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1 Measure Theory and Probability Spaces

1.1 Measure Theory

1.1.1 Basic Concepts

Definition 1.1. Let E be a set, and let A be a set of subsets of E. We say that

if ∅ ∈ A , AC ∈ A , A ∪B ∈ A , ∀A,B ∈ A , then A is an algebra, (1)

if ∅ ∈ A , A ∩B ∈ A , ∀A,B ∈ A , then A is a π-system, (2)

if ∅ ∈ A , AC ∈ A ,
⋃
n∈N

An ∈ A , ∀A,An ∈ A , then A is a σ-algebra. (3)

Definition 1.2. A pair (E,E ), where E is a set and E is a σ-algebra on E, is called a measurable space. In this
case, each A ∈ E is called an E -measurable set.

Definition 1.3. The intersection of all σ-algebras containing C (there is at least one) is called the σ-algebra
generated by C , denoted by σ(C ).

Remark 1.4. Note that P(E) (the set of all subsets of E) is a σ-algebra, and the intersection of any collection of
σ-algebras is a σ-algebra. σ(C ) is the smallest σ-algebra containing C .

Remark 1.5. It is commonly impossible to write down the typical element of a σ-algebra E , so we try to find
π-systems with simpler elements that generate our σ-algebra and work with them instead.

Definition 1.6. A topological space E with topology T is a space endowed with a set of open subsets. The
Borel σ-algebra is then defined as B(E) = σ(T ), which is the σ-algebra generated by the family of all open subsets
of E. We use the standard abbreviation B := B(R).

Example 1.7. Let π(R) be the π-system π(R) := {(−∞, x]; x ∈ R}. We shall be able to check that σ(π(R)) = B(R),
i.e., σ(π(R)) is the Borel σ-algebra of R. See Homework 1.

Definition 1.8. Let E be a set and A be an algebra on E. A set function is any function µ : A → [0,∞] with
µ(∅) = 0.

Definition 1.9. Let E be a set, A be an algebra on E, and µ be a set function on A . We say that

µ is increasing if µ(A) ≤ µ(B), ∀A,B ∈ A with A ⊆ B, (4)

µ is additive if µ(A ∪B) = µ(A) + µ(B), ∀A,B ∈ A disjoint, (5)

µ is σ-additive if µ

(⋃
n∈N

An

)
=
∑
n∈N

µ(An), ∀ {An}n∈N ⊆ A disjoint, with
⋃
n∈N

An ∈ A . (6)

Remark 1.10. σ-additivity is also called countable additivity. Let (E,E ) be a measurable space, then if µ : E →
[0,∞] is countable additive, it is called a measure and the triple (E,E , µ) is called a measure space. In particular
if µ(E) = 1, then µ is called a probability measure and (E,E , µ) is called a probability space. The notation
(Ω,F ,P) is often used instead for probability spaces.

Remark 1.11. Given a measure space (E,E , µ), µ is said to be finite if µ(E) < ∞, and σ-finite if there exists
{En}n∈N ⊆ E , such that µ(En) < ∞ and

⋃
n∈N En = E. A set F ∈ E is called µ-null if µ(F ) = 0.
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Remark 1.12. A statement ϕ about points s ∈ E holds almost everywhere (a.e.) if F = {s ∈ E; ϕ(s) is false} ∈
E and F is µ-null, i.e., µ(F ) = 0. For a probability space, almost everywhere is often called almost surely (a.s.).

Example 1.13 (Infinitely often). An occurs infinitely often if ∀p ∈ N, ∃n ≥ p, such that An holds. Now look at
the event that an element ω ∈ infinitely many An’s. This is equivalent to ∀p ∈ N, ∃n ≥ p, such that ω ∈ An. Then
∀p ∈ N, ω ∈

⋃
n≥p An, i.e., ω ∈

⋂
p∈N

⋃
n≥p An. Therefore, we can see that

{ω; ω ∈ An infinitely often} =
⋂
p∈N

⋃
n≥p

An. (7)

Note that we can interpret unions and intersections as⋃
n∈N

An = {An occurs at least once} ,
⋂
n∈N

An = {all An’s occur} . (8)

Example 1.14 (A set we cannot measure on R). Take the equivalence class x ∼ y ⇐⇒ y − x ∈ Q. The axiom of
choice enables us to define a set C, such that C as exactly one element in each equivalent class, and we assume that
C ⊆ [0, 1] (applicable by translation). Assume µ(C) = 0 and we define for some r ∈ R that

Cr = C + r = {x+ r; x ∈ C, r ∈ R} . (9)

We can check that Cr, r ∈ Q are disjoint. Indeed, if we take x ∈ Cr ∩ Cs, then we can write x = c+ r = c′ + s for
some c, c′ ∈ C. This would imply that c′ = c + r − s, meaning that r = s since there is can be only one element in
each equivalent class. This leads to a contradiction, so that Cr ∩ Cs = ∅, ∀r, s ∈ Q. Then we can see that

µ(R) = µ

⋃
r∈Q

Cr

 =
∑
r∈Q

µ(Cr) =
∑
r∈Q

µ(C)︸ ︷︷ ︸
translation invariance

=
∑
r∈Q

0 = 0, (10)

which leads to a contradiction. Therefore C is not measurable on R. We shall also be able to check that if µ(C) > 0,
then µ((0, 2)) = ∞, and in general µ((a, b)) = ∞, ∀a < b. Indeed, we have that

µ((0, 2)) ≥ µ

 ⋃
r∈Q∩[0,1]

Cr

 =
∑

r∈Q∩[0,1]

µ(Cr) =
∑

r∈Q∩[0,1]

µ(C) = ∞. (11)
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Example 1.15 (An algebra that is not a σ-algebra). Let N be the space and take

E =
{
A ⊆ N; A is finite or AC is finite

}
. (12)

If A ∈ E , then either A is finite (which means (AC)C is finite) or AC is finite, implying that AC ∈ E . Now if
A,B ∈ E , we discuss two cases. If A and B are both finite, then A ∪ B is finite. Otherwise AC is finite, thus
(A ∪ B)C = AC ∩ BC is finite. We have shown that E is indeed an algebra. However, if we take An = {2n}, then
A =

⋃
n∈N An is the set of all even numbers, which is not finite and does not have a finite complement either. It

follows that E is not a σ-algebra.

Example 1.16. Given A1, . . . , Am subsets of a non-empty set E, and let A := {A1, . . . , Am}. The goal is to
describe all elements of E = σ(A ). To do this, we denote A1

i := Ai and A0
i := AC

i , then for some ϵ ∈ {0, 1}m, define
Aϵ =

⋂
1≤i≤m Aϵi

i . We shall first show that

A ∈ E ⇐⇒ A =
⋃
ϵ∈I

Aϵ for some I ⊆ {0, 1}m. (13)

⇐= This is trivial by definition. Each Ai ∈ E , so each AC
i ∈ E , and thus each Aϵ, being a finite union of Ai’s and

their complements, is in E . This implies that any countable union of Aϵ’s is also in E .
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=⇒ Let

F =

{
A ⊆ E; A =

⋃
ϵ∈I

Aϵ for some I ⊆ {0, 1}m
}
. (14)

Clearly ∅ ∈ F . Take an arbitrary A =
⋃

ϵ∈I Aϵ ∈ F , then we have that

AC =
⋃

ϵ∈IC

Aϵ ∈ F . (15)

This is because all Aϵ’s are disjoint, and their union is the entire space E. Now take An ∈ F , n ∈ N, then⋃
n∈N

An =
⋃

ϵ∈
⋃

n∈N In

Aϵ ∈ F , (16)

thus we can conclude that F is a σ-algebra. Note that A ⊆ F . Indeed, if we visualize on a Venn diagram, we
will see that each Aϵ represents a single and unique area in that diagram. Each set Ai would be some union of
these single areas, so A ⊆ F . Moreover, E = σ(A ) is the smallest σ-algebra containing A , and since F is an
σ-algebra containing A , we can conclude that E ⊆ F , and the proof is complete.

Now we can see that each element of E can be written in the form of A =
⋃

ϵ∈I Aϵ for some I ⊆ {0, 1}m. Note that
for all ϵ ∈ {0, 1}m and A ∈ E , either A∩Aϵ = ∅ or Aϵ ⊆ A. This is the same meaning as “a single area in the Venn
diagram” as in the proof above. The subsets Aϵ are thus called the atoms of E .

1.1.2 Construction and Characterization of Measures

As previously mentioned, it is difficult to directly work with a σ-algebra (for instance, defining a measure). Therefore,
we try to specify the values on a π-system generating it, and extend the definition to the whole σ-algebra.

Lemma 1.17. Let E be a set, I be a π-system on E, and E = σ(I ). Suppose that µ1 and µ2 are measures on
(E,E ), such that µ1|I = µ2|I and µ1(E) = µ2(E) < ∞, then µ1 = µ2 on E .

Remark 1.18. Note that if I is not a π-system, the uniqueness (as specified in the lemma above) can fail.
For instance, let E = {1, 2, 3, 4} and I = {{1, 2} , {1, 3}}. Let ri = µ1({i}) and si = µ2({i}). Assuming that
µ1|I = µ2|I , we have that r1 + r2 = s1 + s2 and r1 + r3 = s1 + s3. However, this does not necessarily mean that
r1 + r2 + r3 + r4 = s1 + s2 + s3 + s4, so µ1 = µ2 does not necessarily hold on E (note that E necessarily contains E
because it is a σ-algebra).

Theorem 1.19 (Carathéodory’s extension theorem). Let E be a set, E0 be an algebra on E, and E := σ(E0).
Assume that µ0 : E0 → [0,∞] is a countably additive set function on E0, then there exists a measure µ on (E,E ),
such that µ = µ0 on E0.

Remark 1.20. Lemma 1.17 and Theorem 1.19 are important tools for proving uniqueness and existence of measures
(respectively), for instance, the Lebesgue measure.

Theorem 1.21. There exists a unique Borel measure µ on R, such that ∀a < b ∈ R, µ((a, b]) = b− a. This measure
µ is called the Lebesgue measure on R.

1.1.3 Elementary Inequalities

Lemma 1.22. Let (E,E , µ) be a measure space. Then,

µ(A ∪B) ≤ µ(A) + µ(B), µ(A ∪B) + µ(A ∩B) = µ(A) + µ(B). (17)

Proof. We have that

µ(A ∪B) = µ(A ∪ (B \A)) = µ(A) + µ(B \A) ≤ µ(A) + µ(B), (18)

µ(A ∪B) + µ(A ∩B) = µ(A) + µ(B \A) + µ(A ∩B) = µ(A) + µ(B), (19)

so the proof is complete. The second equation in fact implies the first inequality.
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Remark 1.23. Both observations above can be generalized to a finite number of sets. The first inequality follows

by the observation that
⋃

n∈N Fn =
⋃

n∈N

(
Fn \

⋃
i≤n−1 Fi

)
. The second equality follows by induction into the

inclusion-exclusion formula.
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1.1.4 Monotone Convergence Properties

Theorem 1.24. Let (E,E , µ) be a measure space.

(1) If {Fn}n∈N ⊆ E and Fn ↑ F , then µ(Fn) ↑ µ(F ).

(2) If {Gn}n∈N ⊆ E and Gn ↓ G with µ(Gk) < ∞ for some k ∈ N, then µ(Gn) ↓ µ(G).

Note that Fn ↑ F means that Fn ⊆ Fn+1, ∀n ∈ N, and
⋃

n∈N Fn = F .

Proof. (1) Let G1 = F1 and Gn = Fn \ Fn−1 for n ≥ 2. Then the sets {Gn}n∈N are disjoint, and that

µ(Fn) = µ

(
n⋃

k=1

Gk

)
=

n∑
k=1

µ(Gk) ↑
∞∑
k=1

µ(Gk) = µ

( ∞⋃
k=1

Gk

)
= µ

( ∞⋃
k=1

Fk

)
= µ(F ). (20)

(2) Take Fn = Gk \ Gk+n, then Fn ↑ Gk \ G. Applying the previous part, we have that µ(Fn) ↑ µ(Gk \ G).
Clearly Gk ⊇ Gk+n ⊇ G, so that µ(Gk)− µ(Gk+n) = µ(Fn) ↑ µ(Gk \G) = µ(Gk)− µ(G), which implies that
µ(Gk+n) ↓ µ(G). The proof is thus complete.

Remark 1.25. The assumption in the second part of the previous theorem is necessary. We can take Hn := (n,∞),
n ∈ N as a counterexample otherwise. Indeed, Hn ↓ ∅, but µ(Hn) = ∞, ∀n ∈ N, where we take µ as the Lebesgue
measure on R.

1.2 Probability Spaces

We can think of the probability space (Ω,F ,P) as being a model for an experiment whose outcome is subject to
chance. Ω is the set of all possible outcomes of the experiment; F is the set of observable outcomes (or events); and
∀A ∈ F , P(A) is the probability of the event A, i.e., the probability that the outcome ω ∈ Ω of the experiment falls
in the event A.

Example 1.26. (1) Let (S,E , µ) be a measure space, and let A ⊆ S. Take F = {A ∩ C; C ∈ E }. We shall be
able to see that F is a σ-algebra on A, µ|F is a measure on (A,F ), and if µ(A) < ∞, P(C) = µ(C)/µ(A) is a
probability measure.

• ∅ ∈ F because ∅ ∈ E . Take arbitrary A∩C ∈ F , then (A∩C)C = AC ∪CC . However, we are checking
whether F is a σ-algebra on A, so this is just CC = A ∩ CC ∈ F because CC ∈ E . Now take arbitrary
A∩Cn ∈ F , then

⋃
n∈N(A∩Cn) = A∩

(⋃
n∈N Cn

)
∈ F because

⋃
n∈N Cn ∈ E . Therefore we have shown

that F is a σ-algebra on A .

• The properties of µ|F follow from that of µ.

• Clearly P(A) = 1 and P(C) = µ(C)/µ(A) ≤ µ(C ′)/µ(A) = P(C ′) if C ⊆ C ′. Therefore, it suffices to show
that P is countably additive. Taking disjoint Cn ∈ E , we have that

P

(⋃
n∈N

Cn

)
=

µ
(⋃

n∈N Cn

)
µ(A)

=

∑
n∈N µ(Cn)

µ(A)
=
∑
n∈N

µ(Cn)

µ(A)
=
∑
n∈N

P(Cn). (21)

(2) On the measurable space (S,P(S)) where P(S) is the power set of S, the Dirac delta measure or unit
mass at x ∈ S is defined as

δx(A) :=

{
1, if x ∈ A,

0, if x /∈ A.
(22)
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Example 1.27. Consider an infinite sequence of coin tosses. In this case, we may choose Ω = {H,T}N. A sample
point ω ∈ Ω is a sequence ω = (ωn)n≥1 where ωn = 0, 1 (0 stands for H and 1 stands for T ). Note that Ω is a very
large space, and any useful probability measure can only be defined on a smaller σ-algebra than that of all subsets of
Ω. Now let Al = {ωl = 0} be the event that 0 is tossed at time l, ∀l ≥ 1. We further denote A1

l = Al and A0
l = AC

l ,
and let Aϵ

I :=
⋂

k∈I A
ϵ
k, ϵ ∈ {0, 1}. For any ϵ ∈ {0, 1}m, let Aϵ := Aϵ1

1 ∩ . . . ∩ Aϵm
m . Now for all k ∈ N, j ∈ Nk, and

x ∈ {H,T}k, let

Ek,j,x = {ω; ωj1 = x1, . . . , ωjk = xk} , (23)

which is the event that x1 is tossed at time j1, etc., and xk is tossed at time jk. Let

C =
{
Ek,j,x; k ∈ N, j ∈ Nk, x ∈ {H,T}k

}
, (24)

where C is sometimes called the set of cylinders.

• Ek,j,x can be written as an intersection of subsets of the type Aϵ
I . Indeed, we can take I1 = {ji; xi = H} and

I2 = {ji; xi = T}, then Ek,j,x = A0
I1

∩A1
I2
.

• C is a π-system. Indeed, ∅ ∈ C if we take k = 0. Moreover, we can see that

Ek,j,x ∩ Ek′,j′,x′ = A0
I1 ∩A1

I2 ∩A0
I′
1
∩A1

I′
2
= A0

I1∪I′
1
∩A1

I2∪I′
2
∈ C . (25)

Let E be the smallest algebra containing C , defined as the intersection of all algebras containing C .

• A ∈ E if and only if there exists m ≥ 1 and K ⊆ {0, 1}m finite, such that A =
⋃

ϵ∈K Aϵ.

⇐= This is trivial. Note that we are dealing with algebras instead of σ-algebras, so we can extend to finite
unions but not countable unions. Now each Aϵ is a finite intersection of elements in E , so Aϵ ∈ E .
Therefore, any finite union A =

⋃
ϵ∈K Aϵ should clearly be still in E .

=⇒ Let

G =

{
A; A =

⋃
ϵ∈K

Aϵ for some K ⊆ {0, 1}m finite, m ≥ 1

}
. (26)

Clearly ∅ ∈ G . Take an arbitrary A =
⋃

ϵ∈K Aϵ ∈ G , then we have that

AC =
⋃

ϵ∈KC

Aϵ ∈ G . (27)

Note that the complement of K is taken for a fixed m. This is because for a fixed m, all Aϵ’s are disjoint,
and their union is the entire space. Now take A1, A2 ∈ G , then

A1 ∪A2 =
⋃

ϵ∈K1∪K2

Aϵ ∈ G , (28)

because K1 and K2 are both finite and thus K ⊆ {0, 1}m is also finite. Therefore, we can conclude that G
is an algebra. Note that C ⊆ G . Each Ek,j,x is a fixed sequence of k coin tosses, and each Aϵ represents a
pattern for a subsequence of coin tosses. Their finite union is then multiple patterns for a subsequence of
coin tosses. Clearly, each fixed sequence Ek,j,x can find a suitable union to fall in. Now G is an algebra
containing C , while E is the smallest algebra containing C . This means that E ⊆ G , and the proof is
complete.

