)1y(n) ̸=m

)
=

N∑
n=1

(
1

θm
1y(n)=m −

1

1− θm
1y(n) ̸=m

)
. (168)

Setting each partial derivative to zero, we can obtain the parameters such that

∑
n:y(n)=k

x
(n)
j = |{n; y(n) = k}| · µj,k =⇒ µj,k =

∑
n:y(n)=k x

(n)
j

|{n; y(n) = k}|
, (169)

∑
n:y(n)=k

(x
(n)
j − µj,k)

2 = |{n; y(n) = k}| · σ2
j,k =⇒ σ2

j,k =

∑
n:y(n)=k(x

(n)
j − µj,k)

2

|{n; y(n) = k}|
, (170)

(1− θ)
N∑

n=1

1y(n)=m = θ

N∑
n=1

1y(n) ̸=m =⇒ θm =

∑N
n=1 1y(n)=m∑N

n=1 1y(n)=m +
∑N

n=1 1y(n) ̸=m

=
|{n; y(n) = m}|

N
. (171)

3/21 Lecture

8 Bayesian Methods

A parametric family of densities is a set {P[y; θ]; θ ∈ Θ}, where P[y; θ] is a density on a sample space Y , and
θ is a parameter in a finite dimensional parameter space Θ. This is the common starting point for a treatment of
classical or Bayesian statistics. In this lecture, the terms “density” and “integral” are equivalent to saying “mass
function” and “sum”.

8.1 Classical Statistics

This is also known as frequentist statistics. We assume that P[y; θ] governs the world we are observing for some
θ ∈ Θ. If we knew the right θ, then there would be no need for statistics. But instead of θ, we have the data
D = {y1, · · · , yn} sampled independently from P[y; θ]. Statistics is about how to get by with D in place of θ. One
type of statistical problem is point estimation. A statistic s = s(D) is any function on the data, and a statistic
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θ̂ = θ̂(D) taking values in Θ is a point estimator of θ. A good point estimator needs to be consistent, i.e., θ̂n → θ

as data size n→∞. It also needs to be efficient, which roughly speaking, means that θ̂n is as accurate as we can get
from a sample of size n. Maximum likelihood estimators are consistent and efficient under reasonable conditions. As
an example, consider the coin flipping problem, where the parametric family of mass functions is

P[H; θ] = θ, (172)

for θ ∈ Θ = (0, 1). Assume that we have independently sampled data D , where there are nh heads and nt tails.
Thus, the likelihood function for data D would just be

LD(θ) = P[D ; θ] =

nh+nt∏
i=1

θ[H](1− θ)[T] = θnh(1− θ)nt . (173)

As usual, it is easier to maximize the log-likelihood function, such that

θ̂MLE = argmaxθ∈Θ logLD(θ) = argmaxθ∈Θ(nh log θ + nt log(1− θ)). (174)

The first order condition, i.e., equating the derivative to zero, can be computed as

nh
θ
− nt

1− θ
= 0 =⇒ θ =

nh
nh + nt

, (175)

which implies that the point estimator θ̂MLE found via maximum likelihood estimation is the empirical fraction of
heads in the sampled dataset.

8.2 Bayesian Statistics

Compared with classical statistics, Bayesian statistics introduces a critical new ingredient, that is, the prior dis-
tribution. A prior distribution P[θ] is a distribution on the parameter space Θ. It reflects our belief about θ,
prior to seeing any data. A parametric Bayesian model consists of two pieces: a parametric family of densities
{P[D |θ]; θ ∈ Θ} and a prior distribution P[θ] on a parametric space Θ. Putting the pieces together, we get a joint
density on θ and D , such that

P[D ; θ] = P[D |θ]P[θ]. (176)

The posterior distribution for θ is P[θ|D ], which represents the rationally updated belief about θ after having
seen D . Recall that by Bayes’ rule (in probability and statistics), we have that

P[θ|D ] =
P[D |θ]P[θ]

P[D ]
=⇒ P[θ|D ]︸ ︷︷ ︸

posterior

∝ P[D |θ]︸ ︷︷ ︸
likelihood

P[θ]︸︷︷︸
prior

. (177)

Again, take the coin flopping problem as an example, suppose that we have a parametric family of mass functions

P[H|θ] = θ, (178)

for θ ∈ Θ = (0, 1). We need a prior distribution P[θ] on Θ = (0, 1), and a convenient choice would be a distribution
from the beta family of distributions, as is shown in Figure 6.

Figure 6: The probability density functions of the beta family of distributions.
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Suppose we choose θ ∼ Beta(α, β) with α, β > 1, then

P[θ] ∝ θα−1(1− θ)β−1. (179)

Note that the mean and the mode of a beta distribution would be respectively

E[θ] =
α

α+ β
, argmaxθ P[θ] =

α− 1

α+ β − 2
. (180)

Back to our example, the likelihood function would be

LD(θ) = P[D |θ] = θnh(1− θ)nt . (181)

The posterior density can thus be considered as

P[θ|D ] ∝ P[D |θ]P[θ] ∝ θnh(1− θ)nt · θα−1(1− θ)β−1 = θnh+α−1(1− θ)nt+β−1. (182)

That is, for a fixed dataset D , the posterior θ|D ∼ Beta(nh + α, nt + β), again following a beta family distribution.
The interpretation for this is that, the prior initializes our counts with α heads and β tails, while the posterior
increments the counts by the observed nh and nt respectively.

Definition 8.1. A family of distributions π is conjugate to the parametric model P if for any prior distribution
in π, the posterior distribution is always in π.

As we have seen above, the beta family of distributions is conjugate to the coin flipping (i.e., Bernoulli) model.

Now we are ready to establish the Bayesian decision theory. We need a parameter space Θ, a prior distribution
P[θ] on Θ, an action space A , and a loss function ℓ : A ×Θ→ R. The posterior risk of an action a ∈ A is

r(a) = E[ℓ(θ, a)|D ] =

∫
ℓ(θ, a)P[θ|D ]dθ, (183)

which is the expected loss under the posterior distribution. A Bayes action a∗ is an action that minimizes the
posterior risk, such that

r(a∗) = min
a∈A

r(a). (184)

Now assume we have data D generated independently by P[y|θ], but θ ∈ Θ is unknown. We again want to produce

a point estimate for θ. To do this, we find the action θ̂ ∈ Θ that minimizes the posterior risk

r(θ̂) = E[ℓ(θ̂, θ)|D ] =

∫
ℓ(θ̂, θ)P[θ|D ]dθ. (185)

There are a few important loss functions.

• Squared loss: ℓ(θ̂, θ) = (θ − θ̂)2, giving the posterior mean.

• Zero-one loss: ℓ(θ̂, θ) = 1θ ̸=θ̂, giving the posterior mode.

• Absolute loss: ℓ(θ̂, θ) = |θ − θ̂|, giving the posterior median.

Take the squared loss as an example. We find the action θ̂ ∈ Θ that minimize the squared posterior risk

r(θ̂) =

∫
(θ − θ̂)2P[θ|D ]dθ. (186)

Differentiating with respect to θ̂, we have that

dr(θ̂)

dθ̂
= −

∫
2(θ − θ̂)P[θ|D ]dθ = −2

∫
θP[θ|D ]dθ︸ ︷︷ ︸
=E[θ|D]

+2θ̂

∫
P[θ|D ]dθ︸ ︷︷ ︸

=1

= −2E[θ|D ] + 2θ̂. (187)

The first order condition thus gives us θ̂ = E[θ|D ], proving that the Bayes action for squared posterior loss is indeed
the posterior mean.
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8.3 Bayesian Conditional Probability Models

Recall the classical conditional probability modeling. Suppose we have data D = {y1, · · · , yn}, then the probability
density would be

P[D |x1, · · · , xn; θ] =
n∏

i=1

P[yi|xi; θ]. (188)

For a fixed D , the likelihood function (which is a function of θ) is just the probability density above. The maximum
likelihood estimator for θ in the family {P[y|x; θ]; θ ∈ Θ} is defined as

θ̂MLE = argmaxθ∈Θ LD(θ). (189)

MLE corresponds to ERM if we set the loss to be the negative log-likelihood. By the way, the corresponding MLE
prediction function is

f̂(x) = P[y|x; θ̂MLE]. (190)

Bayesian conditional models. Recall that the Bayesian condition model has two basic components: a parametric
family of conditional densities {P[y|x; θ]; θ ∈ Θ} and a prior distribution P[θ] on θ ∈ Θ. Suppose we have not
yet observed any data. In the Bayesian setting, we can still produce a prediction function. The prior predictive
distribution is given by

x 7→ P[y|x] =
∫

P[y|x; θ]P[θ]dθ, (191)

that is, an average of all conditional densities in our family, weighted by the prior. Now suppose we have already
seen data D . The posterior predictive distribution is given by

x 7→ P[y|x;D ] =

∫
P[y|x; θ]P[θ|D ]dθ, (192)

that is, an average of all conditional densities in our family, weighted by the posterior. Compared to the frequentist
approach where we directly choose the optimal θ for prediction, in the Bayesian approach we use the weighted average
by the posterior. Now, once we have a predictive function P[y|x;D ], we can easily generate single point predictions.

• x 7→ E[y|x;D ], which is for minimizing the expected squared error.

• x 7→ argmaxy∈Y P[y|x;D ], which is for minimizing the expected zero-one loss.

• x 7→ median[y|x;D ], which is for minimizing the expected absolute error.

Gaussian regression example in 1-dimensional space. Let the input space be X = [−1, 1] and output space
be Y = R. Suppose that for a given x, the real world generates y such that

y = w0 + w1x+ ϵ, (193)

where ϵ ∼ N (0, 0, 22). In other words, the conditional probability model setup is

y|x;w0, w1 ∼ N (w0 + w1x, 0.2
2). (194)

We will take the parameter space as R2 (i.e., no restrictions on w0 and w1 except that they are real). The prior
distribution will be taken as

w = (w0, w1) ∼ N

(
0,

1

2
I

)
. (195)
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Figure 7: The image on the left is the prior distribution. Since this is the first iteration, we have nothing other
than the prior distribution to use. The image on the right shows x 7→ E[y|x;w] = w0 + w1x for randomly chosen w
following the prior distribution.

Figure 8: The image on the left is the posterior distribution after observing one datapoint. The white cross indicates
the true parameters. The image on the right shows x 7→ E[y|x;w] = w0 + w1x for randomly chosen w following the
posterior distribution P[w|D ].

Figure 9: The images on the left are the posterior distributions after observing two datapoints and twenty datapoints.
The white cross indicates the true parameters. The images on the right show x 7→ E[y|x;w] = w0 + w1x for
randomly chosen w following the posterior distributions P[w|D ] after observing two datapoints and twenty datapoints
respectively. In brief, these are just iterating the process in Figure 8.

Closed form for posterior in Gaussian regression. Suppose we have the model

w ∼ N (0,Σ0), yi|x;w ∼ N (w⊤xi, σ
2). (196)

Moreover, we denote by X the design matrix and by y the response column vector as usual. The posterior distribution
is a Gaussian distribution

w|D ∼ N (µP ,ΣP ), (197)
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where

µP = (X⊤X + σ2Σ−1
0 )−1X⊤y, ΣP = (σ−2X⊤X +Σ−1

0 )−1. (198)

The posterior variance σP gives us a natural uncertainty measure. Now if we want point estimates of w, the posterior
mean is given by

ŵ = µP = (X⊤X + σ2Σ−1
0 )−1X⊤y. (199)

The maximum a posteriori (MAP) estimate (i.e., the posterior mode) is the also given as above in this case.

If we have prior variance Σ0 = σ2

λ I, we then obtain that

ŵ = (X⊤X + λI)−1X⊤y, (200)

which is exactly the closed-form solution of the ridge regression.

3/28 Lecture

9 Multiclass Classification

So far, most algorithm we have learned are designed for binary classification. However, many real-world problems
have a lot more than 2 classes, so the problem is, how can we reduce multiclass classification to binary classification,
or how we can generalize binary classification to multiclass classification.

9.1 Reduction to Binary Classification

One-vs-all / One-vs-rest. Let X be the input space and Y = {1, · · · , k} be the output space. We train k binary
classifiers, one for each class, such that h1, · · · , hk : X → R. Each classifier hi would be used to distinguish class i
from the rest. In order to make a prediction, we take the majority vote, such that

h(x) = argmaxi=1,··· ,k hi(x), (201)

where ties can be broken arbitrarily.

All-vs-all / One-vs-one / All-pairs. Again, let X be the input space and Y = {1, · · · , k} be the output space.
We train

(
k
2

)
binary classifiers, one for each pair, such that hij : X → R for 1 ≤ i < j ≤ k. Each classifier hij would

be used to distinguish class i from class j. In order to make a prediction, we again take the majority vote, such that

h(x) = argmaxi=1,··· ,k
∑
j ̸=i

(ii<jhij(x)− 1j<ihji(x)), (202)

where ties can also be broken arbitrarily. This is like a tournament.