• P(Ek,j,x) := 2−k (independent fair coin tosses) uniquely defines a probability measure P on (Ω,F ), where
F = σ(C ) is the σ-algebra generated by C . Uniqueness follows from Lemma 1.17, because C is a π-system as
is previously shown. Now we check the existence. As we have previously shown, for each A ∈ E , there exists
m ≥ 1 and K ⊆ {0, 1}m finite, such that A =

⋃
ϵ∈K Aϵ and P(A) = |K|2−m. To see that this is self-consistent,

suppose that n ≥ m and A =
⋃

ϵ′∈K×{0,1}n−m Aϵ′ is an alternative expression for A. Then we can check that

P(A) =
|K × {0, 1}n−m |

2n
=

|K|2n−m

2n
=

|K|
2m

, (29)

6



so P is well-defined. In addition, P is countably additive since any countable union of An ∈ E can be written
as
⋃

ϵ∈K Aϵ with K being finite, so P(
⋃

n An) < ∞. By Carathéodory’s extension theorem (Theorem 1.19), P
is well-defined on F = σ(C ).

Let T : {0, 1}N → [0, 1], such that ω 7→ 0.ω1ω2 . . . ωn . . . =
∑∞

n=1 ωn2
−n.

• Let B([0, 1]) be the Borel σ-algebra on [0, 1], then T−1(B([0, 1])) ⊆ F . First we note that T is not bijective.
For instance, (1, 0, 0, . . .) and (0, 1, 1, . . .) are both mapped to 1/2, indicating that T is not injective and thus
not bijective. We split the interval [0, 1]. For instance, T−1([0, 1/2)) = {ω1 = 0} \ {ω2 = ω3 = . . . = 1} (the
excluded part would give 1/2 because the sequence is infinite). As a result, we observe that

T−1

([
k

2n
,
k + 1

2n

))
= En,{1,...,n},x \ {ωn+1 = ωn+2 = . . . = 1} ∪ {ωl = yl for 1 ≤ l ≤ n and ωn+1 = ωn+2 = . . . = 1} ∈ F ,

(30)

where we set x and y such that

k =

n∑
i=1

2n−ixi, k − 1 =

n∑
i=1

2n−iyi. (31)

The reason is as follows. En,{1,...,n},x stands for the interval [k2−n, (k + 1)2−n), because it has already taken
k2−n according to x, and the rest starts from 2−n−1, 2−n−2, . . ., cumulating to at most 2−n so the sum will
never exceed (k+1)2−n. However, we need to exclude a case that sums to exactly (k+1)2−n from En,{1,...,n},x
because 2−n−1+2−n−2+. . . = 2−n. We also need an additional case that sums to exactly k2−n from (k−1)2−n,
which is the last term as above.

• Let µ be the measure defined on B([0, 1]) by µ(I) = P(T−1(I)), I ∈ B([0, 1]). Then we shall be able to see that
µ is the Borel measure on [0, 1]. To do this, we want to show that any open subset of [0, 1] can be expressed as
a countable union of [k2−n, (k + 1)2−n). Indeed, for any interval (a, b), we can write it as

(a, b) =
⋃

a< k
2n < k+1

2n ≤b

[
k

2n
,
k + 1

2n

)
. (32)

Note that there always exists such k ∈ Z. Indeed, let a < k2−n ≤ x < (k + 1)2−n ≤ b, then there exists some
integer k as long as x− a > 2−n and b− x > 2−n. Now on the π-system of these [k2−n, (k + 1)2−n) intervals,
we can see that µ is equal to the Borel measure on [0, 1]. By the uniqueness lemma (Lemma 1.17), we can thus
conclude that µ is exactly the Borel measure on [0, 1] on the whole of B([0, 1]).

1.2.1 Independence

Definition 1.28. Let I be a countable set. We say that the events {Ai ∈ F ; i ∈ I} are independent if, for all
finite subsets J ⊆ I, we have that

P

(⋂
i∈J

Ai

)
=
∏
i∈J

P(Ai). (33)

We say that the σ-algebras {Ai ⊆ F ; i ∈ I} are independent if {Ai ∈ F ; i ∈ I} are independent whenever Ai ∈ Ai

for all i ∈ I.

Example 1.29. Let Ω := [0, 1]2, F = B([0, 1]2), and µ be the Borel measure on [0, 1]. Let P := L ([0, 1]2) be
the Lebesgue measure on R2, i.e., the unique measure P such that P(A1 × A2) = µ(A1)µ(A2), ∀A1, A2 ∈ B([0, 1]).
Now let E1 := {A× [0, 1]; A ∈ B([0, 1])} and E2 := {[0, 1]×B; B ∈ B([0, 1])}, then E1 and E2 are independent on
(Ω,F ,P). Indeed, take arbitrary G = A× [0, 1] ∈ E1 and H = [0, 1]×B ∈ E2, we can see that

P(G ∩H) = P(A×B) = µ(A)µ(B) = P(A× [0, 1])P([0, 1]×B) = P(G)P(H). (34)

Example 1.30. Let (Ω,F ,P) be a probability space and {An}n∈N be a sequence of events. Show that An, n ∈ N
are independent if and only if the σ-algebras they generate, i.e., σ(An) =

{
∅, An, A

C
n ,Ω

}
, are independent.
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⇐= This is immediate by definition.

=⇒ It suffices to show that for all finite J,K ⊂ N disjoint, we have that

P

((⋂
n∈J

An

)
∩

( ⋂
n∈K

AC
n

))
=
∏
n∈J

P(An)
∏
n∈K

P(AC
n ). (35)

We prove by mathematical induction on |K|. If |K| = 0, then this holds trivially by independence of {An}n∈N.
Now assume that the above holds for all K ⊂ N with |K| = N , then for |K| = N+1, we can write K = K0∪{j}.
Using the inductive hypothesis, we can write that

P

((⋂
n∈J

An

)
∩

( ⋂
n∈K

AC
n

))
= P

((⋂
n∈J

An

)
∩

( ⋂
n∈K0

AC
n

)
∩AC

j

)

= P

((⋂
n∈J

An

)
∩

( ⋂
n∈K0

AC
n

))
− P

((⋂
n∈J

An

)
∩

( ⋂
n∈K0

AC
n

)
∩Aj

)

= P

((⋂
n∈J

An

)
∩

( ⋂
n∈K0

AC
n

))
− P

 ⋂
n∈J∪{j}

An

 ∩

( ⋂
n∈K0

AC
n

)
=
∏
n∈J

P(An)
∏

n∈K0

P(AC
n )︸ ︷︷ ︸

inductive hypothesis

−
∏

n∈J∪{j}

P(An)
∏

n∈K0

P(AC
n )︸ ︷︷ ︸

inductive hypothesis

=

(∏
n∈J

P(An)
∏

n∈K0

P(AC
n )

)
(1− P(Aj)) =

(∏
n∈J

P(An)
∏

n∈K0

P(AC
n )

)
P(AC

j )

=
∏
n∈J

P(An)
∏

n∈K0∪{j}

P(AC
n ) =

∏
n∈J

P(An)
∏
n∈K

P(AC
n ). (36)

Therefore, we can conclude the proof by induction.

Theorem 1.31. Suppose that G and H are sub-σ-algebras of F , and that G0 and H0 are π-systems with σ(G0) = G
and σ(H0) = H . Then G and H are independent if and only if G0 and H0 are independent.

Proof. =⇒ This is trivial since G0 ⊆ G and H0 ⊆ H .

⇐= Fix G ∈ G0, then take H 7→ P(G ∩ H) and H 7→ P(G)P(H). They are clearly equal since G0 and H0 are
independent, and they have the same total mass since P(G ∩ Ω) = P(G)P(Ω) = P(G). By the uniqueness
(Lemma 1.17), they should be equal on H . Now fix H ∈ H0 and analogously repeat the previous arguments.
We can conclude that P(G ∩H) = P(G)P(H) for any G ∈ G and H ∈ H , so G and H are independent.

1.2.2 The Fatou and Borel-Cantelli Lemmas

For the rest of this section, let (E,E , µ) be a measure space and let {An}n∈N be a sequence in E .

Definition 1.32. We define the limit superior and limit inferior of the sequence {An}n∈N respectively as

lim sup
n→∞

An :=
⋂
n∈N

⋃
m≥n

Am = {An occurs infinitely often (i.o.)} , (37)

lim inf
n→∞

An :=
⋃
n∈N

⋂
m≥n

Am = {An occurs at large times} . (38)

Remark 1.33. If (E,E , µ) is a probability space, then we can interpret lim supn→∞ An as being the event on which
An occurs for infinitely many n, and lim infn→∞ An as being the event on which there exists some (random) N such
that An occurs for all n ≥ N . Note that we always have lim infn→∞ An ⊂ lim supn→∞ An.

Example 1.34. Check that

1lim supAn
= lim sup1An

, 1lim inf An
= lim inf 1An

. (39)
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Lemma 1.35 (Reverse Fatou lemma for sets). Assume that µ is finite, then µ(lim supAn) ≥ lim supµ(An).

Proof. Let Gm :=
⋃

n≥m An, then Gm ↓ lim supAn and therefore µ(Gm) ↓ µ(lim supAn) by the monotone conver-
gence theorem (Theorem 1.24). Now note that µ(Gm) ≥ supn≥m µ(An) because Gm is larger than any of them.
Therefore by taking m → ∞ on both sides of the inequality, we can conclude that

µ

(
lim sup
n→∞

An

)
= lim

m→∞
µ(Gm) ≥ lim

m→∞
sup
n≥m

µ(An) = lim sup
n→∞

µ(An), (40)

and the proof is complete.

Lemma 1.36 (The first Borel-Cantelli lemma). Assume
∑

n∈N µ(An) < ∞, then µ(lim supAn) = µ({An i.o.}) = 0.

Proof. Let Gm :=
⋃

n≥m An, then we have that µ(Gm) ≤
∑

n≥m µ(An) < ∞. Note that Gm ↓ lim supAn and
therefore µ(Gm) ↓ µ(lim supAn) by the monotone convergence theorem (Theorem 1.24), bring m → ∞ so that

µ(lim sup
n→∞

An) ≤ lim
m→∞

∑
n≥m

µ(An) = 0, (41)

and the proof is complete.

Lemma 1.37 (The second Borel-Cantelli lemma). Assume that {An}n∈N are independent events. If
∑

n∈N P(An) =
∞, then P(lim supAn) = P({An i.o.}) = 1.

Proof. By independence, for all m we have that

P

 ⋂
n≥m

AC
n

 =
∏
n≥m

(1− P(An)) ≤
∏
n≥m

exp (−P(An)) = exp

−
∑
n≥m

P(An)

 = 0. (42)

Therefore, we can deduce that

1 ≥ P
(
lim sup
n→∞

An

)
= P

 ⋂
m∈N

⋃
n≥m

An

 = 1− P

 ⋃
m∈N

⋂
n≥m

AC
n

 ≥ 1−
∑
m∈N

P

 ⋂
n≥m

AC
n

 = 1, (43)

which completes the proof.

9/13 Lecture

Example 1.38 (Applying the first Borel-Cantelli lemma). Assume you play some money at discrete times 2, 3, 4, . . .
with the following rule: if An :=

{
win n2 − 1 pounds at time n

}
and Bn := {lose 1 pound at time n}, then P(An) =

n−2 and P(Bn) = 1−n−2. Then the game is “fair” in the sense that, at each discrete time n, you make in expectation
(n2 − 1)n−2 − (1 − n−2) = 0 pounds. However, since

∑
n∈N n−2 < ∞, the first Borel-Cantelli lemma implies that

you only win finitely often.

Example 1.39 (Applying the second Borel-Cantelli lemma). A monkey is provided with a typewriter and, at each
time step, it has probability 1/26 to type any of the 26 letters, independently of other times. What is the probability
to type ABRACADABRA at least once? What about infinitely often? We can consider the events

Ak := {ABRACADABRA is typed between times 11k + 1 and 11(k + 1)} . (44)

The events Ak, k ∈ N, are independent (because their time ranges are disjoint). Moreover, P(Ak) = (1/26)11, so
that

∑
k P(Ak) = ∞. By the second Borel-Cantelli lemma, Ak would occur infinitely often.
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Lemma 1.40 (Fatou lemma for sets). For any measure µ, we have that µ(lim inf An) ≤ lim inf µ(An).

Proof. Let Gm :=
⋂

n≥m An, then Gm ↑ lim inf An and therefore µ(Gm) ↑ µ(lim inf An) by the monotone convergence
theorem (Theorem 1.24). Now note that µ(Gm) ≤ infn≥m µ(An) because Gm is smaller than any of them. Therefore
by taking m → ∞ on both sides of the inequality, we can conclude that

µ
(
lim inf
n→∞

An

)
= lim

m→∞
µ(Gm) ≤ lim

m→∞
inf
n≥m

µ(An) = lim inf
n→∞

µ(An), (45)

and the proof is complete.

Remark 1.41. Note that Fatou lemma for sets does not require any condition on the measure µ, but the inverse
Fatou lemma for sets require µ to be finite. This is because of the different requirements when applying the monotone
convergence theorem on increasing or decreasing sequences of sets.

2 Measurable Functions and Random Variables

2.1 Measurable Functions

Definition 2.1. Let (E,E ) and (G,G ) be measurable spaces and let µ be a measure on (E,E ). A function f : E → G
is said to be measurable if f−1(A) ∈ E whenever A ∈ G , where f−1(A) denotes the inverse image of A, such that
f−1(A) = {x ∈ E; f(x) ∈ A}.

Example 2.2. (1) Usually G = R or G = [−∞,∞], and G is the Borel σ-algebra.

(2) If E and G are topological spaces, and E = B(E) and G = B(G) are Borel σ-algebras (i.e., generated by the
open subsets) on E and G, respectively. Then a measurable function on E taking values in G is called a Borel
function. In particular, all continuous functions are measurable (which will be shown later). Note that any
open set can be expressed as a (not necessarily countable) union of open balls.

(3) Let (E,E ) be a measurable space and A ∈ E . Then the indicator function 1A : (E,E ) → (R,B(R)) such that
1A(x) = 1 if x ∈ A and 0 otherwise, is measurable. Indeed, for any B ∈ B(R), we have that

1
−1
A (B) =


E, if 1 ∈ B and 0 ∈ B,

A, if 1 ∈ B and 0 /∈ B,

AC , if 1 /∈ B and 0 ∈ B,

∅, otherwise,

(46)

where clearly E,A,AC ,∅ ∈ E .

(4) Given a function f : E → G and a σ-algebra G on G, let σ(f) = f−1(G ) :=
{
f−1(G); G ∈ G

}
. We can

check that σ(f) is a σ-algebra, called the σ-algebra generated by f . Indeed, ∅ ∈ σ(f) because ∅ ∈ G .
For any A ∈ σ(f), there exists G ∈ G such that A = f−1(G). Then AC = f−1(GC) ∈ σ(f) because
GC ∈ G . Moreover, for any {An}n∈N ⊆ σ(f), there exists Gn ∈ G such that An = f−1(Gn) for each n.

Then
⋃

n∈N An = f−1
(⋃

n∈N Gn

)
∈ σ(f) because

⋃
n∈N Gn ∈ G . We have thus proved that σ(f) is indeed a

σ-algebra. We shall also be able to check that f is measurable if and only if σ(f) ⊆ E (which, in other words,
means that f−1 : G → E ). Indeed, σ(f) ∈ E is equivalent to f−1(G ) ∈ E , which is equivalent to f−1(G) ∈ E
for all G ∈ G , and is the definition of measurability of f . More generally, given a measurable space (G,G ),
I ⊆ N, and functions fi : E → G, i ∈ I, the σ-algebra E = σ

({
f−1
i (A); A ∈ G , i ∈ I

})
is called the σ-algebra

generated by {fi}i∈I .

Proposition 2.3. Let (E,E ), (G,G ), and (H,H ) be measurable spaces. Take {Ai}i∈N ∈ E and let f : E → G.

(1) The mapping f−1 preserves all set operations, i.e., f−1 (
⋃

i Ai) =
⋃

i f
−1(Ai) and f−1(AC) = f−1(A)C .

(2) If G = σ(A ) for some A ⊆ G and f−1 : A → E , then f−1 : G → E , i.e., f is measurable.

(3) If E and G are topological spaces, E = B(E), and G = B(G), then f is measurable whenever it is continuous.
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(4) If G = R and G = B(R), then f : E → R is measurable if and only if for all c ∈ R, one has that

{f ≥ c} := {x ∈ E; f(x) ≥ c} ∈ E . (47)

(5) If f : E → G and g : G → H are measurable, then g ◦ f : E → H is measurable.

Proof. (1) • For any x ∈ f−1 (
⋃

i Ai), we have that f(x) ∈
⋃

i Ai. Then f(x) ∈ Ai for some i, implying that
x ∈ f−1(Ai) for some i. Hence x ∈

⋃
i f

−1(Ai).

• For any x ∈
⋃

i f
−1(Ai), we have that x ∈ f−1(Ai) for some i. Then f(x) ∈ Ai for some i, implying that

f(x) ∈
⋃

i Ai. Hence x ∈ f−1 (
⋃

i Ai).

• The proof for complements is the analogous in both inclusions.

(2) By the previous part,
{
A; f−1(A) ∈ E

}
is a σ-algebra containing A . But note that G is the smallest σ-algebra

containing A , so G ⊆
{
A; f−1(A) ∈ E

}
. This means that for any A ∈ G , necessarily f−1(A) ∈ E , so we can

conclude that f−1 is measurable.

(3) Since E and G are topological spaces, assuming f is continuous, we have that f−1(A) is open whenever A ⊆ G
is open. Since G = B(G) = σ(TG) where TG is the collection of all open sets in G, this degrades to the
previous problem. Indeed, for any A ∈ TG, we have that f−1(A) ⊆ σ(TE) = B(E) = E , so f−1 : TG → E ,
which corresponds to the condition in the previous part. Now we can conclude that f−1 is measurable.

(4) =⇒ If f is measurable, then for any A ∈ B(R), f−1(A) ∈ E . Since [c,∞) ∈ B(R) for any c ∈ R, we have that

f−1([c,∞]) = {x ∈ E; f(x) ∈ [c,∞]} = {f ≥ c} ∈ E . (48)

⇐= Let A = {[c,∞); c ∈ R}, then we have that f−1(A) ∈ E for any A ∈ A . Note that B(R) = σ(A ), so
that f is measurable by the second part.

(5) This is trivial. Since f and g are measurable, we have that for any A ∈ G and B ∈ H , f−1(A) ∈ E and
f−1(B) ∈ G . Then we have that

(g ◦ f)−1(B) = f−1(g−1(B)︸ ︷︷ ︸
∈G

) ∈ E , (49)

so g ◦ f is measurable.

Lemma 2.4. Let (E,E ) be a measurable space, and let fn : E → R, n ∈ N be measurable functions. Then,

(1) The function g : E → R2 such that x 7→ (f1(x), f2(x)) is measurable.

(2) Suppose that F : R2 → R is a measurable function, then h(x) := F (f1(x), f2(x)) is measurable. In particular,
f1 + f2 and f1f2 are measurable.

(3) infn→∞ fn, supn→∞ fn, lim infn→∞ fn, and lim supn→∞ fn are measurable.

(4) {s ∈ E; limn→∞ fn(s) exists in R} ∈ E .

Proof. (1) Note that B(R2) = σ({A×B; A, B open subsets of R}), and so by the second part of Proposition 2.3,
it suffices to check that for any A,B ⊆ R, g−1(A × B) = f−1

1 (A) ∩ f−1
2 (B) ∈ E . Since f1 and f2 are both

measurable, this clearly holds, and thus we can conclude that g is measurable.

(2) Note that h = F ◦ g, and since F and g are both measurable, we can conclude that h is measurable by the fifth
part of Proposition 2.3.

(3) We take the infimum as an example and the rest would be similar. For any c ∈ R, we have that(
inf

n→∞
fn

)−1

((−∞, c]) =
{

inf
n→∞

fn ≤ c
}
=
⋂
n∈N

{fn ≤ c} =
⋂
n∈N

f−1
n ((−∞, c]). (50)
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Since each f−1
n ((−∞, c]) ∈ E (because (−∞, c] ∈ B(R) and fn is measurable), we can see that the above is

also in E because E is a σ-algebra. This means that (infn→∞ fn)
−1

: π(R) → E , and since B(R) = σ(π(R)),
we can conclude that (infn→∞ fn)

−1
: B(R) → E , i.e., infn→∞ fn is measurable. All the others can be done

analogously. sup is taking union and using [c,∞)’s. lim inf and lim sup are just sup of inf and inf of sup,
respectively.

(4) For any s ∈ E, we observe that{
lim

n→∞
fn(s) exists in R

}
=

{
lim sup
n→∞

fn(s) < ∞
}
∩
{
lim inf
n→∞

fn(s) > −∞
}
∩
{
lim sup
n→∞

fn(s) = lim inf
n→∞

fn(s)

}

=

(lim sup
n→∞

fn

)−1

([−∞,∞))︸ ︷︷ ︸
∈B(R)


︸ ︷︷ ︸

∈E

∩

(lim inf
n→∞

fn

)−1

((−∞,∞])︸ ︷︷ ︸
∈B(R)


︸ ︷︷ ︸

∈E

∩

(lim sup
n→∞

fn − lim inf
n→∞

fn

)−1

({0})︸ ︷︷ ︸
∈B(R)


︸ ︷︷ ︸

∈E

,

(51)

since a sequence converges to a finite limit if and only if its lim inf and lim sup are equal, and by the measurability
of lim inf and lim sup as shown in the previous part. Since E is a σ-algebra, the proof is already complete.

Definition 2.5. Let (E,E ) and (G,G ) be measurable spaces, and let µ be a measure on (E,E ). Then a measurable
function f : E → G induces an image measure ν = µ ◦ f−1 on (G,G ), given by

ν(A) = µ(f−1(A)), ∀A ∈ G . (52)

9/18 Lecture

Definition 2.6. Let (Ω,F ,P) be a probability space, and (G,G ) be a measure space. Then a measurable function
X : Ω → G is called a random variable. In practice and unless otherwise stated, the random variables we consider
in this course are taking values in G := R. The image measure µX := P ◦X−1 is called the law of distribution of
X. If X is real-valued, then its distribution function FX : R → R is given by

FX(x) = µX((−∞, x]) = P(X ≤ x). (53)

Remark 2.7. Note that since {(−∞, x]; x ∈ R} is a π-system generating B(R), the image measure of the random
variable X, µX , is uniquely determined by its distribution function (Lemma 1.17).

Lemma 2.8. Let X be a random variable on some probability space. Then the distribution function of X, FX , has
the following properties.

(1) FX : R → [0, 1], and FX is monotonically increasing.

(2) limx→∞ FX(x) = 1, and limx→−∞ FX(x) = 0.

(3) FX is right-continuous, i.e., FX(y) → FX(x) as y ↓ x.

Proof. (1) Since µX is non-decreasing with image [0, 1], this is trivial.

(2) This follows by the monotone convergence theorem (Theorem 1.24).

(3) If xn ↓ x, then (−∞, xn] ↓ (−∞, x]. Therefore µX((−∞, xn]) ↓ µX((−∞, x]) by the monotone convergence
theorem, and hence FX(xn) ↓ FX(x).

Remark 2.9. FX is not left-continuous. If xn ↑ x, then (−∞, xn] ↑ (−∞, x). Then µX((−∞, xn]) ↑ µX((−∞, x))
by the monotone convergence theorem, but µX can thus have a “jump” at x, breaking then continuity.
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Remark 2.10. Given a function F satisfying the three properties above, there exists a unique probability measure µ,
such that for any x ∈ R, we have that µ((−∞, x]) = F (x). We call such a measure a Lebesgue-Stieltjes measure.
This uniqueness of µ comes from the uniqueness on the π-system π(R) := {(−∞, x]; x ∈ R}. Similarly, we could
prove the existence by Carathéodory’s extension theorem, but this would require to show the countable additivity of
µ on an algebra containing π(R), as in the proof of the existence of Lebesgue measure (Homework 1).

Definition 2.11. We say that random variables Xn, n ∈ N are independent if the σ-algebras σ(Xn), n ∈ N are
independent.

Remark 2.12. For real-valued random variables, this is equivalent to the condition that

P(X1 ≤ x1, . . . , Xn ≤ xn) = P(X1 ≤ x1) . . .P(Xn ≤ xn), ∀x1, . . . , xn ∈ R. (54)

Indeed, we proved that the independence of two σ-algebras only needed to be checked on their generating π-systems,
but the same holds true in the case of independence of a finite number of σ-algebras.

Remark 2.13. The random variables Xn, n ∈ N are called independent identically distributed if they are
independent and, moreover, all of them have the same distribution (i.e., the distribution functions µXn

are equal for
all n ∈ N).

Remark 2.14. A sequence of random variables {Xn; n ∈ N} is often regarded as a process evolving in time. The
σ-algebra generated by X0, . . . , Xn defined as

Fn := σ(X0, . . . , Xn) = σ
({

X−1
i (B); 1 ≤ i ≤ n, B ∈ B(R)

})
, (55)

contains those events depending (measurably) on X0, . . . , Xn, and represents what is known about the process by time
n.

2.1.1 Tail Events

Definition 2.15. Let {Xn}n∈N be a sequence of random variables. Define

Tn := σ(Xn+1, Xn+2, . . .), T :=
⋂
n∈N

Tn. (56)

Then T is called the tail σ-algebra of the sequence {Xn}n∈N.

Remark 2.16. We can think of the tail σ-algebra as containing the events describing the limiting behavior of the
sequence. For instance, Let Xn ∈ {H,T}, then A = {Xn = H i.o.} is a tail event.

Theorem 2.17 (Kolmogorov’s 0-1 law). Let {Xn}n∈N be a sequence of independent random variables. Then the tail
σ-algebra T of {Xn}n∈N contains only events of probability 0 or 1. Moreover, any T -measurable random variable
is almost surely constant.

Proof. Let Fn := σ(X1, . . . , Xn). Note that Fn is generated by the π-system of events

A = {{X1 ≤ x1, . . . , Xn ≤ xn} ; x1, . . . , xn ∈ R} , (57)

and that Tn is generated by the π-system of events

B = {Xn+1 ≤ xn+1, . . . , Xn+k ≤ xn+k; xn+1, . . . , xn+k ∈ R, k ∈ N} . (58)

For any A ∈ A and B ∈ B, we have that P(A ∩ B) = P(A)P(B) by independence of {Xn}n∈N. Then A and B
are independent, and thus by Theorem 1.31, Fn and Tn are independent. Hence Fn and T are independent as
well. Now

⋃
n∈N Fn is a π-system (because Fn is increasing) generating the σ-algebra F∞ = σ({Xn}n∈N). By

Theorem 1.31 again, we can see that F∞ and T are independent. But T ⊆ F∞, so that for any A ∈ T , we have
that

P(A) = P(A ∩A) = P(A)P(A) =⇒ P(A) ∈ {0, 1} . (59)

Now take an arbitrary T -measurable random variable Y , then FY (y) = P(Y ≤ y) is right-continuous and only takes
values in {0, 1} because {Y ≤ y} ∈ T is a tail event. Let c := inf {y; FY (y) = 1}, then for any y < c, we have that
Fy(y) ̸= 1 so FY (y) = 0. This means that P(Y < c) = 0. But P(Y ≤ c) ̸= 0 because FY (c) = 1. This means that
P(Y ≤ c) = 1. As a consequence, P(Y = c) = 1, and the proof is thus complete.
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Example 2.18. Let Xn, n ∈ N be independent identically distributed integrable random variables, and let Zn :=∑n
k=1 Xk. Consider the random variable L := lim supn→∞ Zn/n, then we can check that L is measurable with

respect to the tail σ-algebra T :=
⋂

n∈N σ(Xn+1, Xn+2, . . .). Indeed, for any p ∈ N, we observe that

L = lim sup
n→∞

Zn

n
= lim sup

n→∞

1

n

n∑
k=1

Xk = lim sup
n→∞

1

n

n∑
k=p

Xk. (60)

This is clearly σ(Xp+1, Xp+2, . . .)-measurable. Therefore, L is T -measurable as well. Now by Komolgorov’s 0-1 law,
L is constant almost surely. We will prove later in the strong law of large numbers that the limit of Zn/n exists
almost surely and is equal to the expectation of X1. Now add the assumption that Xn’s have mean 0 and variance 1.
Consider the random variable T := lim supn→∞ Zn/

√
2n log log n. Then similarly, T is constant almost surely, and

in fact T takes the value 1 almost surely. This is called the Law of the Iterative Logarithm.

2.2 Convergence in Measure and Convergence Almost Everywhere

Definition 2.19. Let fn, n ∈ N and f be measurable functions. We say that a sequence of measurable functions
{fn}n∈N converges to f almost everywhere (or almost surely if µ(E) = 1) if

µ({x; fn(x) ̸→ f(x) as n → ∞}) = 0. (61)

We say that {fn}n∈N converges to f in measure (or in probability if µ(E) = 1) if

µ({x; |fn(x)− f(x)| > ϵ}) → 0 as n → ∞, ∀ϵ > 0. (62)

Theorem 2.20. Let {fn}n∈N be a sequence of measurable functions.

(1) Assume µ(E) < ∞. If fn → f almost surely, then fn → f in measure.

(2) If fn → f in measure, then for some subsequence {fnk
}k∈N, fnk

→ f almost surely.

Proof. For all n ∈ N and ϵ > 0, let gn = fn − f and An,ϵ = {|gn| > ϵ}. It follows from the definition of convergence
that, for all ω ∈ E, fn(ω) → f(ω) as n → ∞ if and only if for all ϵ > 0, lim supAn,ϵ does not hold (i.e., An,ϵ holds
only finitely often).

(1) Since µ is finite by assumption, we can use the reverse Fatou Lemma (Lemma 1.35) to obtain that

µ(An,ϵ i.o.) = µ

(
lim sup
n→∞

An,ϵ

)
≥ lim sup

n→∞
µ(An,ϵ). (63)

But since fn → f almost surely, we have that µ(lim supn→∞ An,ϵ) = 0. Therefore, limn→∞ µ(An,ϵ) = 0, i.e.,
fn → f in measure.

(2) Since fn → f in measure, there exists an increasing subsequence {nk}k∈N, such that
∑

k∈N µ
(
Ank,1/k

)
< ∞.

Why is this? Then we can use the first Borel-Cantelli lemma (Lemma 1.36) to see that

µ

(
lim sup
k→∞

Ank,1/k

)
= µ

({
Ank,1/k i.o.

})
= 0. (64)

This means that µ({|fnk
− f | ≥ 1/k i.o.}), so fnk

→ f almost surely and the proof is complete.

9/20 Lecture

Example 2.21 (Convergence almost everywhere but not in measure). On real numbers with lebesgue measure
(R,B(R),LR), we take the indicator functions fn := 1[n,∞). Clearly fn → 0 almost surely because [n,∞) ↓ ∅.
However, µ({fn > 1/2}) = µ([n,∞)) = ∞ for any n ∈ N, which does not converge to 0. This counterexample is due
to the breakage of µ(E) < ∞ (here E = R).
Example 2.22 (Convergence in measure but not almost everywhere). On a probability space (Ω,F ,P), let An,
n ∈ N be independent events such that P(An) → 0 but

∑
n∈N P(An) = ∞. Take the indicator functions fn := 1An

.
Clearly fn → 0 in measure because P({fn > ϵ}) = P(An) → 0 as n → ∞ if 0 < ϵ < 1, and P({fn > ϵ}) = 0 if ϵ ≥ 1.
But by the second Borel-Cantelli lemma (Lemma 1.37), we have that P(An i.o.) = 1. Then fn = 1An ̸→ 0 almost
surely.

14



3 Integration, Expectation, and Lp Spaces

Let (E,E , µ) be a measure space. We want to define, when possible, for measurable functions f : E → [−∞,∞], the
integral of f with respect to the measure µ, such that

µ(f) =

∫
E

fdµ =

∫
x∈E

f(x)µ(dx). (65)

For random variables on a probability space (Ω,F ,P), the integral will be called expectation of X, denoted E(X).

Defining Integrals of Simple Functions

A simple function is a function of the form f =
∑m

k=1 ak1Ak
, where 0 < ak ≤ ∞ and each Ak ∈ E . In this case,

we define the integral of the simple function f to be

µ(f) :=

m∑
k=1

akµ(Ak), (66)

with the convention that ∞·0 = 0. We can check that µ(f) is well-defined. Indeed, if f =
∑m

k=1 ak1Ak
=
∑n

l=1 bl1Bl
,

we observe that for any k and l such that ak ̸= bl, we have that Ak∩Bl = ∅, since otherwise we can take x ∈ Ak∩Bl

but then ak = f(x) = bl. Using this observation and assuming that Ak’s and Bl’s are respectively disjoint, we can
deduce that

µ(f) =

m∑
k=1

akµ(Ak) =

m∑
k=1

akµ

(
n⋃

l=1

(Ak ∩Bl)

)
=

m∑
k=1

ak

n∑
l=1

µ(Ak ∩Bl) =

m∑
k=1

n∑
l=1

akµ(Ak ∩Bl)

=

m∑
k=1

n∑
l=1

blµ(Ak ∩Bl)︸ ︷︷ ︸
either ak = bl or µ(Ak ∩ Bl) = 0

=

n∑
l=1

bl

m∑
k=1

µ(Ak ∩Bl) =

n∑
l=1

blµ

(
m⋃

k=1

(Ak ∩Bl)

)
=

n∑
l=1

blµ(Bl) = µ(f), (67)

so that µ(f) is independent of the representation of the simple function f . Moreover, we shall be able to check the
following properties. They are all trivial applying similar observations as above, so the proofs will be neglected here.

(1) µ(αf + βg) = αµ(f) + βµ(g).

(2) If f ≤ g, then µ(f) ≤ µ(g).

(3) f = 0 almost everywhere if and only if µ(f) = 0.

Extending to Integrals of General Non-Negative Measurable Functions

For general non-negative measurable functions f , we define the integral by

µ(f) := sup {µ(g); g simple, g ≤ f} . (68)

Note that the second property above implies that this definition is consistent with the definition of µ for simple
functions.

Further Extending to Integrals of General Measurable Functions

Let f+ := f ∨ 0 and f− := (−f)∨ 0. Let f := f+ − f−, then we have that f = f+ − f− and |f | = f+ + f−. We say
that a measurable function f is integrable if µ(|f |) < ∞, and define

µ(f) := µ(f+)− µ(f−). (69)

3.1 Convergence Results

Theorem 3.1 (Egorov’s theorem). Let E ∈ E be such that µ(E) < ∞. Let {fn}n∈N be a sequence of measurable
functions, and assume that fn → f µ-almost surely on E. Then for all ϵ > 0, there exists Aϵ ∈ E , such that
µ(E \Aϵ) < ϵ and fn → f uniformly on Aϵ.
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Proof. Fix an arbitrary ϵ > 0, and let An,ϵ := {x ∈ E; |fn(x)− f(x)| ≥ ϵ}. Since fn → f µ-almost surely on E, we
know that µ({x; fn(x) ̸→ f(x) as n → ∞}). Note that fn(x) ̸→ f(x) means that for any N ∈ N, there exists n ≥ N ,
such that |fn(x)− f(x)| ≥ ϵ. In other words, we can see that

µ

 ⋂
N∈N

⋃
n≥N

An,ϵ

 = 0. (70)

Now let BN,ϵ :=
⋃

n≥N An,ϵ. Clearly, BN,ϵ ↓
⋂

N∈N BN,ϵ as N → ∞, and since BN,ϵ ⊆ E which has finite measure,
we can use the monotone convergence theorem (Theorem 1.24) to see that

µ(BN,ϵ) ↓ µ

( ⋂
N∈N

BN,ϵ

)
= µ

 ⋂
N∈N

⋃
n≥N

An,ϵ

 = 0, as N → ∞. (71)

Now choose {Nk}k∈N, such that µ(BNk,1/k) < 2−kϵ. This means that

µ

(⋃
k∈N

BNk,1/k

)
≤
∑
k∈N

µ(BNk,1/k) <
∑
k∈N

ϵ2−k = ϵ. (72)

Take Aϵ =
⋂

k∈N BC
Nk,1/k

, then we have that µ(E \Aϵ) = µ(AC
ϵ ) = µ

(⋃
k∈N BNk,1/k

)
< ϵ. Note that for any x ∈ Aϵ,

we have that for any k ∈ N and for any n ≥ Nk, |fn(x)− f(x)| < ϵ. This necessarily implies uniform convergence on
Aϵ, and thus the proof is complete.