Error correcting output codes. If we encode labels as binary codes and predict the code bits directly, then
OvA encoding would become something like 10 · · · 0, 01 · · · 0, etc., until 00 · · · 1. It uses k bits to encode each label.
We can also use fewer. For instance, we can use 6 bits to encode 8 classes. Then we need 6 binary classifiers, each
distinguishing whether the ith bit of the code is 1. The prediction is then made via finding the closest label in terms
of Hamming distance. The hamming distance between to binary strings is computed via counting the number of 1’s
in their XOR result. This is computationally more efficient that OvA (which is in fact a special case of ECOC),
and can be better for large k. Then why not use the minimal number of bits, i.e., log2 k bits? Clearly there is a
tradeoff between code distance and binary classification performance. If we use fewer bits, then the minimal code
distance will be small, leading to less robustness. If we use more bits, ECOC would be robust to errors, but it can
significantly increase runtime.
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9.2 Multiclass Loss

In binary logistic regression, given an input x, we would like to output a classification between {0, 1}. We can use

f(x) = sigmoid(z) =
1

1 + exp(−z)
=

1

1 + exp(−w⊤x− b)
, (203)

1− f(x) = exp(−w⊤x− b)
1 + exp(−w⊤x− b)

=
1

exp(w⊤x+ b)
=

1

1 + exp(z)
= sigmoid(−z). (204)

Then, the loss function would be given by L = −
∑

i

(
y(i) log f(x(i)) + (1− y(i)) log(1− f(x(i)))

)
. Now in multiclass

logistic regression, if we have one wc for each class c, we can use

fc(x) =
exp(w⊤

c x+ bc)∑
c exp(w

⊤
c x+ bc)

. (205)

This is also called softmax in neural networks. The loss function would be L = −
∑

i(y
(i)
c log fc(x

(i))) for each class.

Multiclass perceptron. The base linear estimators are hi(x) = w⊤
i x, where wi ∈ Rd. Given a multiclass dataset

D = {(x, y)}, the multiclass perceptron algorithm can be described as in Algorithm 7.

Algorithm 7 Multiclass perceptron (hard to scale)

1: Initialize wi ← 0 for each wi;
2: repeat
3: for (x, y) ∈ D do
4: ŷ ← argmaxy′∈Y w⊤

y′x;
5: if ŷ ̸= y (implying a wrong prediction) then
6: wy ← wy + x; // Move the target class scorer towards x

7: wŷ ← wŷ − x; // Move the wrong class scorer away from x

8: end if
9: end for

10: until the stopping criterion is satisfied (hopefully there does not exist misclassified examples, or the maximum
number of iterations is reached);

However, remember that we want to scale to very large number of classes and reuse algorithms and analysis for
binary classification. Therefore, a single weight vector is desired instead of a separate weight vector for each class.
The way to do this is to write

w⊤
i x = w⊤ψ(x, i), hi(x) = h(x, i) (the score function). (206)

By doing this, we encode labels into the feature space, and the score of each label would become the score for the
“compatibility” of a label and an input. Then, how do we construct the feature map ψ? An easy way to do this is
to stack the wi’s together. For instance, suppose we have

w =

−
√
2

2
,

√
2

2︸ ︷︷ ︸
w1

, 0, 1︸︷︷︸
w2

,

√
2

2
,

√
2

2︸ ︷︷ ︸
w3

 , (207)

then we can take ψ : R2 × {1, 2, 3} → R6 such that

ψ(x, 1) = (x1, x2, 0, 0, 0, 0), ψ(x, 2) = (0, 0, x1, x2, 0, 0), ψ(x, 3) = (0, 0, 0, 0, x1, x2). (208)

As a result, we can see that w⊤
i x = w⊤ψ(x, i). Therefore, we would like to modify the multiclass perceptron algorithm

using the multivector construction, as described in Algorithm 8. The setting is the same as above.
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Algorithm 8 Multiclass perceptron (modified)

1: Initialize w ← 0;
2: repeat
3: for (x, y) ∈ D do
4: ŷ ← argmaxy′∈Y w⊤ψ(x, y′);
5: if ŷ ̸= y (implying a wrong prediction) then
6: w ← w + ψ(x, y); // Move the target class scorer towards x

7: w ← w − ψ(x, ŷ); // Move the wrong class scorer away from x

8: end if
9: end for

10: until the stopping criterion is satisfied (hopefully there does not exist misclassified examples, or the maximum
number of iterations is reached);

9.3 Linear Multiclass SVM

Recall that the binary margin for (x(n), y(n)) is y(n)w⊤x(n). We want the margin to be large and positive, so
that w⊤x(n) has the same sign as y(n) and we are confident of the prediction. Now in the multiclass setting, the
class-specific margin for (x(n), y(n)) would be

h(x(n), y(n))− h(x(n), y) = w⊤ψ(x(n), y(n))− w⊤ψ(x(n), y), (209)

the difference between scores of the correct class and each other class. We thus want the margin to be large and
positive for all y ̸= y(n). Now we consider the separable case. The binary classification problem would be

min
w

1

2
∥w∥2 , s.t. y(n)w⊤x(n)︸ ︷︷ ︸

margin

≥ 1, ∀(x(n), y(n)) ∈ D . (210)

Analogously, the multiclass classification problem would be

min
w

1

2
∥w∥2 , s.t. w⊤ψ(x(n), y(n))− w⊤ψ(x(n), y)︸ ︷︷ ︸

margin

≥ 1, ∀(x(n), y(n)) ∈ D . (211)

Note that in the nonseparable case, we use the penalty instead of hard constraint. Now we recall the hinge loss for
binary classification, which is a convex upper bound on the 0-1 loss, such that

ℓhinge(y, x, w) = max(0, 1− yw⊤x). (212)

Similarly, we generalize the hinge loss for the multiclass case such that

ℓhinge(y, x, w) = max
y′∈Y

(
∆(y, y′)−

(
w⊤ψ(x, y)− w⊤ψ(x, y′)

))
, (213)

where ∆(y, y′) is 1 if y = y′ and 0 otherwise. Similar to the hinge loss for binary classification, we can prove show
that the hinge loss for multiclass classification is an upper bound on ∆(y, y′). Note that