Theorem 3.2 (Monotone convergence theorem for measurable functions). Let {fn}n∈N be a sequence of measurable
functions with fn ≥ 0 almost everywhere. If fn ↑ f almost everywhere, then µ(fn) ↑ µ(f).

Proof. Fix a simple function g =
∑m

k=1 ak1Ak
, such that g ≤ f . Note that if µ(Ak) = ∞ for some 1 ≤ k ≤ m, then if

fn ↑ f , we have that {fn ≥ ak/2}∩Ak ↑ Ak, and thus by the monotone convergence theorem of sets (Theorem 1.24),
we have that µ({fn ≥ ak/2} ∩ Ak) ↑ µ(Ak) = ∞ as n → ∞. This implies that µ(fn) ↑ ∞ = µ(f) as n → ∞.
Therefore, it suffices to prove for g with finite support S, i.e., µ(Ak) < ∞ for all 1 ≤ k ≤ m1. Fix an arbitrary ϵ > 0.
By Egorov’s theorem (Theorem 3.1), there exists Aϵ ⊆ S, such that µ(S \ Aϵ) < ϵ and fn → f uniformly on Aϵ.
Now fix an arbitrary η > 0, then there exists N ∈ N, such that |fn − f | < η on Aϵ for all n ≥ N . In other words,
fn > f − η ≥ g − η on Aϵ. But g > g − η as well, so we can deduce that

fn ∧ g ≥ fn1Aϵ ∧ g1Aϵ︸ ︷︷ ︸
fn,g≥0

> (g − η)︸ ︷︷ ︸
observation

1Aϵ ≥ g1Aϵ − η︸ ︷︷ ︸
η<0

= g − η − g1S\Aϵ
. (73)

Let m = max1≤k≤m ak, then we can make use of the fact that (g − η − g1S\Aϵ
)+ is a simple function. Indeed, by

taking η = δ/(µ(S) +m), we can see that

µ(fn ∧ g) > µ(g)− ηµ(S)−mµ(S \Aϵ) ≥ Then what? (74)

9/25 Lecture

Lemma 3.3 (Fatou’s lemma for functions). Let {fn}n∈N be a sequence of non-negative measurable functions, then
µ(lim inf fn) ≤ lim inf µ(fn).

Proof. Define gn := infk≥n fk, then clearly gn ↑ limn→∞ infk≥n fk = lim inf fn, and thus µ(gn) ↑ µ(lim inf fn) by the
monotone convergence theorem (Theorem 3.2). However, we have that µ(gn) ≤ infk≥n µ(fk) for all n ∈ N, because
gn ≤ fk for all n ∈ N and k ≥ n. Therefore, we can conclude that

µ(lim inf fn) = lim
n→∞

µ(gn) ≤ lim
n→

inf
k≥n

µ(fk) = lim inf µ(fn), (75)

so the proof is complete.

1A function with finite support means that the function vanishes outside a set with finite measure. Particularly in this case, we are
only interested in functions such that all Ak are of finite measure. Since the number of Ak’s is finite, g can take non-zero values only on
a set of finite measure. Therefore we consider functions with finite support S.
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Lemma 3.4 (Reverse Fatou lemma for functions). Let {fn}n∈N be a sequence of non-negative measurable functions.
Assume there exists a measurable function g ≥ 0 such that µ(g) < ∞ and fn ≤ g for all n ∈ N. Then µ(lim sup fn) ≥
lim supµ(fn).

Proof. This is trivial by applying Fatou’s lemma (Lemma 3.3) for functions to {g − fn}n∈N.

Lemma 3.5. For all integrable (resp. non-negative measurable) functions f, g and all constants α, β ∈ R (resp.
≥ 0), the following properties hold.

(1) µ(αf + βg) = αµ(f) + βµ(g).

(2) If f ≤ g, then µ(f) ≤ µ(g).

(3) If f = 0 almost everywhere, then µ(f) = 0.

If f is non-negative measurable, then the third property is an equivalence.

Proof. (1) Start with the case where α, β ≥ 0. Note that the property holds for all simple functions as have
already been discussed. Here we employ a technique called the Standard Machine, also used in other contexts,
in particular in exercises. Assume that f, g ≥ 0, and define

fn :=
(
2−n ⌊2nf⌋

)
∧ n, gn :=

(
2−n ⌊2ng⌋

)
∧ n. (76)

Then fn ↑ f and gn ↑ g, and thus by the monotone convergence theorem (Theorem 3.2), we have that
µ(fn) ↑ µ(f) and µ(gn) ↑ µ(g). This implies that αµ(fn) + βµ(gn) ↑ αµ(f) + βµ(g). But αfn + βgn ↑ αf + βg,
which means that αµ(fn) + βµ(gn) = µ(αfn + βgn) ↑ µ(αf + βg), also by the monotone convergence theorem
(Theorem 3.2). This proves that µ(αf + βg) = αµ(f) + βµ(g). Now we extend this to general integrable
functions. With α, β ≥ 0, we can observe that

µ(αf + βg) = µ((αf + βg)+ − (αf + βg)−) = µ((αf+ + βg+)︸ ︷︷ ︸
integrable, ≥ 0

− (αf− + βg−)︸ ︷︷ ︸
integrable, ≥ 0

)

= µ(αf+ + βg+)− µ(αf− + βg−) = αµ(f+) + βµ(g+)− αµ(f−)− βµ(g−)

= α(µ(f+)− µ(f−)) + β(µ(g+)− µ(g−)) = αµ(f+ − f−) + βµ(g+ − g−) = αµ(f) + βµ(g). (77)

Now without the assumption that α, β ≥ 0, note that we can flip the sign of both α and f if α < 0 (same for
β and g). Then we observe that µ(−f) = −µ(f) by the previous proof, so we can conclude this property now.

(2) To be done...

(3) To be done...

Remark 3.6. The second property in the above lemma implies that |µ(f)| ≤ µ(|f |).

Example 3.7 (Inclusion-exclusion formula). First remark that, for all A ∈ E , we have that µ(A) = µ(1A). We
apply this observation to prove the inclusion-exclusion formula without utilizing mathematical induction. We can
write that

1
⋃n

j=1 Aj
= 1−

n∏
j=1

(1− 1Aj
)︸ ︷︷ ︸

0 on Aj︸ ︷︷ ︸
0 on any Aj︸ ︷︷ ︸

1 on any Aj

=
∑
j

1Aj
−
∑
j1<j2

1Aj1
1Aj2

+ . . .+ (−1)n+1
∑

j1<...<jn

1Aj1
. . .1Ajn

. (78)

Integrating both sides of the equation, we can thus see that

µ

 n⋃
j=1

Aj

 = µ
(
1
⋃n

j=1 Aj

)
=
∑
j

µ
(
1Aj

)
−
∑
j1<j2

µ
(
1Aj1

1Aj2

)
+ . . .+ (−1)n+1

∑
j1<...<jn

µ
(
1Aj1

. . .1Ajn

)
=
∑
j

µ(Aj)−
∑
j1<j2

µ(Aj1 ∩Aj2) + . . .+ (−1)n+1
∑

j1<...<jn

µ(Aj1 ∩ . . . ∩Ajn). (79)
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Theorem 3.8 (Dominated convergence theorem (DCT)). Let {fn}n∈N be a sequence of integrable functions con-
verging almost surely to a function f as n → ∞. Suppose that |fn| ≤ g for all n for some integrable function g, then
f is integrable and µ(fn) → µ(f) as n → ∞.

Proof. Let h±
n := g± fn and note that both functions are non-negative. By Fatou’s lemma (Lemma 3.3), we can see

that µ(lim inf h±
n ) ≤ lim inf µ(h±

n ). Therefore, we have that

µ(g) + µ(f) = µ(g) + µ(lim inf(fn)) = µ(lim inf(g + fn)) ≤ lim inf µ(g + fn) = µ(g) + lim inf µ(fn), (80)

µ(g)− µ(f) = µ(g)− µ(lim sup(fn)) = µ(lim inf(g − fn)) ≤ lim inf µ(g − fn) = µ(g)− lim inf µ(fn). (81)

The first inequality gives µ(f) ≤ lim inf µ(fn) and the second inequality gives µ(f) ≥ lim inf µ(fn). Therefore, we
can conclude that µ(fn) → µ(f) as n → ∞. Now since g is measurable, |g| < ∞ and thus |fn| < ∞ and |f | < ∞, so
clearly f is integrable. The proof is thus complete.

Lemma 3.9 (Scheffé’s lemma). Let {fn}n∈N be a sequence of non-negative integrable functions, and suppose that
fn → f almost everywhere where f is non-negative and integrable, then µ(|fn− f |) → 0 if and only if µ(fn) → µ(f).

Proof. =⇒ Assume that µ(|fn − f |) → 0, then we have that µ(fn) − µ(f) = µ(fn − f) ≤ µ(|fn − f |) → 0. This
means that µ(fn)− µ(f) → 0, so µ(fn) → µ(f).

⇐= Assume that µ(fn) → µ(f). By the triangle inequality, we have that |fn − f | ≤ |fn|+ |f | = fn + f . Hence by
Fatou’s lemma (Lemma 3.3), we have that

µ(lim inf(fn + f − |fn − f |)) ≤ lim inf µ(fn + f − |fn − f |) = lim inf µ(fn) + µ(f)− lim inf µ(|fn − f |). (82)

Since fn → f almost everywhere, we can see that the left-hand side is equal to 2µ(f). Also, we have assumed
that µ(fn) → µ(f), the right-hand side is equal to 2µ(f)− lim inf µ(|fn − f |). Hence by the inequality, we can
see that lim inf µ(|fn − f |) ≤ 0. Then necessarily µ(|fn − f |) → 0 as n → ∞.

Theorem 3.10 (Series convergence theorem (SCT)). Let {gn}n∈N be a sequence of non-negative measurable func-
tions. Then

∑∞
n=1 µ(gn) = µ (

∑∞
n=1 gn).

Proof. Let hN :=
∑N

n=1 hn, then hN is non-negative and measurable, with hN ↑ h∞ =
∑∞

n=1 gn. By the monotone
convergence theorem (Theorem 3.2), we have that µ(hN ) ↑ µ(h∞). This means that

∞∑
n=1

µ(gn) = lim
N→∞

N∑
n=1

µ(gn) = lim
N→∞

µ

(
N∑

n=1

gn

)
= lim

N→∞
µ(hN ) = µ(h∞) = µ

( ∞∑
n=1

gn

)
, (83)

so the proof is complete.

Example 3.11. Consider the measurable space (N,P(N)).

(1) Let µ(A) := |A| (cardinality of the set A) be the counting measure on N. Then for all f : N → R, f is integrable
if and only if µ(|f |) =

∑∞
n=1 |f(n)| < ∞ (absolute convergence of the series), and µ(f) =

∑∞
n=1 f(n).

(2) In the case of a general measure µ and any f : N → R, we alternatively have that f is integrable if and only if
µ(|f |) =

∑∞
n=1 µ({n})|f(n)| < ∞, and µ(f) =

∑∞
n=1 µ({n})f(n).

3.2 Image Measure and Probability Density Function

The following proposition provides a very useful property of the image measure. It can be applied to find the expected
value of a function of a random variable X, when we know the distribution (or law) of X, i.e., the image measure
µX := P ◦X−1 of µ by X. More precisely, let (Ω,F ,P) be a probability space, let X : Ω → H be a random variable,
where (H,H ) is a measurable space, and let g : H → R+ be a measurable function. Then, the following proposition
would imply that

E(g(X)) = µX(g) =

∫
x∈E

g(x)µX(dx). (84)
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Proposition 3.12. Let (E,E , µ) and (G,G , ν) be measure spaces. Suppose that ν = µ ◦ f−1 for some measurable
function f : E → G, i.e., that ν is the image measure of µ by f . Then ν(g) = µ(g◦f) for any non-negative measurable
or integrable function g on G.

Proof. Let us use again the Standard Machine technique.

• Case 1. Let g := 1A for some A ∈ E . Then ν(g) = ν(A) = µ(f−1(A)) = µ(1f−1(A)) = µ(1A ◦ f), because
(1A ◦ f)(x) = 1A(f(x)) = 1 if and only if f(x) ∈ A, i.e., x ∈ f−1(A).

• Case 2. By linearity and Case 1, ν(g) = µ(g ◦ f) for any simple function g.

• Case 3. Suppose now that g is a non-negative measurable function. Define a sequence of simple functions by
gn := (2−n ⌊2ng⌋) ∧ n, then clearly gn ↑ g and gn ◦ f ↑ g ◦ f , so that ν(gn) ↑ ν(g) and ν(gn ◦ f) ↑ ν(g ◦ f) by
the monotone convergence theorem (Theorem 3.2). Therefore, ν(g) = µ(g ◦ f) by convergence and Case 2.

• Case 4. Now suppose g is integrable and write g = g+−g−. Then by Case 3, we have that ν(g+) = µ(g+◦f) <
∞ and ν(g−) = µ(g− ◦ f) < ∞. Therefore, we can conclude by linearity that ν(g) = µ(g ◦ f).

Proposition 3.13. Let (E,E , µ) be a measure space, and let f be a non-negative measurable function with µ(f) <
∞. Define (fµ)(A) := µ(f1A) for A ∈ E , then ν is a finite measure on E and (fµ)(g) = µ(fg) for all non-negative
measurable functions g on E.

Proof. This proof will be done in Homework 3 with the same Standard Machine technique.

Remark 3.14. If λ denotes the measure fµ on (E,E ), we say that λ has density f relative to µ, and express this
symbol via dλ/dµ = f . In this case, for any F ∈ E such that µ(F ) = 0, we have that λ(F ) = 0 so that only certain
measures have density relative to µ. The next theorem will show a characterization of such measures.

Theorem 3.15 (Radon-Nikodým). If λ and µ are σ-finite measures on (E,E ) such that λ(F ) = 0 whenever µ(F ) = 0
for F ∈ E , then λ = fµ for some measurable non-negative function f on E, which we denote f = dλ/dµ called the
Radon Nikodým derivative.

Proof. See Rudin, Real and Complex Analysis, McGraw-Hill, Chapter 6.

Remark 3.16. A random variable X in Rn is said to have probability density function f if, for all A ∈ B(Rn),
we have that

P(X ∈ A) =

∫
x∈A

f(x)dx. (85)

In other words, the image measure (or law) of X, µX := P ◦X−1, is fL where L is the Lebesgue measure on Rn.
Moreover by the previous propositions, for a random variable X in Rn with density fX , we have that

E(g(X)) = (fXL )(g) =

∫
Rn

g(x)fX(x)dx, (86)

where the first equality holds by Proposition 3.12 that E(g(X)) = P(g ◦X) = µX(g) = (fXL )(g), and the second
equality holds by Proposition 3.13 that (fXL )(g) = L (fXg) =

∫
Rn g(x)fX(x)dx. In general, random variables

on Rn are indeed given by their density function if it exists, but in dimension 1 (n = 1), it can happen that the
distribution function is provided instead (note that the distribution function is always defined then). Now here is
how one can find the density function of a random variable with certain distribution function, if this density exists:
if X is a random variable taking values in R with distribution function FX and density fX , then

FX(x) = P(X ≤ x) =

∫ x

−∞
fX(t)dt, (87)

and thus by a generalization of the fundamental theorem of Calculus, we have that F ′
X(x) = fX(x) for almost all

x ∈ R.

Remark 3.17. Note that the differentiation under the integral sign can be carried out in the setting of general
measures, as can be found in Probability with Martingales, David Williams, Appendix A16.
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3.3 Inequalities, Lp-Norms, and Lp-Spaces

3.3.1 Chebyshev’s and Jensen’s Inequalities

Theorem 3.18 (Chebyshev’s inequality). Let (E,E , µ) be a measure space, f ≥ 0 be measurable, and λ > 0, then

µ(f ≥ λ) ≤ µ(f)

λ
. (88)

Proof. Recall that {f ≤ λ} := {x ∈ E; f(x) ≥ λ}. Since λ1f≥λ ≤ f , we have that µ(λ1f≥λ) ≤ µ(f). Therefore, we
can conclude that µ(f ≥ λ) = µ(1f≥λ) ≤ µ(f)/λ, and the proof is thus complete.

Remark 3.19. The Chebyshev’s inequality is trivial, but has many applications. Indeed, let g be a measurable
function (for instance, a random variable on a probability space), and let ϕ : R → [0,∞] be a non-decreasing
measurable function. Then for all λ ≥ 0, we have that

µ(g ≥ λ) ≤ µ(ϕ(g) ≥ ϕ(λ)) ≤ (ϕ(λ))−1µ(ϕ(g)). (89)

If µ(ϕ(g)) < ∞, this result enables us to obtain a “tail estimate”, i.e., an upper bound, of the measure of {g ≥ λ},
by a term of the order (ϕ(λ))−1. These types of tail estimates will be required in some exercieses. For instance, given
a sequence of independent identically distributed random variables {Xn}n∈N, in order to find the sequence an such
that lim supn→∞ Xn/an = 1, to be done... Also, given λ ≥ 0 and a random variable Y , a way to find a “good”
upper bound for P(Y ≥ λ) is to choose the optimum θ for λ in P(Y ≥ λ) ≤ exp(−θλ)E(exp(θY )) = exp(−θλ)MY (θ).
Optimize for Y a Gaussian random variable.

Lemma 3.20. Let c : R → R be convex and m ∈ R. Then there exists a, b ∈ R, not necessarily unique, such that
c(x) ≥ ax+ b with equality at x = m.

Proof. By convexity, for x < m < y, we have that

c(m)− c(x)

m− x
≤ c(y)− c(m)

y −m
. (90)

Choose a ∈ R such that

sup
x<m

(
c(m)− c(x)

m− x

)
≤ a ≤ inf

y>m

(
c(y)− c(m)

y −m

)
= inf

x>m

(
c(x)− c(m)

x−m

)
. (91)

From the first inequality we have that c(x) ≥ a(x −m) + c(m) for all x < m. From the second inequality we have
that c(x) ≥ a(x −m) + c(m) for all x > m. Taking b = c(m) − am, we have that c(x) ≥ ax + b for all x ̸= m, and
note that c(m) = am+ b so that c(x) = ax+ b at x = m. The proof is thus complete.

Theorem 3.21 (Jensen’s inequality). Let X be an integrable random variable and let c : R → R be a convex
function. Then c(X)− is integrable, and E(c(X)) ≥ c(E(X)).

Proof. Let m = E(X) and choose a, b ∈ R as in Lemma 3.20 above. Then we have that c(X) ≥ aX + b with equality
at X = E(X). In particular, we have that

E(c(X)−) = E(max(−c(X), 0)) ≤ E(max(−aX − b, 0)) ≤ E(|a||X|+ |b|) = |a|E(|X|) + |b| < ∞. (92)

Hence E(c(X)) is well-defined, though possibly infinite because E(c(X)+) may be infinite. Moreover, we can see that

E(c(X)) ≥ E(aX + b) = aE(X) + b = am+ b = c(m) = c(E(X)), (93)

and the proof is thus complete.
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Remark 3.22. If c : [0,∞) → R is strictly increasing and X ≥ 0, then c(X) being integrable means that X is
integrable and Jensen’s inequality (Theorem 3.21) holds. Indeed, we can deduce from the proof of Lemma 3.20 that,
for all m > 0, there exists a > 0 and b ∈ R, such that c(x) ≥ ax + b for all x ≥ 0 with equality at x = m. Indeed
since c is strictly increasing, the leftmost term in (91) would be positive, and thus a > 0. In this case, E(X) < ∞ if
E(c(X)) < ∞, because E(c(X)) ≥ aE(X) + b with a > 0.

Example 3.23. Let Ω = N, F = P(N), and P({i}) = αi, i ∈ N, with
∑

i αi = 1. Moreover, let {xi}i∈N be such
that

∑
i αi|xi| < ∞ and define c : R → R with c(x) := exp(x). Note that c is convex and so Jensen’s inequality

(Theorem 3.21) implies that

∏
j∈N

exp(αjxj) = exp

∑
j∈N

αjxj

 = exp(E(X)) ≤ E(exp(X)) =
∑
j∈N

αj exp(xj). (94)

By substituting yj for exp(xj), we can obtain the following version of the arithmetic-geometric mean inequality,
such that ∏

j∈N
y
αj

j ≤
∑
j∈N

αjyj , (95)

where we define, for all {zi}i∈N ⊆ R+ \ {0}, the infinite product of zi by

∏
i∈N

zi = exp

(∑
i∈N

log zi

)
, (96)

as long as
∑

i(log zi)
− < ∞ with x− denoting the negative part of x. In particular, if we let αi = 1/n for 1 ≤ i ≤ n

and αi = 0 otherwise, we can obtain the classical inequality

n
√
y1 . . . yn =

n∏
j=1

y
1/n
j ≤

n∑
j=1

yj = y1 + . . .+ yn (97)
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3.3.2 Lp-Norms, Hölder’s Inequality, and Minkowski’s Inequality

Let (E,E , µ) be a measure space. For 1 ≤ p < ∞, let Lp = Lp(E,E , µ) be the set of measurable functions f with
finite Lp-norm, such that

∥f∥p =

(∫
E

|f |pdµ
)1/p

< ∞. (98)

Let L∞ = L∞(E,E , µ) be the set of measurable functions with finite L∞-norm, such that

∥f∥∞ = inf {λ; |f | ≤ λ almost everywhere} < ∞. (99)

Note that if µ is a probability measure, then ∥f∥p ≤ ∥f∥∞ for all 1 ≤ p < ∞. Moreover, for 1 ≤ p ≤ ∞, we say that
fn converges to f in Lp if ∥fn − f∥p → 0. We say that p, q ∈ [1,∞] are conjugate indices if 1/p+ 1/q = 1.

Theorem 3.24. Let p and q be conjugate indices, and let f and g be measurable functions. Then if p > 1, we
have that µ(|fg|) ≤ ∥f∥p ∥g∥q, which is known as the Hölder’s inequality, and implies in particular, that fg is
integrable if f ∈ Lp and g ∈ Lq. Also, ∥f + g∥p ≤ ∥f∥p + ∥g∥q, which is known as the Minkowski’s inequality,
and implies in particular, that Lp is a vector space.

Proof. See Williams p. 70, to be done...

Remark 3.25. Note that ∥·∥p is not a norm, since ∥f∥p = 0 does not necessarily imply that f = 0. We define the
following equivalence relation on Lp, in order to quotient it into a normed vector space. Define f ∼ g if f = g almost

surely, and we write ḟ for the equivalence class of f . Let L p :=
{
ḟ ; f ∈ Lp

}
, then ∥·∥p is well-defined on L p and

is a norm.
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Remark 3.26. Note that, for f ∈ L2, we have ∥f∥22 = ⟨f, f⟩, where ⟨·, ·⟩ is the symmetric bilinear form on L2 given
by

⟨f, g⟩ :=
∫
E

fgdµ, f, g ∈ L2. (100)

⟨·, ·⟩ is an inner product on L 2, i.e.,
〈
ḟ , ḟ

〉
≥ 0 if ḟ ∈ L 2, with equality if and only if ḟ = 0. We then claim that

⟨·, ·⟩ is well-defined on L 2. Indeed, the integral makes sense because of Hölder’s inequality (with p = q = 2, known
as Cauchy-Schwarz inequality), and its value does not change over functions of the same equivalence class.

Remark 3.27. Observe that Jensen’s inequality, using Remark 3.22, implies the monotonicity of the Lp-norms with
respect to a probability measure. Indeed, letting 1 ≤ p < q < ∞ and setting c(x) := xq/p, clearly c is convex and
thus for any X ∈ Lq(Ω,F ,P), we have that

∥X∥p = (E(|X|p))1/p = (c(E(|X|p)))1/q ≤ (E(c(|X|p)))1/q = (E(|X|q))1/q = ∥X∥q , (101)

and in particular, this implies that Lp(Ω,F ,P) ⊇ Lq(Ω,F ,P).

3.3.3 Completeness in L p and the Orthogonal Projection in L 2

Recall that a normed vector space V is complete if every Cauchy sequecence in V converges, i.e., given any sequence
{vn}n∈N in V such that ∥vn − vm∥ → 0 as m,n → ∞, there exists v ∈ V such that ∥vn − v∥ → 0 as n → ∞. A
complete normed vector space is called a Banach space, and a complete inner product space is called a Hilbert
space. The Banach spaces L p are the spaces of interest here.

Theorem 3.28. We have that L p is a Banach space for 1 ≤ p ≤ ∞, and L2 is moreover a Hilbert space.

Remark 3.29. Consider the Hilbert space L 2(E,E , µ). Let f, g ∈ L 2(E,E , µ), we say that f and g are orthogonal,
denoted by f ⊥ g if ⟨f, g⟩ = 0. For any subset V ⊆ L 2, we define

V ⊥ :=
{
f ∈ L 2; ⟨f, v⟩ = 0 for all v ∈ V

}
. (102)

A subset V ⊆ L 2 is said to be closed if, for every sequence {fn}n∈N in V with fn → f in L 2, we have f = v
almost everywhere for some v ∈ V . Let use observe the two following simple but important identities on L 2, the
Pythagoras’ rule

∥f + g∥22 = ∥f∥22 + 2 ⟨f, g⟩+ ∥g∥22 , (103)

and the parallelogram law

∥f + g∥22 + ∥f − g∥22 = 2
(
∥f∥22 + ∥g∥22

)
. (104)

Theorem 3.30 (Riesz, orthogonal projection). Let V be a closed subspace of L 2, then each f ∈ L has a decom-
position f = v + u with v ∈ V and u ∈ V ⊥. Moreover, ∥f − v∥2 ≤ ∥f − g∥2 for all g ∈ V , with equality if and only
if g = v almost everywhere. The function v is then called (a version of) the orthogonal projection of f on V .

Proof. Choose a sequence gn ∈ V , such that ∥f − gn∥2 → d(f, V ) = inf {∥f − g∥2 ; g ∈ V }. Then by the parallelo-
gram law, we can see that∥∥∥∥2(f − gn + gm

2

)∥∥∥∥2
2

+ ∥gn − gm∥22 = 2
(
∥f − gn∥22 + ∥f − gm∥22

)
. (105)

But the first summand in the left-hand side is at least 4d(f, V )2, so we must have that ∥gn − gm∥2 → 0 as n,m → ∞
since the right-hand side approaches 4d(f, V )2 as n,m → ∞. By completeness, ∥gn − g∥2 → 0 as n → ∞ for some
g ∈ L 2. By closedness, g = v almost everywhere for some v ∈ V . Hence, we now have that

∥f − v∥2 = lim
n→∞

∥f − gn∥2 = d(f, V ). (106)

Now, for any h ∈ V and t ∈ R, we have that

d(f, V )2 ≤ ∥f − (v + th)∥22 = ∥f − v∥22 − 2t ⟨f − v, h⟩+ t2 ∥h∥22 = d(f, V )2 − 2t ⟨f − v, h⟩+ t2 ∥h∥22 , (107)

and so ⟨f − v, h⟩ = 0. Hence u = f − v ∈ V ⊥ as required. THe proof is now complete.
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Remark 3.31. The above theorem, which enables us to construct the orthogonal projection (modulo the equivalence
class by almost sure equality defined in Remark 3.25) of an integrable function in L 2 on a closed subspace V as a
function in V that has minimal distance to it, will be a key tool to build up the notion of conditional expectation
of a random variable. Namely, the conditional expectation of a random variable X on a probability space (Ω,F ,P)
with respect to a sub-σ-algebra G will be the orthogonal projection of X on the space of square integrable functions
that are measurable with respect to G .
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4 Conditional Expectation and Martingales

Let (Ω,F ,P) be a probability triple, i.e., a measure space for which P(Ω) = 1.

4.1 Conditional Expectation

Suppose X and Z are random variables taking finitely many values, x1, . . . , xn and z1, . . . , zn, respectively. In
introductory courses to probability, we defined the conditional probability

P(X = xi | Z = zj) :=
P(X = xi, Z = zj)

P(Z = zj)
, (108)

and the conditional expectation was given by

E(X | Z = zj) :=

n∑
i=1

xiP(X = xi | Z = zj). (109)

Using this, we can define a random variable, “the expectation ofX given Z”, which will map every ω in the probability
space Ω to a number yielding the expectation of X(ω) given the information about the value of Z(ω), which we either
call E(X | σ(Z)) or E(X | Z), such that

E(X | Z) :=

m∑
j=1

E(X | Z = zj)1{Z=zj}. (110)

Now a more general question is, given a sub-σ-algebra G of F , does it make sense to define E(X | G ), i.e., the
expected value of X given the information G ? We want to define the random variable that maps every ω to the
expected value Y (ω) = E(X | G )(ω) given this information. Given a single event A ∈ F with P(A) ̸= 0, we know
that the conditional expectation of X knowing that the outcome ω ∈ A is

E(X | ω ∈ A) =

n∑
i=1

xiP(X = xi, ω ∈ A)

P(ω ∈ A)
=

∑n
i=1 xiP(X1A = xi)

P(A)
=

E(X1A)

P(A)
. (111)

We would like our random variable to take into account all such information. Firstly, it has to be G -measurable,
since its value at a particular ω has to be a (possibly complicated) function of the values of (possibly infinitely
many) G -measurable functions at ω, which are the information you provide about ω. Secondly, conditionally on the
information that ω belongs to a particular G ∈ G (with P(G) ̸= 0), the expectations of Y and X should not differ,
i.e., E(X | ω ∈ G) = E(Y | ω ∈ G). This is equivalent to E(X1G) = E(Y 1G). The following theorem will imply
that requiring the last equality to hold for all G ∈ G almost uniquely defines the random variable Y = E(X | G ) if
X ∈ L 1.

Theorem 4.1. Let X be a random variable for which E(|X|) < ∞, and let G be a sub-σ-algebra of F . Then there
exists a random variable Y , such that

(1) Y is G -measurable,

(2) E(|Y |) < ∞, and

(3) E(Y 1G) = E(X1G) for all G ∈ G (or equivalently, for all G ∈ A π-system with G = π(A )).

Moreover, if Ỹ is another random variable with these properties, then Ỹ = Y almost surely. A random variable with
such properties is called a version of the conditional expectation of X given G , denoted as E(X | G ), and we
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write Y = E(X | G ) almost surely.

Remark 4.2. Given random variables Z,Z1, . . . , Zn, by convention we often write E(X | Z) for E(X | σ(Z)), and
E(X | Z1, . . . , Zn) for E(X | σ(Z1), . . . σ(Zn)).

Remark 4.3. Let us check that, if X and Z are random variables taking m and n values respectively, and if Y
is a version of the conditional expectation E(X | Z), then the conditional expectation given after Theorem 4.1
provides almost surely the same random variable as the one we defined at the beginning of the section. Indeed, for
all j ∈ {1, . . . , n}, we have that

E(Y 1{Z=zj}) = E(X | Z = zj)P(Z = zj)

=

n∑
i=1

xiP(X = xi | Z = zj)P(Z = zj) =

n∑
i=1

xiP(X = xi, Z = zj) = E(X1{Z=zj}). (112)

Proof of Theorem 4.1. The proof is in four parts.

(1) The equivalence mentioned in the third property is true. We show that for any π-system A , if E(Y 1A) =
E(X1A) holds for all A ∈ A , then E(Y 1G) = E(X1G) holds for all G ∈ G = σ(A ). Let W := Y − X, and
define for each G ∈ G that µ+(G) := E(W+

1G) and µ−(G) := E(W−
1G). Then since X and Y are integrable,

W must also be integrable, thus µ+ and µ− are necessarily finite measures which agree on a π system, according
to Proposition 3.13. Therefore, we can conclude this part by the uniqueness lemma (Lemma 1.17).

(2) E(X | G ) is almost surely unique. If Y, Ỹ ∈ L 1(Ω,G ,P) are two versions of E(X | G ), then for all G ∈ G , we

have that E((Y − Ỹ )1G) = 0. In particular, we have that

E
(
(Y − Ỹ )1{Y >Ỹ }

)
= 0, (113)

which necessarily means that (Y − Ỹ )1{Y >Ỹ } = 0 almost everywhere. Analogously, we are able to deduce that

(Y − Ỹ )1{Y≤Ỹ } = 0 almost everywhere, so that Y = Ỹ almost everywhere.

(3) E(X | G ) exists for all X ∈ L 2 ⊆ L 1. V := L 2(Ω,G ,P) is complete, so that it is a closed subspace of
L 2(Ω,F ,P). If X ∈ L 2(F ), let Y ∈ L 2(G ) be the orthogonal projection of X on V , so that

E((X − Y )2) = inf
{
E((X −W )2); W ∈ L 2(G )

}
, (114)

⟨X − Y, Z⟩ = E((X − Y )Z) = 0, ∀Z ∈ L 2(G ). (115)

Clearly Y is measurable and E(|Y |) < ∞ because Y ∈ L 2(G ) ⊆ L 1(G ), satisfying the first two requirements.
On the other hand, taking Z := 1G ∈ G , we have that E(X1G) = E(Y 1G).

(4) E(X | G ) exists for all X ∈ L 1. Note that since X = X+ −X−, it is sufficient to prove existence for X ∈ L 1,
X ≥ 0. We claim that if U ∈ L 2 and U ≥ 0 almost surely, then E(U | G ) ≥ 0 almost surely. Indeed, let W be
a version of E(U | G ), then 0 ≥ E(W1{W<0}) = E(U1{W<0}) ≥ 0, which means that E(W1{W<0}) = 0, i.e.,
W1{W<0} = 0 almost surely. This necessarily means that W ≥ 0 almost surely, so the claim is proved. Now we
approach X by an increasing sequence of non-negative simple (and thus square integrable) random variables
Xn, i.e., 0 ≤ Xn ↑ X. For each n ∈ N, let Yn be a version of E(Xn | G ). Let Y (ω) := lim supn→∞ Yn(ω)
for each ω ∈ Ω, then Yn ↑ Y almost surely by our previous claim, where Y is G -measurable. Why? By the
monotone convergence theorem (Theorem 3.2), we thus have that E(X1G) = E(Y 1G) for all G ∈ G . How? In
particular, E(Y ) < ∞ and thus all requirements are satisfied by Y .

The proof is thus complete.
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Theorem 4.4 (Properties of the conditional expectation). Let X,Z,Zn, n ∈ N be integrable random variables, let
G and H be sub-σ-algebras of F , and let a1, a2 ∈ R.

(1) If Y is a version of E(X | G ), then E(X) = E(Y ).

(2) If X is G -measurable, then E(X | G ) = X almost surely.
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(3) Linearity: E(a1X1 + a2X2 | G ) = a1E(X1 | G ) + a2E(X2 | G ).

(4) Positivity: If X ≥ 0, then E(X | G ) ≥ 0.