ŷ := argmaxy′∈Y w⊤ψ(x, y′) =⇒ w⊤ψ(x, y) ≤ w⊤ψ(x, ŷ)

=⇒ ∆(y, ŷ) ≤ ∆(y, ŷ)− w⊤ψ(x, y) + w⊤ψ(x, ŷ). (214)

Finally, recall the hinge loss formulation for binary SVM (without the bias term), which can be written as

min
w∈Rd

1

2
∥w∥2 + C

N∑
n=1

max
(
0, 1− y(n)w⊤x(n)

)
. (215)

Analogously, the multiclass hinge loss objective can be formulated as

min
w∈Rd

1

2
∥w∥2 + C

N∑
n=1

max
y′∈Y

(
∆(y(n), y′)−

(
w⊤ψ(x(n), y(n))− w⊤ψ(x(n), y′)

))
. (216)

Here ∆(y, y′) is the target margin for each class, and if the margin w⊤ψ(x(n), y(n))−w⊤ψ(x(n), y′) exceeds its target
∆(y, y′), there would be no loss on example n.

37



Multiclass vs OvA. In OvA, we train k models h1, · · · , hk : X → R and predict with argmaxy∈Y hy(x). With
multiclass loss, we train only one model h : X × Y → R and predict via solving argmaxy∈Y h(x, y). In practice,
both performed roughly the same. However, since we want to generalize to situations where k is very large, the OvA
approach would be intractable.

9.4 Introduction to Structured Prediction

Let us start with an example. Given a sentence, we want to give a part of speech tag for each word. In this case,

V = {all English words} ∪ {[START], “.”} ,
X = V n, n = 1, 2, 3, · · · , (word sequences of any length)

P = {[START],pronoun, verb,noun, adjective} ,
Y (x) = Pn, n = 1, 2, 3, · · · . (part of speech sequences of any length)

We have the discrete output space Y (x). It is very large but has certain structures, such as linear chains (sequence
labeling) and trees (parsing). Also, its size depends on the input x. The base hypothesis space would be H =
{h : X × Y (x)→ R}, where each h(x, y) gives a compatibility score between input x and output y. Now, we use
the multiclass hypothesis space, such that

F =
{
x 7→ argmaxy∈Y (x) h(x, y); h ∈H

}
. (217)

The final prediction function would be some f ∈ F . Also, remember that for each f ∈ F , there is an underlying
compatibility score function h ∈H . Now we need to design the feature map ψ so that

h(x, y) = w⊤ψ(x, y). (218)

• Unary features. A unary feature depends solely on the label at a single position yi and the input x. As an
example, we can have

ϕ1(x, yi) = 1xi=runs · 1yi=verb, (219)

ϕ2(x, yi) = 1xi=runs · 1yi=noun, (220)

ϕ3(x, yi) = 1xi−1=He · 1xi=runs · 1yi=verb, (221)

· · ·

• Markov features. A Markov feature depends on two adjacent labels yi−1 and yi, and the input x. For
instance, we can have

θ1(x, yi−1, yi) = 1yi−1=pronoun · 1yi=verb, (222)

θ2(x, yi−1, yi) = 1yi−1=pronoun · 1yi=noun, (223)

· · ·

These are reminiscent of Markov models in the output space, and are possible to have higher-order features.

Now at each position i in the sequence, we define the local feature vector (unary and Markov), such that

ψi(x, yi−1, yi) = (ϕ1(x, yi), ϕ2(x, yi), · · · , θ1(x, yi−1, yi), θ2(x, yi−1, yi), · · · ) , (224)

and thus a local compatibility score at position i would be w⊤ψi(x, yi−1, yi). The compatibility score for (x, y)
can then be obtained by summing up local compatibility scores, such that∑

i

w⊤ψi(x, yi−1, yi) = w⊤

(∑
i

ψi(x, yi−1, yi)

)
:= w⊤ψ(x, y), (225)

where we define the sequence feature vector by

ψ(x, y) =
∑
i

ψi(x, yi−1, yi). (226)

Now, we can use the structured perceptron algorithm, which would be identical to the multiclass perceptron algorithm
except that we now take ŷ as the argmax across the structured output space Y (x) instead of Y . Again, similar to
multiclass classification problem, we have the structured hinge loss and the structured SVM objective, respectively
identical to the multiclass hinge loss and the multiclass SVM objective, except that we substitute Y with the structure
output space Y (x).
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The argmax problem for sequences. To make predictions, recall that we need to find argmaxy∈Y (x) w
⊤ψ(x, y).

However, |Y (x)| would be exponentially large, so it is hard to make direct computation. Instead, we note that ψ(x, y)
can be decomposed into the sum of local compatibility scores. Then, we can use dynamic programming (for instance,
by Viterbi algorithm) to solve the problem.

9.5 Conditional Random Field

Recall that we can write logistic regression in a general form

P[y|x] = 1

Z(x)
exp(w⊤ψ(x, y)), (227)

where Z(x) is a normalization coefficient, such that

Z(x) =
∑
y∈Y

exp(w⊤ψ(x, y)). (228)

Now with a linear chain {yt}, we can also incorporate unary and Markov features, such that

P[y|x] = 1

Z(x)
exp

(∑
t

w⊤ψ(x, yt−1, yt)

)
. (229)

Compared to SVM, CRF has a probabilistic interpretation, and we can learn via maximum log likelihood (with
regularization term). The loss function would thus be

l(w) = − 1

N

N∑
i=1

logP[y(i)|x(i)] + λ

2
∥w∥2 = − 1

N

∑
i

∑
t

w⊤ψ(x, yt−1, yt) +
1

N

∑
i

logZ(x(i)) +
λ

2
∥w∥2

= − 1

N

∑
i

∑
t

∑
k

wkψk(x
(i), t

(i)
t−1, y

(i)
t ) +

1

N

∑
i

logZ(x(i)) +
λ

2

∑
k

w2
k. (230)

The gradient can then be computed as

∂l

∂wk
(w) = − 1

N

∑
i

∑
t

ψk(x
(i), t

(i)
t−1, y

(i)
t ) +

1

N

∑
i

∂

∂wk
logZ(x(i)) + λwk, (231)

where the middle term need to be expanded as

1

N

∑
i

∂

∂wk
logZ(x(i)) =

1

N

∑
i

∂

∂wk
log

∑
y′∈Y (x(i))

exp

(∑
t

w⊤ψ(x(i), y′t−1, y
′
t

)