(5) Monotone convergence: If 0 ≤ Xn ↑ X, then E(Xn | G ) ↑ E(X | G ) almost surely.

(6) Fatou: If Xn ≥ 0, then E(lim infXn | G ) ≤ lim inf E(Xn | G ).

(7) Dominated convergence: If |Xn| ≤ V for some random variable V with E(|V |) < ∞ , and Xn → X almost
surely, then E(Xn | G ) → E(X | G ) almost surely.

(8) Jensen: If c : R → R is convex and E(c(X)) < ∞, then E(c(X) | G ) ≥ c(E(X | G )) almost surely.

(9) ∥E(X | G )∥p ≤ ∥X∥p, p ≥ 1.

(10) Tower property: If H is a sub-σ-algebra of G , then E(E(X | G ) | H ) = E(X | H ) almost surely.

(11) If E(|X|) < ∞ and E(|ZX|) < ∞, then E(ZX | G ) = ZE(X | G ).

(12) Rôle of independence: If H is independent of σ(σ(X),G ), then E(X | σ(G ,H )) = E(X | G ) almost surely. In
particular, X being independent of H implies that E(X | H ) = E(X).

Proof. (1) We have that E(Y ) = E(Y 1Ω) = E(X1Ω) = E(X).

(2) If X is G -measurable, then Y := X satisfies all conditions of Theorem 4.1, thus being a version of E(X | G ).

(3) Let X := a1X1 + a2X2 and Y := a1E(X1 | G ) + a2E(X2 | G ). Clearly Y is G -measurable and E(|Y |) < ∞.
Moreover, for any G ∈ G , we have that

E(Y 1G) = a1E(E(X1 | G )1G) + a2E(E(X2 | G )1G) = a1E(X11G) + a2E(X21G) = E(X1G), (116)

so Y satisfies all conditions of Theorem 4.1, thus being a version of E(X | G ) = E(a1X1 + a2X2 | G ).

(4) To be done, similar to the last part of proof of Theorem 4.1...

(5) To be done, similar to the last part of proof of Theorem 4.1...

(6) To be done, based on monotone convergence...

(7) To be done, based on Fatou...

(8) Recall that the argument to prove Jensen’s inequality was based on the existence of a, b ∈ R, such that c(x) ≥
ax+ b, with equality at x = E(X). Here since E(X | G ) is a function, we cannot treat it as a number to which
we could attribute a and b. Instead we use countably many inequalities at the same time. Adapt Lemma 3.20
to show that there exist {an}n∈N and {bn}n∈N real-valued sequences, such that c(x) = supn∈N(anx+bn). Hence
c(X) ≥ anX + bn, and thus E(c(X) | G ) ≥ anE(X | G ) + bn for all n ∈ N. We can now conclude that

E(c(X) | G ) ≥ sup
n∈N

(anE(X | G ) + bn) = c(E(X | G )). (117)

(9) Using Jensen’s inequality with c(x) := |x|p, we have that

∥E(X | G )∥p = (E(|E(X | G )|p))1/p ≤ (E(E(|X|p | G )))1/p = (E(|X|p))1/p = ∥X∥p , (118)

where we have used that the expectation of a version of E(|X|p | G ) is the same as the expectation of |X|p.

(10) Let Y be a version of E(X | G ), then by definition E(Y 1G) = E(X1G) for any G ∈ G . Moreover, let Z be a
version of E(Y | H ), then again by definition E(Z1H) = E(Y 1H) for any H ∈ H . Hence E(Z1H) = E(X1H)
for all H ∈ H . As long as Z is H -measurable and E(|Z|) < ∞, we can conclude that Z is a version of
E(X | H ), i.e., E(E(X | G ) | H ) = E(X | H ) almost surely.

(11) Let Y := E(X | G ), and we use the Standard Machine.

• Case 1. Let Z := 1G for some G ∈ G . Then Y Z is integrable, and for all H ∈ G , we have that

E(Y Z1H) = E(Y 1G∩H) = E(X1G∩H) = E(XZ1H). (119)

This means that Y Z is a version of E(XZ | G ), so that ZE(X | G ) = E(XZ | G ).
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• Case 2. By linearity and Case 1, ZE(X | G ) = E(XZ | G ). for any simple random variable Z.

• Case 3. Suppose now that Z is a non-negative random variable. Define a sequence of simple random
variables by Wn := (2−n ⌊2nZ⌋)∧n, then clearly Wn ↑ Z. For any H ∈ G , we have that YWn1H ↑ Y Z1H

and XWn1H ↑ Y Z1H . Hence E(YWn1H) ↑ E(Y Z1H) and E(XWn1H) ↑ E(Y Z1H) by the monotone
convergence theorem (Theorem 3.2). By Case 2, necessarily E(YWn1H) = E(XWn1H) for all n ∈ N,
and thus E(Y Z1H) = E(XZ1H). This means that Y Z is a version of E(XZ | G ), so that ZE(X | G ) =
E(XZ | G ).

• Case 4. Now let Z be not necessarily non-negative and write Z = Z+ − Z−. Then by Case 3, we have
that Z+E(X | G ) = E(XZ+ | G ) and Z−E(X | G ) = E(XZ− | G ). Therefore, we can conclude by
linearity that ZE(X | G ) = E(XZ | G ).

(12) The intuition here is that, H is independent of σ(σ(X),G ) if and only if given that ω ∈ G for some G ∈ G , the
fact that ω ∈ A for some A ∈ H does not provide any additional information on X(ω). Assume without loss
of generality that X ≥ 0 and E(X) < ∞. Let Y := E(X | G ), then we want to show that for all I ∈ σ(G ,H ),
it holds that E(Y 1I) = E(X1I). First suppose I := G ∩H for some G ∈ G and H ∈ H , then

E(X1I) = E(X1G1H) = E(X1G)E(1H) = E(X1G)P(H), (120)

E(Y 1I) = E(Y 1G1H) = E(Y 1G)E(1H) = E(Y 1G)P(H), (121)

where we have used that X1G and E(X | G )1G are both independent of 1H due to the assumption that H is
independent of σ(σ(X),G ). Moreover, since Y is a version of E(X | G ), we have that E(X)1G = E(Y )1G, so
the finite measures I 7→ E(X1I) and I 7→ E(Y 1I) agree on the π-system I := {G ∩H; G ∈ G , H ∈ H }, by
arbitrariness of G and H. Hence they also agree on σ(I) = σ(G ,H ) by the uniqueness lemma (Lemma 1.17).
In other words, E(X1I) = E(Y 1I) for all I ∈ σ(G ,H ), so that Y is a version of E(X | σ(G ,H )), which means
that E(X | G ) = E(X | σ(G ,H )).
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Example 4.5. Let (X,Z) be a random variable with probability density function fX,Z(x, z). Set

fZ(z) :=

∫
R
fX,Z(x, z)dx, (122)

which defines a probability density function of Z. Then we define the elementary conditional probability density
function fX|Z by

fX|Z(x, z) :=

{
fX,Z(x, z)/fZ(z), if fZ(z) ̸= 0,

0, otherwise.
(123)

Let h be a Borel function such that E(|h(X)|) < ∞. Then the function g(z) :=
∫
R h(x)fX|Z(x, z)dx is defined almost

everywhere for z ∈ R, and Y := g(Z) = E(h(X) | σ(Z)) almost surely. To be done, see Williams p. 87...

Example 4.6. Let X1, . . . , Xr be independent random variables, h : Rr → R be bounded, and

γh(x1) := E(h(x1, X2, . . . , Xr)). (124)

Then γh(X1) = E(h(X1, . . . , Xr) | X1) almost surely. To be done, see Williams p. 92...

4.2 Martingales

4.2.1 Filtrations and Adapted Processes

Definition 4.7. An increasing family {Fn; n ≥ 0} of sub-σ-algebras of F , such that F0 ⊆ F1 ⊆ . . . ⊆ Fn ⊆ . . . ⊆
F is called a filtration. By convention, we denote

F∞ := σ

(⋃
n

Fn

)
⊆ F . (125)
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Remark 4.8. Fn can be thought of as the information available to us at time n. Usually Fn = σ(W0, . . . ,Wn)
for some stochastic process {Wn}n∈N, so that the information available to us from the outcome ω at time n are the
values of W0(ω), . . . ,Wn(ω). In the case of a general filtration, the information available to use are the values of
Z(ω) for all Fn-measurable functions Z.

Definition 4.9. X = {Xn; n ≥ 0} is called an adapted process if Xn is Fn-measurable for all n.

Remark 4.10. Intuitively, Xn is a function of the information available at time n. Usually Fn = σ(W0, . . . ,Wn)
and Xn = fn(W0, . . . ,Wn), where fn : Rn+1 → R is a measurable function.

4.2.2 Martingales

We now introduce the notion of martingales (respectively submartingales and supermartingales), which are stochastic
processes “remaining stable (respectively increasing and decreasing) on average”. To this end, we do not only look at
the evolution of the expectation of the process, but rather at whether the increment is conditionally null (respectively
positive and negative) in expectation.

Definition 4.11. Let {Xn; n ∈ N} be an F = {Fn; n ∈ N}-adapted integrable process (i.e., such that E(|Xn|) < ∞
for all n ∈ N). Then

{Xn; n ∈ N} is a


martingale

submartingale

supermartingale

if


E(Xn+1 | Fn) = Xn

E(Xn+1 | Fn) ≥ Xn

E(Xn+1 | Fn) ≤ Xn

almost surely for all n ∈ N. (126)

Remark 4.12. {Xn; n ∈ N} is a martingale if and only if it is a submartingale and a supermartingale. Moreover,
{Xn; n ∈ N} is a martingale (respectively submartingale and supermartingale) if and only if (Xn−X0) is a martingale
(respectively submartingale and supermartingale). In practice, we focus our attention on processes null at 0.

Remark 4.13. If {Xn; n ∈ N} is a martingale (respectively submartingale and supermartingale), then E(Xn) =
E(X0) (respectively E(Xn) ≥ E(X0) and E(Xn) ≤ E(X0)) almost surely for all n ∈ N. Indeed, if we look at
supermartingales, we can see that E(X0) ≥ E(E(X1 | F0)) = E(X1), and this is recursive. The other two types are
analgous.

Remark 4.14. If {Xn; n ∈ N} is a martingale (respectively submartingale and supermartingale), E(Xn+k | Fn) =
Xn (respectively E(Xn+k | Fn) ≥ Xn and E(Xn+k | Fn) ≤ Xn) almost surely for n, k ∈ N. Indeed, if we look at
supermartingales, we can see that

E(Xn+k | Fn) = E(E(Xn+k | Fn+k−1) | Fn)︸ ︷︷ ︸
tower property

≤ E(Xn+k−1 | Fn) ≤ . . . ≤ E(Xn+1 | Fn) ≤ Xn. (127)

The other two types are analogous.

Example 4.15. Any deterministic non-decreasing (respectively non-increasing) sequence {an}n∈N is a submartingale
(respectively supermartingale).

Example 4.16. Let {Xn; n ∈ N} be a sequence of independent random variables, with E(|Xi|) < ∞ and E(Xi) = 0
(centered) for all i ∈ N. Then Sn :=

∑n
i=1 Xi is a martingale with respect to the filtration Fn = σ(X1, . . . , Xn),

n ≥ 1, and F0 = {∅,Ω}. Indeed, we can see that

E(Sn | Fn−1) = E(Sn−1 | Fn−1)︸ ︷︷ ︸
Sn−1 is Fn−1-measurable

+ E(Xn | Fn−1)︸ ︷︷ ︸
Xn independent of Fn−1

= Sn−1 + E(Xn) = Sn−1. (128)

Example 4.17. Let {Xn; n ∈ N} be a sequence of independent non-negative random variables with E(Xk) = 1 for
all k. Define M0 = 0 and Mn = X1 . . . Xn, with F0 = {∅,Ω} and Fn = σ(X1, . . . , Xn), n ≥ 1. Then {Mn; n ∈ N}
is a martingale. Indeed, we can see that

E(Mn | Fn−1) = E(XnMn−1 | Fn−1) = E(Xn)E(Mn−1 | Fn−1) = E(Xn)Mn−1 = Mn−1. (129)
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Example 4.18. Let {Fn; n ∈ N} be a filtration, and let X be a random variable such that E(|X|) < ∞. Let
Xn := E(X | Fn), then {Xn; n ∈ N} is a martingale. Indeed, by the tower property we can see that

E(Xn | Fn−1) = E(E(X | Fn) | Fn−1) = E(X | Fn−1) = Xn−1. (130)

The question is, how general can this example be? We will prove later that a large class of martingales (called
uniformly integrable martingales) can be written in this way, corresponding to the idea that Xn gives some
“rough” information about an unknown variable X, and that this information is getting finer as n increases (and
actually converging to X if X is F∞-measurable, see later).
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The Discrete Stochastic Integral

Definition 4.19. Let {Fn; n ∈ N} be a filtration on a probability space (Ω,F ,P). We say that a process C =
{Cn; n ≥ 1} is previsible if each Cn is Fn−1-measurable (note that C0 is not defined).

Remark 4.20. Let {Xn; n ∈ N} be F = {Fn; n ∈ N}-adapted and C = {Cn; n ≥ 1} be F-previsible. Define

Yn := (C ◦X)n :=

n∑
k=1

Ck(Xk −Xk−1), (131)

then C ◦X can be seen as a discrete analogue of the stochastic integral
∫
CdX.

Theorem 4.21. (1) Let the process C be previsible and bounded, where boundedness means that there exists
K < ∞, such that |Cn(ω)| < K for all ω ∈ Ω and n ≥ 1. If {Xn; n ∈ N} is a martingale (respectively
submartingale and supermartingale), and Cn ≥ 0, then C ◦X is a martingale (respectively submartingale and
supermartingale) that is null at 0.

(2) Replace the boundedness of C in the previous part by Cn, Xn ∈ L 2 for all n ∈ N, the same conclusion holds.

Proof. To be done...

Theorem 4.22 (Doob’s decomposition theorem). Let {Xn; n ∈ N} be an adapted process with Xn ∈ L 1, n ∈ N.
Then

(1) X has Doob decomposition X = X0 +M +A, where M is a martingale null at 0, and A is a previsible process
also null at 0. Moreover, if X = X0 + M̃ + Ã is another Doob decomposition, then

P
(
Mn = M̃n, An = Ãn, n ∈ N

)
= 1. (132)

(2) X is a submartingale (respectively supermartingale) if and only if A is increasing (respectively decreasing),
i.e., P(An ≤ An+1, n ∈ N) = 1 (respectively P(An ≥ An+1, n ∈ N) = 1).

Proof. (1) Define

An :=

n∑
k=1

(E(Xk | Fk−1)−Xk−1), Mn :=

n∑
k=1

(Xk − E(Xk | Fk−1)), (133)

where An adds up the expected increments of X, and Mn adds up the surprises, i.e., the part of each Xk that
is not known one step before. Intuitively and arithmetically, we have that Xn = X0 +Mn +An. Moreover, M
is a martingale because

E(Mn | Fn−1) = E(Mn−1 | Fn−1) + E(Xn | Fn−1)− E(E(Xn | Fn−1) | Fn−1)

= E(Mn−1) + E(Xn | Fn−1)− E(Xn | Fn−1) = E(Mn−1), (134)
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and A is a previsible because each An depends only on information given up till Fn−1. The existence of
the Doob composition is thus complete, and it suffices to prove its uniqueness. For a Doob decomposition
X = X0 +M +A, we can see that

E(Xn −Xn−1 | Fn−1) = E(Mn | Fn−1)︸ ︷︷ ︸
M martingale

−E(Mn−1 | Fn−1)︸ ︷︷ ︸
Fn−1-measurable

+ E(An | Fn−1)︸ ︷︷ ︸
Fn−1-measurable

−E(An−1 | Fn−1)︸ ︷︷ ︸
Fn−1-measurable

= Mn−1 −Mn−1 +An −An−1 = An −An−1, (135)

so An can be uniquely determined by summing up these increments. Since X0 is fixed, Mn can thus also be
uniquely determined, so we can see that the Doob composition is unique.

(2) This is trivial from how we defined An. Indeed, if An is non-decreasing, then E(Xn | Fn−1) − Xn−1 ≥ 0 is
non-negative for all n, and thus Xn is a submartingale by definition. The reverse is analogous, and the proof
is complete.

Stopping Times

Definition 4.23. A mapping T : Ω → Z+ ∪ {∞} is called a stopping time if for all n ∈ N, we have that

{T ≤ n} = {ω ∈ Ω; T (ω) ≤ n} ∈ Fn. (136)

Remark 4.24. Equivalently, T is a stopping time if {T = n} ∈ Fn for all n ∈ N. Check this...

Remark 4.25. Usually a stopping time is interpreted as a time when you take a certain decision, and the requirement
in the definition corresponds to asking for this decision to depend only on the history up to (and including) time
n. As an example, the decision might be the decision to stop playing a gambling game. As another example, for a
meteorologist having the weather information up to the present time, the first day of 2009 when the temperature is
above 15◦C is a stopping time. The last day of 2009 when the temperature is above 15 ◦C is not a stopping time,
because it may depend on future information.

Theorem 4.26. Let {Xn; n ∈ N} be a martingale (respectively submartingale and supermartingale), and let T be
a stopping time. Then {Xn∧T ; n ∈ N} is a martingale (respectively submartingale and supermartingale).

Proof. Take Cn := 1n≤T , then we have the discrete stochastic integral

(C ◦X)n =

n∑
k=1

Ck(Xk −Xk−1) =

n∑
k=1

1k≤T (Xk −Xk−1) =

n∧T∑
k=1

(Xk −Xk−1) = Xn∧T . (137)

Clearly C is previsible and bounded, so by Theorem 4.21, if {Xn; n ∈ N} is a martingale (respectively submartin-
gale and supermartingale), then {Xn∧T ; n ∈ N} = {Cn; n ∈ N} is a martingale (respectively submartingale and
supermartingale) as well. The proof is thus complete.

Theorem 4.27 (Doob’s optional stopping theorem). Let X be a supermartingale and T be a stopping time. Then
XT is integrable and E(XT ) ≤ E(X0) in each of the following situations.

(1) T is bounded, i.e., there exists K < ∞, such that T (ω) ≤ K for all ω ∈ Ω.

(2) T is almost surely finite, and X is bounded, i.e., there exists K < ∞, such that |Xn(ω)| ≤ K for all ω ∈ Ω and
n ∈ N.

(3) E(T ) < ∞, and the increments of X are bounded, i.e., there exists K < ∞, such that |Xn(ω)−Xn−1(ω)| ≤ K
for all ω ∈ Ω and n ∈ N.

(4) T is almost surely finite, and X is non-negative, i.e., Xn(ω) ≥ 0 for all ω ∈ Ω and n ∈ N.

Proof. (1) By Theorem 4.26, we can see that {Xn∧T ; n ∈ N} is a supermartingale. This necessarily means that
E(Xn∧T ) ≤ E(X0∧T ) = E(X0) for all n ∈ N. Assume that T is bounded by K, then taking n ≥ K concludes
that E(XT ) ≤ E(X0).
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(2) Since T is almost surely finite, we have that Xn∧T → XT as n → ∞. Since X is bounded, by the domi-
nated convergence theorem (Theorem 3.8), we can see that E(Xn∧T ) → E(XT ). Same as the previous part,
E(Xn∧T ) ≤ E(X0) for all n ∈ N, so that E(XT ) ≤ E(X0) as well.

(3) Same as in the previous part, Xn∧T → XT as n → ∞. We have that

|Xn∧T −X0| =

∣∣∣∣∣
n∧T∑
i=1

(Xi −Xi−1)

∣∣∣∣∣ ≤
n∧T∑
i=1

|Xi −Xi−1| ≤ (n ∧ T )K ≤ TK, (138)

so we can apply the dominated convergence theorem (Theorem 3.8) to see that E(Xn∧T ) → E(XT ). The rest
of the proof is the same as in previous parts.

(4) Same as in the previous part, Xn∧T → XT as n → ∞. Moreover since X is non-negative, we can apply Fatou’s
lemma (Lemma 3.3) to see that

E(XT ) = E
(
lim inf
n→∞

Xn∧T

)
≤ lim inf

n→∞
E(Xn∧T ) ≤ E(X0), (139)

where the last inequality is by arguments analogous to previous parts.

Remark 4.28. Doob’s optional stopping theorem (Theorem 4.27) would not hold without such boundedness as-
sumptions on T or X. For instance, let {∆i}i∈N be independent and identically distributed with P(∆i = 1) =
P(∆i = −1) = 1/2. Consider the filtration Fn := σ(∆1, . . . ,∆n) with F0 = {∅,Ω}. Let Xn :=

∑n
i=1 mi∆i, where

{mi; i ∈ N} is some previsible process. Let T := inf {k ≥ 1; ∆k = 1}, and assume that mi := 2i−1m11{i≤T}. Then

XT =

T∑
i=1

mi∆i =

T∑
i=1

2i−1m11{i≤T}∆i = m1

T∑
i=1

2i−1∆i = m1

(
−

T−1∑
i=1

2i−1 + 2T−1

)
= m1. (140)

Hence, E(XT ) = m1 > 0, even though {Xn; n ∈ N} is clearly an Fn-adapted martingale.

Lemma 4.29. Assume that T is a stopping time and that there exists N ∈ N and ϵ > 0, such that for all n ∈ N, it
holds that P(T < n+N | Fn) ≥ ϵ almost surely. Then E(T ) < ∞.

Proof. Exercise, to be done...

Remark 4.30. The above lemma provides a simple way to prove that E(T ) < ∞.

Proposition 4.31. Let D be a connected finite subset of Zd, d ≥ 1 (connectedness means that for any x, y ∈ D,
there exists x1, . . . , xk, such that x = x1, y = xk, and xi ∼ xi+1 for all i). Let

∂D :=
{
y ∈ Zd \D; there exists x ∈ D such that x ∼ y

}
. (141)

Then for all f : ∂D → R, there exists a unique function h : D ∪ ∂D → R such that h |∂D= f and h is harmonic, i.e.,

h(x) =
1

2d

∑
y: y∼x

h(y). (142)

Proof. Homework 4, to be done...
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4.2.3 Forward Convergence Theorem for Martingales

Remark 4.32. Let {Xn; n ∈ N} be an integrable random process, for instance, modeling the value of the stock
market. Consider the following strategy: (A) you do not invest until the value of X gets below a, in which case you
buy a share; (B) you keep your share until X gets above b, in which case you sell your share and goes back to (A).
There are three remarks.
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(1) However clever this strategy may look, if X is a supermartingale and you stop playing at some bounded time,
then your losses will always be greater than your earnings on average, according to Doob’s optional stopping
theorem (Theorem 4.27).

(2) Your earnings are bounded below by (b− a) times the number of times the process went up from a to b.

(3) You may have some losses if you stop at a time n where you are still playing and the value is under the price
at which you bought, in which case the loss is bounded above by (Xn − a)−.

Combining the remarks, if X is a supermartingale, then the number of times the process went up from a to b must
be bounded above by E((Xn − a)−)/(b− a).

Definition 4.33. If {xn}n∈N is a real sequence and a < b are two real numbers, we define two integer-valued
sequences Sk(x) and Tk(x), k ≥ 1 recursively as follows. Let T0(x) := 0, and for k ∈ N, let

Sk+1(x) := inf {n ≥ Tk(x); xn < a} , Tk+1(x) := inf {n ≥ Sk+1(x); xn > b} , (143)

with the convention that inf(∅) = ∞. Let Nn([a, b], x) := sup {k ∈ N; Tk(x) ≤ n} be the number of upcrossings of
x between a and b before time n, which increases to the total number of upcrossings N([a, b], x) := N∞([a, b], x) =
sup {k ∈ N; Tk(x) < ∞}.

Remark 4.34. T0(x) = 0, then S1(x) is the first time after 0 that xn is below a, and T1(x) is the first time after
S1(x) that xn is above b. This completes one iteration of down and up, and so on.

Lemma 4.35 (Doob’s upcrossing lemma). Let X be a supermartingale, and let a < b be two real numbers. Then
for every n ∈ N, we have that

(b− a)E(Nn([a, b], X)) ≤ E((Xn − a)−). (144)

Proof. It is immediate by induction that Sk = Sk(X) and Tk = Tk(X) defined above are stopping times. Furthermore,
define for all n ≥ 1 that

Cn :=

∞∑
k=1

1{Sk<n≤Tk}. (145)

We note that Cn only takes values 0 or 1 because (Sk, Tk]’s are non-intersecting by definition. Moreover, {Cn; n ≥ 1}
is previsible because {Sk < n ≤ Tk} = {Sk ≤ n− 1} ∩ {Tk ≤ n− 1}C ∈ Fn−1. Letting Nn := Nn([a, b], X), we have
that the discrete stochastic integral

(C ◦X)n =

n∑
i=1

Ci(Xi −Xi−1) =

Nn∑
k=1

(XTk
−XSk

) + (Xn −XSNn+1
)1{SNn+1≤n}. (146)

To see this, we note that Ci = 1 if and only if i ∈ (Sk, Tk] for some k ∈ N and otherwise Ci = 0. Then for
each such interval (Sk, Tk], we have (XSk+1 −XSk

) + (XSk+2 −XSk+1) + . . . + (XTk
−XTk−1) = XTk

−XSk
, and

outside of these intervals there are no contributions to the sum. Moreover, we need to limit Tk not to exceed n,
because the summation is for i from 1 to n. By definition of Nn, we can see that Nn is the largest possible value
of k such that Tk ≤ n, so we sum for intervals only up to (SNn

, TNn
]. This however, leaves (possibly) remainder

terms, because SNn+1 may still be within n. Hence if SNn+1 ≤ n, we must further include the remainder term
(XSNn+1+1 −XSNn+1

) + (XSNn+1+2 −XSNn+1+1) + . . . + (Xn −Xn−1) = Xn −XSNn+1
. Now we can further write

that

(C ◦X)n ≥ (b− a)Nn + (Xn − a)1{Xn≤a} = (b− a)Nn − (Xn − a)−. (147)

The first inequality holds because by definition of Sk and Tk, we know that X is below a for each Sk and above b
for each Tk, so that each XTk

−XSk
≥ b− a. Moreover, clearly XSNn+1

≤ a but why {Xn ≤ a} ⊆ {SNn+1 ≤ n}
or there are some other magic for the indicator part? For the second equality, it holds because

(Xn − a)− = max(a−Xn, 0) = (a−Xn)1{a≥Xn} + 01{a<Xn} = −(Xn − a)1Xn≤a. (148)
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But since C only takes values 0 or 1, it is a non-negative bounded previsible process. Moreover, X is a supermartin-
gale, so Theorem 4.21 gives that the discrete stochastic integral C ◦X is also a supermartingale. This would mean
that E((C ◦X)n) ≤ E((C ◦X)0) = 0, so that

0 ≥ E((C ◦X)n) ≥ (b− a)E(Nn)− E((Xn − a)−), (149)

which finally implies that (b− a)E(Nn([a, b], X)) ≤ E((Xn − a)−). The proof is now complete.

Lemma 4.36. A real sequence x converges (in R := [−∞,∞]) if and only if N([a, b], x) < ∞ for all a, b ∈ Q with
a ̸= b.

Proof. We show that x does not converge if and only if there exists a < b rationals, such that N([a, b], x) = ∞.

⇐= We have that lim inf xn ≤ a < b ≤ lim supxn, because there are infinitely many crossings between a and b.
This directly implies that x does not converge.

=⇒ Since x does not converge, we have that lim inf xn < lim supxn and thus we can take two rationals a < b in
between.

The proof is thus complete by taking the contrapositive statement of above.

Remark 4.37. The above lemma demonstrates how the notion of convergence is analytically related to the finiteness
of the number of crossings.

Theorem 4.38 (Doob’s forward convergence theorem). Let X be a bounded supermartingale in L 1, which means
that supn E(|Xn|) < ∞. Then Xn converges almost surely towards an almost surely finite limit X∞.

Proof. Fix rationals a < b, then by Doob’s upcrossing lemma (Lemma 4.35), we have that

E(Nn([a, b], X)) ≤ (E(Xn)− a)−

b− a
≤ |E(Xn)− a|

b− a
≤ |E(Xn)|+ |a|

b− a
≤ E(|Xn|) + |a|

b− a
. (150)

Since Nn([a, b], X) ↑ N([a, b], X) as n → ∞ and Nn([a, b], X) is non-negative, by the monotone convergence theorem
(Theorem 3.2), we can see that E(Nn([a, b], X)) ↑ E(N([a, b], x)) as well. Hence we have that

E(N([a, b], X)) ≤ sup
n

E(|Xn|) + |a|
b− a

=
supn E(|Xn|) + |a|

b− a
< ∞, (151)

which necessarily implies that N([a, b], X) < ∞ almost surely. Therefore, we have that

P

 ⋂
a,b∈Q
a<b

{N([a, b], X) < ∞}

 = 1, (152)

and thus Xn converges almost surely to some X∞, possibly infinite, according to Lemma 4.36. Now Fatou’s lemma
(Lemma 3.3) gives that E(|X∞|) ≤ lim inf E(|Xn|) < ∞, so |X∞| < ∞ almost surely. The proof is thus complete.

Corollary 4.39. If X is a non-negative supermartingale, then X∞ := limn Xn exists almost surely.

Proof. Since X is non-negative supermartingale, we have that E(|Xn|) = E(Xn) ≤ E(X0) < ∞ for all n ∈ N. Hence
by Doob’s forward convergence theorem (Theorem 4.38), we can see that Xn necessarily converges almost surely to
an almost surely finite X∞, and the proof is thus complete.

11/8 Lecture

Martingales Bounded in L 2

The assumption that X is bounded in L 1, i.e., supn E(|Xn|) < ∞, as required in Doob’s forward convergence
theorem (Theorem 4.38), is not always easy to check. On the other hand, the advantage of working in L 2 is that we
have Pythagoras’ rule, which will hold for martingales as it did for sums of independent random variables. However
since L 2(Ω,F ,P) ⊆ L 1(Ω,F ,P) we are in a less general case here.
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Definition 4.40. A process M = {Mn; n ∈ N} is bounded in L p, p ≥ 1, if supn ∥Mn∥p < ∞, or equivalently,
supn E(|Mn|p) < ∞.

Remark 4.41. If M = {Mn; n ∈ N} is a martingale bounded in L 2, then for all 0 ≤ r < s, with the convention
M−1 := 0, we can compute that

⟨Ms −Ms−1,Mr −Mr−1⟩L 2 = E((Ms −Ms−1)(Mr −Mr−1))

= E(E((Ms −Ms−1)(Mr −Mr−1)) | Fs−1)

= E(E( Ms︸︷︷︸
martingale

− Ms−1︸ ︷︷ ︸
measurable

| Fs−1) · E( Mr︸︷︷︸
measurable

− Mr−1︸ ︷︷ ︸
measurable

| Fs−1))

= E((Ms−1 −Ms−1)(Mr −Mr−1)) = 0. (153)

Hence, still using the convention M−1 := 0, we can deduce that

E(M2
n) = E

( n∑
k=0

(Mk −Mk−1)

)2


= E(M2
0 ) +

n∑
k=1

E
(
(Mk −Mk−1)

2
)
+ 2

∑
0≤r<s≤n

E((Ms −Ms−1)(Mr −Mr−1))

= E(M2
0 ) +

n∑
k=1

E
(
(Mk −Mk−1)

2
)
. (154)

Theorem 4.42. Let M be a martingale for which Mn ∈ L 2, n ∈ N. Then M is bounded in L 2 if and only if

∞∑
k=1

E
(
(Mk −Mk−1)

2
)
< ∞, (155)

and in this case, Mn → M∞ almost surely and in L 2.

Proof. It is obvious from the previous remark that the first conclusion holds. Based on this and using the fact that
(E(Xn))

2 ≤ E(X2
n) (by Jensen’s inequality), we can use Doob’s forward convergence theorem (Theorem 4.38) to

ensure the almost sure existence of M∞ := limn Mn. Now we move on to prove the convergence in L 2. Recall that
that Pythagoras’ theorem implies that

E
(
(Mn+r −Mn)

2
)
=

n+r∑
k=n+1

E
(
(Mk −Mk−1)

2
)
. (156)

Hence by Fatou’s lemma (Lemma 3.3), we can see that

E
(
(M∞ −Mn)

2
)
= E

(
lim inf
r→∞

(Mn+r −Mn)
2
)
≤ lim inf

r→∞
E
(
(Mn+r −Mn)

2
)
=

∞∑
k=n+1

E
(
(Mk −Mk−1)

2
)
. (157)

Bringing n → ∞, necessarily E
(
(M∞ −Mn)

2
)
→ 0, so we can conclude that Mn → M∞ in L 2.

Remark 4.43. In fact, E
(
(M∞ −Mn)

2
)
=
∑∞

k=n+1 E
(
(Mk −Mk−1)

2
)
, though in the proof above we only used

that the left-hand side is less than or equal to the right-hand side. To conclude the equality, we are using that
fr → f in L 2 as r → ∞ implies that ∥fr∥2 → ∥f∥2, and in this case we take fr = Mn+r −Mn and f = M∞ −Mn.
Therefore, we can conclude that

E
(
(M∞ −Mn)

2
)
= ∥(M∞ −Mn)∥22

= lim
r→∞

∥(Mn+r −Mn)∥22 = lim
r→∞

n+r∑
k=n+1

E
(
(Mk −Mk−1)

2
)
=

∞∑
k=n+1

E
(
(Mk −Mk−1)

2
)
. (158)
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4.2.4 Uniform Integrability, Backwards Martingales, and the Strong Law of Large Numbers

Uniform Integrability

Uniform integrability is the requirement, on a class C of random variables, that the expectation of the absolute value
of any of these random variables, restricted to taking large values, should be uniformly small. One could think of this
as the uniform convergence to 0, over the class C and when N → ∞, of the expectation of the modulus restricted to
values larger than N . An important result on uniform integrability is that, a martingale M = {Mn; n ∈ N} can be
written as Mn = E(Z | Fn) for some Z ∈ L 1(Ω,F ,P) if and only if it is uniformly integrable, which in turn occurs
if and only if Mn converges almost surely and in L 1. This last equivalence would be one of the tools to prove the
strong law of large numbers, as we shall see later.

Lemma 4.44 (Absolute continuity). Suppose X ⊆ L 1(Ω,F ,P). Then for all ϵ > 0, there exists δ > 0, such that
for all F ∈ F , if P(F ) < δ then E(|X|1F ) < ϵ.

Proof. Assume for contradiction that there exists ϵ > 0 and a sequence Fn ∈ F , n ∈ N, with P(Fn) < 2−n (so
P(Fn) is smaller than any δ > 0) but E(|X|1Fn) ≥ ϵ. Let F := lim supFn = {Fn occurs infinitely often}. Clearly by
construction,

∑
n∈N P(Fn) < ∞, so by the first Borel-Cantelli lemma (Lemma 1.36), we have that P(F ) = 0. On the

other hand, X is bounded in L 1, so the reverse Fatou’s lemma (Lemma 3.4) implies that

E(|X|1F ) = E
(
lim sup
n→∞

(|X|1Fn)

)
≥ lim sup

n→∞
E(|X|1Fn) ≥ ϵ. (159)

This is impossible given P(F ) = 0, leading to a contradiction. Hence we can conclude that for all ϵ > 0, there exists
δ > 0, such that for all F ∈ F , P(F ) < δ necessarily implies that E(|X|1F ) < ϵ. The proof is thus complete.

Corollary 4.45. Suppose X ∈ L 1. Then for all ϵ > 0, there exists K ≥ 0, such that E(|X|1|X|>K) < ϵ.