=
1

N

∑
i

∂

∂wk
log

∑
y′∈Y (x(i))

exp

(∑
t

∑
k′

wk′ψk′(x(i), y′t−1, y
′
t)

)

=
1

N

∑
i

 ∑
y′∈Y (x(i))

exp

(∑
t

∑
k′

wk′ψk′(x(i), y′t−1, y
′
t)

)−1

 ∑
y′∈Y (x(i))

exp

(∑
t

∑
k′

wk′ψk′(x(i), y′t−1, y
′
t)

)∑
t

ψk(x
(i), y′t−1, y

′
t)


=

1

N

∑
i

1

Z(x(i))

∑
y′∈Y (x(i))

exp

(∑
t

w⊤ψ(x(i), y′t−1, y
′
t)

)∑
t

ψk(x
(i), y′t−1, y

′
t)

=
1

N

∑
i

∑
y′∈Y (x(i))

P[y′|x(i)]

(∑
t

ψk(x
(i), y′t−1, y

′
t)

)
. (232)

Moving the summation over t outside, we can see that this is just the expectation of ψk(x
(i), y′t−1, y

′
t) under the

model distribution P[y′|x(i)]. Therefore, in order to compute the gradient, we need to infer the expectation under the
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model distribution. In the linear chain structure, we can use the forward-backward algorithm for inference, similar
to Viterbi algorithm. We initiate αj(1) = exp(w⊤ψ(x1, y1 = j)), then apply the recursive relation

αj(t) =
∑
i

αi(t− 1) exp
(
w⊤ψ(xt, yt−1 = i, yt = j)

)
. (233)

This is the forward direction, and the backward direction is similar. The inference algorithm can be generalized to
belief propagation (BP) in a tree structure (exact inference), but in general graphs we rely on approximate inference.
Comparing with SVM in which we need to compute the argmax, both are NP-hard for general graphs.

4/4 Lecture

10 Decision Trees

In this section, we will introduce our first inherently nonlinear model: decision trees.

10.1 Decision Trees

We focus on binary trees, as opposed to multiway trees where each node can have more than two children. In our
binary tree, each node contains a subset of data points. The data splits created by each node involve only a single
feature. For continuous variables, the splits are always in the form xi ≤ t, while for discrete variables, we partition
values into two sets (which we will not discuss at present). The predictions are made in the terminal (leaf) nodes.

Constructing the tree. Goal: We want to find boxes R1, · · · , RJ that minimize
∑J

j=1

∑
i∈RJ

(yi− ŷRj )
2, subject

to complexity constraints. Problem: However, finding the optimal binary tree would be computationally intractable.
Solution: Therefore, we want to apply a greedy algorithm, such that starting from the root and repeating until a
stopping criterion is reached (e.g., maximum depth), we find the non-terminal node that results in the best split.
Prediction: Our prediction would then be the mean value of a terminal node E[yi|xi ∈ Rm], i.e., the average of
all training instances in Rm. However, note that a greedy algorithm is the one that makes the best local decisions,
without looking ahead to evaluate their downstream consequences. Therefore, this procedure is not very likely to
result in a globally optimal tree.

Finding the best split point. We enumerate all features and all possible split points for each feature. There are

infinitely many split points, but suppose now we are considering splitting the jth feature xj , and let x
(1)
j , · · · , x(n)j be

the sorted values of the jth feature. We only need to consider split points between to adjacent values, and any split

point in some interval (x
(r)
j , x

(r+1)
j ) will result in the same loss. It is therefore common to split half way between two

adjacent values, that is,

sj ∈
{
1

2

(
x
(r)
j + x

(r+1)
j

)
; r = 1, · · · , n− 1

}
. (234)

Note that in decision tree classification, our plan is to predict the majority label in each region. Therefore, we want
to produce more pure nodes, i.e., nodes where most instances have the same class. This is the standard of “good
split” for classification problems.

Overfitting of decision trees. If we keep splitting the data into more and more regions, this will end up overfitting,
i.e., every data point will be in its own region. Therefore, we need to have certain stopping criterion to control the
complexity of the hypothesis space. For instance, we can limit the total number of nodes, the number of terminal
nodes, the tree depth, or require a minimum number of data points in a terminal node. Aside from these simple
approaches, we can also use backward pruning, in which we first build a really big tree (e.g., until all regions have
no more than 5 data points), the prune the tree backward greedily (potentially all the way to the root), until the
validation performance (e.g., cross validation) starts decreasing.
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Node impurity measures. Consider the multiclass classification case Y = {1, 2, · · · ,K}. Let node m represent
the region Rm, with Nm observations. We denote the proportion of observations in Rm with class k by

p̂m,k =
1

Nm

∑
xi∈Rm

1yi=k. (235)

We predict the majority class in node m such that k(m) = argmaxk p̂m.k. There are three measures of node
impurity for leaf node m, i.e., the misclassification error, the Gini index, and the entropy (information gain).

• Misclassification error: 1− p̂m,k(m).

• Gini index:
∑K

k=1 p̂m,k(1− p̂m,k), which encourages p̂m,k to be close to either 0 or 1.

• Entropy: −
∑K

k=1 p̂m,k log p̂m,k, which measures the information gain.

The Gini index and the entropy are numerically similar to each other, and both work better in practice than the
misclassfication error. Now, note that we also need to score a potential split that produces the left and right nodes
RL and RR. Suppose that we have NL data points in RL and NR data points in RR. Let Q(RL) and Q(RR) be their
node impurity measures respectively. We aim to find a split that minimizes the weighted average of node impurities

NLQ(RL) +NRQ(RR)

NL +NR
. (236)

Interpretability of decision trees. Trees are easy to visualize and explain than other classifiers (even linear
regression). Small trees are especially interpretable though larger trees may not be so much. Compared with linear
models, trees may have to work harder to capture the linear decision boundaries, but can easily capture certain
nonlinear ones. As is shown in Figure 10, we can see that decision tree models may need to zigzag to approximate a
simple linear boundary, but can easily separate those angular boundaries.

Figure 10: The comparison between trees and linear models. The plots on the left correspond to a linear model and
the plots on the right correspond to a decision tree.

Overall, compared with linear models, decision trees are nonlinear so that they can capture certain nonliear boundaries
easily. They are also non-metric, i.e., they do not rely on the geometry of the space (inner products or distances).
Moreover, they are non-parametric, so that they need no assumptions on the distribution of the data. However,
decision trees may struggle to capture linear decision boundaries, and they have high variance and tend to overfit,
since they are extremely sensitive to small changes in the training data. As we will discuss later, we need certain
ensemble technique to mitigate the overfitting issues.
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10.2 Bagging and Random Forests

We recall statistics and point estimators. Suppose we observe data D = {x1, · · · , xn} sampled independently from a
parametric distribution P[·; θ]. A statistic s = s(D) is any function of the data, e.g., sample mean, sample variance,

histogram, empirical data distribution, etc. A statistic θ̂ = θ̂(D) is a point estimator of θ if θ̂ ≈ θ. Statistics are
random, so they have probability distributions, which are called sampling distributions. The standard deviation of a
sampling distribution is called the standard error. Some parameters of the sampling distribution we are interested
in include the bias Bias(θ̂) = E[θ̂]− θ and the variance Var[θ̂] = E[θ̂2]− E2[θ̂].

Now let θ̂(D) be an unbiased estimator with variance σ2, i.e., E[θ̂] = θ and Var[θ̂] = σ2. Its standard error would
be the square root of the variance, i.e., σ. So far we have used only a single statistic to estimate θ, but now
consider a new estimator that takes the average of independent and identically distributed statistics θ̂1, · · · , θ̂n where
θ̂i = θ̂(D (i)). This new estimator would have the same expected value, but with a smaller standard error, such that

E

[
1

n

n∑
i=1

θ̂i

]
= θ, Var

[
1

n

n∑
i=1

θ̂i

]
=

1

n2

n∑
i=1

Var[θ̂i] =
σ2

n
. (237)

This similar concept can be applied if we have B independent training sets, all drawn from the same distribution
P[·; θ]. Our learning algorithm gives us B prediction functions f̂1(x), · · · , f̂B(x). We then define the average

prediction function f̂avg by taking the arithmetic mean of these prediction functions. The average prediction function
would then have the same expectation as each of these prediction function, but with a smaller variance. However, the
problem here is that, we do not have B independent training sets in practice. This leads to the idea of bootstrapping
in order to simulate multiple samples when we have only one.

The bootstrap method. A bootstrap sample from the dataset Dn = {x1, · · · , xn} is a sample of size n drawn
with replacement from Dn. That is, some elements of Dn can show up multiple times, while some elements may not
show up at all. In this scenario, each xi has a probability (1 − 1/n)n of not being included in a given bootstrap
sample. For large n, this probability tends to 1/e ≈ 0.368. Therefore, we expect approximately 63.2% of elements of
Dn to show up at least once in a given bootstrap sample. Now, the bootstrap method simulates B independent

samples from P[·; θ] by taking B bootstrap samples from Dn, say D
(1)
n , · · · , D(B)

n . This often ends up being close to
what we would get with B independent samples from P[·; θ].

Now that we have applied the bootstrap method and we will the resulting bootstrap samples as independent training
sets. Then, we can use certain ensemble methods to combine multiple weak models into a single and more
powerful model. As we have previously shown, averaging over the bootstrap samples will reduce the standard error
(or variance) without changing the bias (or expected value). The ensemble strategies include parallel ensemble
in which models are built independently, and sequential ensemble in which models are built sequentially. An
example of the former is bagging, and an example for the latter is boosting, i.e., trying to find learners that do well
where previous learners fall short.

Bagging. Suppose that we drawB bootstrap samplesD(1), · · · , D(B) from the original dataset D . Let f̂1, · · · , f̂B be
the prediction functions resulting from training on D(1), · · · , D(B), respectively. The bagged prediction function
is simply a combination of these prediction functions. For instance, we can take the average for regression problems
and take the majority vote for classification problems. Bagging is a general method for variance reduction, but it is
particularly useful for decision trees. The reason is, small perturbations between each bootstrap sample can lead to
high degree of model variability since decision tree models are sensitive. Then bagging can help a lot since these base
learners are relatively unbiased but with high variance. Now compared with simple decision tree models, bagging
tends not to lead to overfitting. However, the downside is that, if we have many trees, then the bagged predictor
would be much less interpretable.

Out-of-bag error estimation. Recall that each bagged predictor is trained on approximately 63.2% of the original
dataset. The remaining 36.8% would then be called out-of-bag (OOB) observations. For the ith training point xi
in D , let Si =

{
b; D(b) does not contain xi

}
. Then, the OOB prediction on xi would then be

f̂OOB(xi) =
1

|Si|
∑
b∈Si

f̂b(xi). (238)
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The OOB error is a good estimate of the testing error, because none of the prediction functions that we take average
over has ever been trained with xi. This is similar to cross validation.

Random Forests. We recall the motivating principle of bagging, that is, if we have n independent and identically
distributed estimators, we can use bagging to reduce the variance. However, note that though bootstrap samples can
be treated as independent from the training set, they are not independent from PX ×Y . Then, if we take the average
and compute the variance, the covariance terms would dominate, limiting the benefits of averaging. Therefore, we
want to reduce the dependence between the estimators.

The key idea here is, we still use bagged decision trees, but we modify the tree-growing procedure. First of all, we
build a collection of trees independently as before. Then, when constructing each tree node, we restrict the choice of
splitting variable to a randomly chosen subset of feature of size m. This would prevent situations in which all trees
are dominated by the same small number of strong features and therefore too similar to each other. Typically, we
choose m ≈ √p where p is the total number of features, or we can choose m using cross validation. Note that when
m = p, random forest is essentially just bagging.

10.3 Boosting

Bagging reduces variance of a low-bias and high-variance estimator by ensembling many estimators trained in parallel.
On the other hand, boosting would reduce the error rate of a high-bias estimator by ensembling many estimators
trained in sequence (without bootstrapping). Similar to bagging, boosting is a general method that is particularly
popular with decision trees. The main intuition here is that, instead of fitting the data very closely using a large
decision tree, we train gradually using a sequence of simpler trees. Here, we will focus on a specific implementation,
AdaBoost (Freund & Schapire, 1997).

Consider binary classification Y = {−1, 1}. Typical base hypothesis spaces include decision stumps (i.e., trees with
a single split), trees with few terminal nodes, and linear decision functions. Each base learner would be trained on
weighted data, say training set D = {(x1, y1), · · · , (xn, yn)} with weights w1, · · · , wn associated with each example
respectively. The weighted empirical risk is then given by

R̂w
n (f) =

1

W

n∑
i=1

wiℓ(f(xi), yi), (239)

where W =
∑n

i=1 wi is the total weight. In this way, examples with larger weights would affect the loss more. In
the AdaBoost algorithm, we start with equal weights for all training points w1 = · · · = wn = 1. Then, we train a
base classifier G1(x) on the training data (note that this classifier may not fit the data well). But then we increase
the weights of the points misclassified by G1(x), so that these points would affect the loss more, hopefully making
further learners do better on these points where G1(x) falls short. After that, we again train a base classifier G2(x)
on the training data with updated weights, and modify the weights again. We repeat this process for M times where
M is the number of classifiers we plan to train, so that we have G1(x), · · · , GM (x). Our final prediction would then
by made via

G(x) = sign

(
M∑

m=1

αmGm(x)

)
, (240)

such that each αm is nonnegative, and we would have larger αm for Gm that fits its weighted training data well.
Note that the weighted 0-1 error of each Gm(x) is given by

Errorm =
1

W

n∑
i=1

wi1yi ̸=Gm(xi), (241)

where W is again the total weight as defined before. Note that these weights are not the final weights, but the
weights that Gm is trained with. Now, we determine a formula for the classifier weights αm. That is,

αm = ln

(
1−Errorm

Errorm

)
. (242)

This way, higher weighted error leads to lower weight, and it is always non-negative, meeting our requirements. Now,
how do we update the weights? Recall that we want to increase the weights of the points misclassified by the current
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base estimator. To do this, suppose that w1, · · · , wn are the weights before training. If the current base estimator
Gm classifies xi correctly, then we keep wi as it is. Otherwise, we increase xi such that

wi ← wie
αm = wi

(
1−Errorm

Errorm

)
. (243)

In this way, if Gm is a strong classifier overall, it will have low Errorm and thus large αm. Then if any example
is misclassified even with such a strong classifier, wi will increase to a greater extent. To sum up, we describe the
AdaBoost algorithm as shown in Algorithm 9.

Algorithm 9 AdaBoost

1: Initialize observation weights wi = 1, i = 1, · · · , n;
2: for m = 1 to M do
3: Use a base learner to fit the weighted training data and obtain Gm(x);
4: Compute the weighted empirical 0-1 risk Errorm = 1

W

∑n
i=1 wi1yi ̸=Gm(xi), where M =

∑n
i=1 wi;

5: Compute the classifier weight αm = ln
(

1−Errorm

Errorm

)
;

6: Update the example weights such that wi ← wi exp
(
αm1yi ̸=Gm(xi)

)
for i = 1, · · · , n;

7: end for
8: return the voted classifier G(x) = sign

(∑M
m=1 αmGm(x)

)
;

4/11 Lecture

11 Gradient Boosting

Recall the AdaBoost algorithm as above. Instead of voting the final classifier G(x), we may try to learn it directly.
Consider the following scenario where we fit a linear combination of transformations of the input, such that

f(x) =

M∑
m=1

vmhm(x), (244)

where hm’s are called basis functions (or feature functions in machine learning) such that h1, · · · , hM : X → R,
and are fixed and known (i.e., chosen ahead of time). For instance, if we take hm(x) = xm, then it would become
polynomial regression. Now, what if we want to learn the basis functions? The base hypothesis space H would
consist of all functions h : X → R, and an adaptive basis function expansion over H is an ensemble model,
such that

f(x) =

M∑
m=1

vmhm(x), (245)

where vm ∈ R and hm ∈H . The combined hypothesis would then be

FM =

{
M∑

m=1

vmhm(x); vm ∈ R, hm ∈H ,m = 1, · · · ,M

}
. (246)

The learning objective is that

f̂ = argminf∈Fm

1

n

n∑
i=1

ℓ(yi, f(xi)), (247)

for some loss functions ℓ. The ERM objective can thus be written as

J(v1, · · · , vM , h1, · · · , hM ) =
1

n

n∑
i=1

ℓ

(
yi,

M∑
m=1

vmhm(x)

)
. (248)
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Now in order to learn this objective, suppose that our base hypothesis space H is parametrized by Θ = Rb, so that

J(v1, · · · , vM , θ1, · · · , θM ) =
1

n

n∑
i=1

ℓ

(
yi,

M∑
m=1

vmh(x; θm)

)
. (249)

For some hypothesis spaces and typical loss functions, we can optimize this objective via stochastic gradient descent.
However, if our base hypothesis space H consists of decision trees, we cannot even parametrize trees (and even if we
can, the predictions would not be continuous and thus nondifferentiable). Therefore, we would like to try a greedy
algorithm similar to AdaBoost, which can be applied to even non-parametric and non-differentiable basis functions,
that is, gradient boosting, or in other words, gradient descent in the functional space. It has only two restrictions,
i.e., the loss function must be subdifferentiable with respect to training predictions f(xi), and we need to be able to
perform regression with the base hypothesis space H .

11.1 Forward Stagewise Additive Modeling

The goal is to fit a model

f(x) =

M∑
m=1

vmhm(x) (250)

given some loss function. Our approach is to greedily fit one function at a time without adjusting previous functions,
hence “forward stagewise”. After m− 1 stages, we would have that

fm−1(x) =

m−1∑
i=1

vihi(x), (251)

then in the mth round, we want to find hm ∈H (i.e., a basis function) and vm > 0, such that

fm(x) = fm−1(x)︸ ︷︷ ︸
fixed

+vmhm, (252)

improves objective function value by as much as possible. For instance for ERM, we plug in our objective function
and thus we can obtain the algorithm shown as in Algorithm 10.

Algorithm 10 Forward Stagewise Additive Modeling for ERM

1: Initialize f0(x) = 0;
2: for m = 1 to M do
3: Compute

(vm, hm) = argminv∈R,h∈H

1

n

n∑
i=1

ℓ (yi, fm−1(xi) + vh(xi)) ; (253)

4: fm ← fm−1 + vmhm;
5: end for
6: return fM ;

Now alternatively, we consider doing binary classification. Let Y = {−1, 1} be the outcome space, A = R be the
action space, and f : X → A be the score function. Recall that the margin for example (x, y) is given by m = yf(x),
where m > 0 means the classification is correct, and that larger m means better confidence. As for loss function, we
introduce the exponential loss, such that

ℓ(y, f(x)) = exp(−yf(x)), (254)

i.e., ℓ(m) = exp(−m), which is also an upper bound of the 0-1 loss. Now the objective function in the mth round is

J(v, h) =
1

n

n∑
i=1

exp (−yi (fm−1(x) + vh(xi))) . (255)
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By defining w
(m)
i = exp(−yifm−1(xi)), we can rewrite that

J(v, h) =
1

n

n∑
i=1

w
(m)
i exp (−yivh(xi)) =

n∑
i=1

wm
i

(
1yi=h(xi)e

−v + 1yi ̸=h(xi)e
v
)︸ ︷︷ ︸

recall H = {h : X → {−1, 1}}

=

n∑
i=1

wm
i

((
e−v − ev

)
1yi ̸=h(xi) + e−v

)
.

(256)

If v > 0, then

hm = argminh∈H J(v, h) = argminh∈H

n∑
i=1

w
(m)
i 1yi ̸=h(xi) = argminh∈H

1∑n
i=1 w

(m)
i

n∑
i=1

w
(m)
i 1yi ̸=h(xi), (257)

i.e., hm is the minimizer of the weighted 0-1 loss. If we denote this weighted 0-1 error by Errorm, then we can
show that the optimal v is

vm =
1

2
log

(
1−Errorm

Errorm

)
. (258)

This is the same as the classifier weights in AdaBoost (differing by a constant). If Errorm < 1/2 (better than
chance), then vm > 0. Now we compute the weights in the next round, such that

w
(m+1)
i = exp (−yifm(xi)) = exp (−yi (fm−1(xi) + vmhm(xi))) = w

(m)
i exp (−yivmhm(xi))

= w
(m)
i exp

(
−vm1yi=hm(xi) + vm1yi ̸=hm(xi)

)
= w

(m)
i exp

(
2vm1yi ̸=hm(xi)

)
exp (−vm) . (259)

The constant scalar exp (−vm) will get cancelled out during normalization, and compared with AdaBoost, vm = 2αm.
To compare the exponential loss with other loss functions for classification, the exponential loss puts a very high
penalty on misclassified examples, thus not robust to outliers and noise. Also, the logistic loss performs better
in settings with high Bayes error rate (intrinsic randomness in the labels). However, exponential loss has some
computational advantages over logistic loss.

11.2 Gradient Boosting: AnyBoost

With squared loss, the FSAM objective function at the mth round would be

J(v, h) =
1

n

n∑
i=1

(yi − (fm−1(x) + vh(xi)))
2
. (260)

If H is closed under rescaling, i.e., if h ∈ H then vh ∈ H for any h ∈ R, then we do not need v. Without loss of
generality we take v = 1 and minimize

J(h) =
1

n

n∑
i=1

(yi − fm−1(x))︸ ︷︷ ︸
residual

−h(xi)

2

. (261)

This is just fitting the residuals with least-squares regression. An example base hypothesis space H is just the
regression stumps (decision stumps). For this, we consider the functional gradient descent, in which we want to
minimize

J(f) =

n∑
i=1

ℓ(yi, f(xi)). (262)

In some sense, we want to take the gradient with respect to f , and since J(f) depends only on f at the n training
points, we can define the “paramters” such that f = (f(x1), · · · , f(xn))⊤, so we can rewrite the functional gradient
descent objective as

J(f) =

n∑
i=1

ℓ(yi, fi). (263)
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Then, the negative gradient step direction at f would be

−g = −∇fJ(f) = −(∂f1ℓ(y1, f1), · · · , ∂fnℓ(yn, fn)), (264)

which we can easily calculate. −g ∈ Rn is the direction we want to change each of our n predictions on the training
data. With gradient descent, our final predictor would be an additive model

f0 +

M∑
m=1

vt(−gt). (265)

Now the problem is, we only know how to change each of our n predictions in each step, but we also need to take a
gradient step in H . The solution is simple: we approximate by the closest base hypothesis h ∈H (in the l2 sense),
such that

min
h∈H

n∑
i=1

(−gi − h(xi))2. (266)

In other words, we take h ∈H that best approximates −g as our step direction. As a temporary summary, we recap
what we have discussed up till now.

Objective function J(f) =

n∑
i=1

ℓ(yi, f(xi)), (267)

Unconstrained gradient g = ∇fJ(f) = (∂f1ℓ(y1, f1), · · · , ∂fnℓ(yn, fn)), (268)

Projected negative gradient h = argminh∈H

n∑
i=1

(−gi − h(xi))2, (269)

Gradient descent f ← f + vh. (270)

As for the step size (learning rate) v, we can choose by line search, such that

vm = argminv

n∑
i=1

ℓ (yi, fm−1(xi) + vhm(xi)) , (271)

or to make things simple, we may simply choose a fixed hyperparameter v. We can also perform regularization
through shrinkage, such that

fm ← fm−1 + λvmhm, (272)

with λ ∈ [0, 1]. A typical choice would be λ = 0.1. Now it suffices to choose M (the terminating round), tuned on
the validation set. This version of gradient boosting algorithm can thus be summarized as in Algorithm 11.

Algorithm 11 Gradient Boosting

1: Initialize f to a constant, such that f0(x) ≡ argminγ
∑n

i=1 ℓ(yi, γ).
2: for m = 1 to M do
3: Compute the pseudo-residuals (negative gradient), such that

ri,m = −
(

∂

∂f(xi)
ℓ(yi, f(xi))

)
f(xi)=fm−1(xi)

. (273)

4: Fit a base learner hm with squared loss using the dataset {(xi, ri,m)}ni=1;
5: (Optional) Find the best step size vm = argminv

∑n
i=1 ℓ (yi, fm−1(xi) + vhm(xi));

6: fm ← fm−1 + λvmhm;
7: end for
8: return fM ;

We also recap the ingredients for the gradient boosting machine, that is, (1) any loss function subdifferentiable with
respect to the prediction f(xi), (2) a base hypothesis space for regression, (3) maxiter (or a stopping criterion), and
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(4) the step size methodology (fixed hyperparameter or line search). Let us apply gradient boosting with logistic
loss as an example. Recall the logistic loss for binary classification with Y = {−1, 1} is given by

ℓ(y, f(x)) = log (1 + exp(−yf(x))) . (274)

The pseudo-residual for the ith example is the negative derivative of loss with respect to the prediction, such that

ri = −
∂

∂f(xi)
ℓ(yi, f(xi)) = −

∂

∂f(xi)
(log (1 + exp(−yif(xi)))) =

yi exp(−yif(xi))
1 + exp(−yif(xi))

=
yi

1 + exp(yif(xi))
. (275)

Then we proceed to fit a base learner, and do the update step, which will not be explicitly shown here.
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