Proof. Fix an arbitrary ϵ > 0. By absolute continuity (Lemma 4.44), there exists δ > 0, such that for all F ∈ F , if
P(F ) < δ then E(|X|1F ) < ϵ. By Chebyshev’s inequality (Theorem 3.18), we have that P(|X| > K) ≤ E(|X|)/K for
any K > 0, and since E(|X|) is finite, there exists K > 0 such that P(|X| > K) < δ. Hence E(|X|1|X|>K) < ϵ, and
the proof is complete by arbitrariness of ϵ > 0.

Remark 4.46. An alternative proof is to use the monotone convergence theorem (Theorem 3.2).

Definition 4.47. A class C of random variables is said to be uniformly integrable if, given ϵ > 0, there exists
K ≥ 0, such that E(|X|1|X|>K) < ϵ for all X ∈ C .

Remark 4.48. A uniformly integrable family is always bounded in L 1. Indeed, by definition there exists K1 ≥ 0
such that E(|X|1|X|>K1

) ≤ 1 for all X ∈ C , so that E(|X|) ≤ 1+K1P(|X| ≤ K1) ≤ 1+K1 for all X ∈ C . However,
the converse is not true. As a counterexample, take (Ω,F ,P) = ([0, 1],B([0, 1]),L ([0, 1])) and Xn := n1(0,1/n).
Clearly E(|Xn|) = 1, and so each Xn is bounded in L 1. However, we note that for K ≤ n, |Xn(ω)| > K if and only
if ω ∈ (0, 1/n), so that E(|Xn|1|Xn|>K) = E(|Xn|1(0,1/n)) = E(|Xn|) = 1, which can clearly not be arbitrarily small.
Hence, boundedness in L 1 does not necessarily imply that the class of random variables is uniformly integrable.

Remark 4.49. Though boundedness in L 1 does not guarantee uniform integrability, a class C of random variables
is uniformly integrable if and only if the following conditions hold.

(1) C is bounded in L 1, so that A := sup {E(|X|); X ∈ C } < ∞.

(2) For every ϵ > 0, there exists δ > 0, such that if F ∈ F , P(F ) < δ, and X ∈ C , then E(|X|1F ) < ϵ.

The “only if” direction is simple. The first holds given uniform integrability. The second condition also holds because

E(|X|1F ) ≤ E(|X|1F∩{|X|>K}) + E(|X|1F∩{|X|≤K}) ≤ E(|X|1|X|>K) +KP(F ) <
ϵ

2
+

ϵ

2
= ϵ, (160)

where we have used uniform integrability for the first part of the last inequality, and picked δ = ϵ/(2K) for the
second part of the last inequality. The “if” direction is also simple, since by Chebyshev’s inequality, we have that

P(|X| > K) ≤ E(|X|)
K

≤ A

K
< δ, (161)

by picking K = 2A/δ. Thus by taking F = {|X| > K} in the second condition, we have that E(|X|1|X|>K) < ϵ for
all X ∈ C , and the proof is thus complete.
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11/13 Leccture

Lemma 4.50 (Sufficient conditions for uniform integrability). A class C of random variables is uniformly integrable
if any of the following conditions holds.

(1) (Uniform boundedness in L p) There exists p > 1 and A ≥ 0, such that E(|X|p) < A for all X ∈ C .

(2) (Uniform domination by integrable random variable) There exists Y ∈ L 1(Ω,F ,P) with Y ≥ 0, such that
|X| ≤ Y for all X ∈ C .

Proof. (1) If |X| > K, then |X|1−p < K1−p because p > 1, and thus |X| < K1−p|X|p. Then we can compute that

E(|X|1|X|>K) < K1−pE(|X|p1|X|>K) ≤ K1−pE(|X|p). (162)

This is smaller than arbitrary ϵ > 0 as long as K is sufficiently large.

(2) We know that |X|1|X|>K ≤ |Y |1|X|>K ≤ |Y |1|Y |>K , and thus E(|X|1|X|>K) ≤ E(|Y |1|Y |>K). Moreover, since
Y is integrable in L 1, necessarily E(|Y |) < ∞, and thus this is smaller than arbitrary ϵ > 0 as long as K is
sufficient large. The proof is thus complete.

Lemma 4.51. Let X ∈ L 1(Ω,F ,P). Then the class {E(X | G ); G a sub-σ-algebra of F} is uniformly integrable.

Proof. Let Y = E(X | G ), where G is a sub-σ-algebra of F . By Jensen’s inequality (Theorem 3.21), we have that
|Y | = |E(X | G )| ≤ E(|X| | G ) almost surely. Therefore, for any K > 0, we have that

E(|Y |1|Y |≥K) ≤ E(E(|X| | G )1|Y |≥K) = E(E(|X|1|Y |≥K | G ))︸ ︷︷ ︸
{|Y | ≥ K} is G -measurable

= E(|X|1|Y |≥K)︸ ︷︷ ︸
tower property

. (163)

We want to show that the above is smaller than ϵ for some K > 0. To do this, by the absolute continuity lemma
(Lemma 4.44), we know that for all ϵ > 0, there exists δ > 0, such that if P(F ) < δ then E(|X|1F ) < ϵ, so it
suffices to show that P(|Y | ≥ K) < δ for some K > 0 and take F = {|Y | ≥ k}. Indeed, if we take K = E(|X|)/δ, by
Chebyshev’s inequality we can see that P(|Y | ≥ K) ≤ E(|Y |)/K ≤ E(|X|)/K = δ, and thus the proof is complete.

Lemma 4.52. Let X = {Xn; n ∈ N} be a martingale. The following statements are equivalent.

(1) {Xn; n ∈ N} is uniformly integrable.

(2) Xn converges almost surely and in L 1(Ω,F ,P) to a limit X∞.

(3) There exists Z ∈ L 1(Ω,F ,P), such that Xn = E(Z | Fn) for all n ∈ N.

Proof. • (1) ⇒ (2). Suppose that X is uniformly integrable, then it is bounded in L 1. By Doob’s forward
convergence theorem (Theorem 4.38), it converges almost surely to an almost surely finite random variable
X∞. We now use uniform integrability to deduce convergence in L 1. For all K > 0 and x ∈ R, let ϕK(x) :=
(x ∧K) ∨ (−K), then we have that

E(|Xn −X∞|) ≤ E(|ϕK(X∞)− ϕK(Xn)|) + E(|ϕK(X∞)−X∞|) + E(|ϕK(Xn)−Xn|)
≤ E(|ϕK(X∞)− ϕK(Xn)|) + E(|X∞|1|X∞|≥K) + E(|Xn|1|Xn|≥K). (164)

The reason is that |ϕK(x) − x| ≤ |x|1|x|≥K . Indeed, if |x| < K then ϕK(x) = x. If x ≥ K, then ϕK(x) = K
and thus |ϕK(x)− x| = x−K < x = |x|. If x ≤ −K, then ϕK(x) = −K and thus |ϕK(x)− x| = (−x)−K <
(−x) = |x|. Hence the aforementioned inequality holds. Now for any ϵ > 0, uniform integrability implies that
we can choose K large enough so that E(|X∞|1|X∞|≥K)+E(|Xn|1|Xn|≥K) < ϵ/2. Given this choice of K, since
ϕK(Xn) also converges to ϕK(X∞) almost surely and is bounded by K, by the dominated convergence theorem
(Theorem 3.8) we have that E(|ϕK(X∞)−ϕK(Xn)|) < ϵ/2 for sufficiently large n. Therefore, E(|Xn−X∞|) <
ϵ/2 + ϵ/2 = ϵ, and we can conclude that Xn → X∞ in L 1.
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• (2) ⇒ (3). Suppose that Xn → X∞ in L 1, and we will choose Z := X∞. Indeed, for all F ∈ Fn and m,n ∈ N
such that m ≥ n, we have that E(Xm1F ) = E(Xn1F ) since X is a martingale. Bringing m → ∞, then the L 1

convergence implies that |E((X∞ −Xn)1F )| ≤ E(|X∞ −Xn|1F ) ≤ E(|X∞ −Xn|) → 0 as n → ∞. Therefore,
E(X∞1F ) = E(Xn1F ), implying that Xn = E(X∞ | Fn) by definition of conditional expectation.

• (3) ⇒ (1). This is an immediate consequence of Lemma 4.51.

11/15 Lecture

Backwards Martingales

Backwards martingales are martingales whose time-set is Z−. More precisely, given a collection of sub-σ-algebras
{G−n; n ∈ N} such that

G−∞ :=
⋂
k∈N

G−k ⊆ . . . ⊆ G−(N+1) ⊆ G−N ⊆ . . . ⊆ G−1 ⊆ G0, (165)

a {Gn}n∈−N-adapted process {Mn; n ≤ 0} is a backwards martingale if E(Mn+1 | Gn) = Mn for all n ≤ 0. Backwards
martingales are automatically uniformly integrable by Lemma 4.51, since M0 ∈ L 1 and Mn = E(M0 | Gn) for all
n ≤ 0. Now we can adapt Doob’s upcrossing lemma (Theorem 4.35) to prove that, if Nm([a, b],M) is the number
of upcrossings of M from a to b between times −m and 0, we have that (b− a)E(Nm([a, b],M)) ≤ E((M0 − a)−) by
considering the (forward) supermartingale M̃ := {M−m+k; k ≤ 0 ≤ m}. As m → −∞, by the monotone convergence
theorem (Theorem 3.2) we can see that E(Nm([a, b],M)) ↑ E(N([a, b],M)), so (b−a)E(N([a, b],M)) ≤ E((M0−a)−).
Backwards martingales have this nice property that can directly lead to convergence, while martingales need extra
assumptions according to Doob’s forward convergence theorem (Theorem 4.38). This is because the upper bound in
the case of backward martingales is always (M0 − a)− that does not change with m. By Lemma 4.36 we can thus
conclude that Mn converges almost surely towards a G−∞-measurable random variable M−∞ as n → ∞. It is also
easy to further check this convergence in L 1 similar to Lemma 4.52. We conclude this part by stating the following
theorem.

Theorem 4.53. Let M be a backwards martingale, then Mn converges almost surely and in L 1 as n → −∞ to the
random variable M−∞ = E(M0 | G−∞).

Proof. The explicit proof would be ignored here and should follow the discussion above.

Strong Law of Large Numbers

Theorem 4.54 (Strong law of large numbers). Let {Xn}n∈N be a sequence of independent identically distributed
random variables, with E(|Xk|) < ∞ for all k ∈ N. Let µ be the common value of E(Xn) and write Sn :=

∑n
k=1 Xk.

Then n−1Sn → µ almost surely and in L 1 as n → ∞.

Proof. For all n ∈ N, define G−n := σ(Sn, Sn+1, Sn+2, . . .) = σ(Sn, Xn+1, Xn+2, . . .) and G∞ :=
⋂

k∈N G−k. Let us
first calculate E(X1 | G−n), where we would use the Rôle of independence (Theorem 4.4). Since σ(Xn+1, Xn+2, . . .)
is independent of σ(σ(X1), Sn) (which is a sub-σ-algebra of σ(X1, . . . , Xn)), we have that

E(X1 | G−n) = E(X1 | σ(Sn, σ(Xn+1, Xn+2, . . .)))︸ ︷︷ ︸
by definition of G−n

= E(X1 | Sn)︸ ︷︷ ︸
Rôle’s

. (166)

Moreover, by symmetry (i.e., Xn’s are independent and identically distributed), we have that E(Xk | Sn) are all
equal for 0 ≤ k ≤ n. Since clearly E (

∑n
k=1 Xk | Sn) = Sn, we can write that E(Xk | Sn) = n−1Sn for all 0 ≤ k ≤ n.

Hence by the above formula, E(Xk | G−n) = n−1Sn for all 0 ≤ k ≤ n as well. Therefore, for all n ∈ N, we have

E(Sn | G−(n+1)) = E(Sn+1 | G−(n+1))− E(Xn+1 | G−(n+1)) = Sn+1 −
Sn+1

n+ 1
=

nSn+1

n+ 1
. (167)

Hence, letting Mn := n−1S−n, n ≤ 0, we can see that {Mn; n ≤ 0} is a backwards martingale with respect to its
natural filtration {G−n; n ≤ 0}, because E(n−1Sn | G−(n+1)) = (n + 1)−1Sn+1. Now by the convergencec property
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of backwards martingales (Theorem 4.53), Mn converges almost surely and in L 1 to the random variable M−∞ =
E(M0 | G−∞) as n → −∞. In other words, n−1Sn → E(−M0 | G−∞) almost surely and in L 1 as n → ∞. Now we
need to show that this limit is almost surely constant. Indeed, we observe that

lim inf
n→∞

n−1Sn = lim inf
n→∞

(
Sm

n
+

Xm+1 + . . .+Xn

n

)
= lim inf

n→∞

Xm+1 + . . .+Xn

n
, (168)

so that lim inf n−1Sn is Tm-measurable where Tm := σ(Xm+1, Xm+2, . . .). By arbitrariness of m ∈ N, lim inf n−1Sn

is moreover T -measurable, where T =
⋂

m∈N Tm is the tail σ-algebra. By Kolmogorov’s 0-1 law (Theorem 2.17), we
thus have that lim inf n−1Sn is almost surely constant. Similarly, we can show that lim supn−1Sn is almost surely
constant, i.e., n−1Sn → E(−M0 | G−∞) which is almost surely constant, so it must be equal to its mean value

E
(
lim

n→∞
n−1Sn

)
= E

(
lim

n→∞
E(X1 | G−n)

)
︸ ︷︷ ︸
E(Xk|Sn)=n−1Sn, ∀0≤k≤n

= lim
n→∞

E(E(X1 | G−n))︸ ︷︷ ︸
L 1 convergence

= lim
n→∞

E(X1)︸ ︷︷ ︸
tower property

= E(X1) = µ. (169)

The proof is thus complete.

Doob’s Submartingale Inequality and Doob’s L p Inequality

Theorem 4.55 (Doob’s submartingale inequality). Let (Ω,F , {Fn}n∈N ,P) be a filtered space and X = {Xn}n∈N
be a submartingale. For all N ∈ N and x > 0, we have that

P
(

max
0≤i≤N

Xk ≥ x

)
≤

E(X+
N1{T≤N})

x
≤

E(X+
N )

x
, (170)

where T := inf {m ∈ N; Xm ≥ x}.

Proof. Clearly X+
n ∈ L 1, and {X+

n }n∈N is a submartingale because E(X+
n+1 | Fn) ≥ (E(Xn+1 | Fn))

+ = X+
n by

Jensen’s inequality (Theorem 3.21). Now we note that

E(X+
N∧T1{T≤N}) =

N∑
k=0

E(X+
k 1{T=k}) ≤

N∑
k=0

E(E(X+
N | Fk)1{T=k}) =

N∑
k=0

E(X+
N1{T=k}) = E(X+

N1{T≤N}). (171)

Note that by definition of T , we have P(T ≤ N) = P(max0≤k≤n Xk ≥ x), so that

xP
(

max
0≤i≤N

Xk ≥ x

)
= xP(T ≤ N) ≤ E(X+

N∧T1{T≤N})︸ ︷︷ ︸
XN∧T≤x

≤ E(X+
N1{T≤N}), (172)

which is exactly as required by the first inequality in the conclusion. The second inequality is trivial since X+
N is

always non-negative. The proof is thus complete.

11/20 Lecture

Theorem 4.56 (Doob’s L p inequality). Let (Ω,F , {Fn}n∈N ,P) be a filtered space and X = {Xn}n∈N be a non-
negative submartingale. Fix N ∈ N, then for all conjugate exponents p, q > 1, we have(

E
(

max
0≤i≤N

Xp
i

))1/p

≤ q (E(Xp
N ))

1/p
. (173)

Proof. Let Y := supi≤N Xi, and note that

E(Y p) =

∫
R
|Y |pdP = p

∫
R
tp−1P(Y ≥ t)dt︸ ︷︷ ︸

Layer cake representation

. (174)
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For any t > 0, define Tt := inf {m ∈ N; Xm ≥ t}, so by Doob’s submartingale inequality (Theorem 4.55), we have
that P(Y ≥ t) ≤ E(XN1{Tt≤N})/t (we ignore the plus sign in X+

N because X is non-negative). Now we can see that

E(Y p) ≤ p

∫
R
tp−2E(XN1{Tt≤N})dt = pE

(
XN

∫
R
tp−2

1{Tt≤N}dt

)
︸ ︷︷ ︸

Fubini’s theorem

= pE
(
XN

∫
R
tp−2

1{Y≥t}dt

)
︸ ︷︷ ︸

Tt≤N ⇐⇒ Y≥t

= pE

(
XN

∫ Y

0

tp−2dt

)
= pE

(
XN

Y p−1

p− 1

)
=

p

p− 1
E(XNY p−1). (175)

Since p and q are conjugate exponents, by Hölder’s inequality (Theorem 3.24) we can deduce that

E(Y p) ≤ p

p− 1
E(XNY p−1) = qE(XNY p−1) ≤ q (E(Xp

N ))
1/p
(
E(Y (p−1)q)

)1/q
= q (E(Xp

N ))
1/p

(E(Y p))
1/q

, (176)

so by moving some terms in the inequality above we can conclude that(
E
(

max
0≤i≤N

Xp
i

))1/p

=

(
E
((

max
0≤i≤N

Xi

)p))1/p

= (E(Y p))
1/p

= (E(Y p))
1−1/q ≤ q (E(Xp

N ))
1/p

, (177)

and thus the proof is complete.

5 Characteristic Function

5.1 Introduction and Elementary Properties

Definition 5.1. Given a random variable X, the characteristic function ϕ : R → C of X is defined by

ϕ(θ) = ϕX(θ) = E(exp(iθX)) =

∫
exp(iθx)µ(dx) = E(cos θX) + iE(sin θX). (178)

Theorem 5.2 (Riemann-Stieltjes integral). Let F = FX be a distribution function of X. Define the integral∫ ∞

−∞
g(x)dF (x) := lim

N→∞

N∑
j=0

g(xj)
(
F (aNN+1)− F (aNj )

)
, (179)

where −∞ < aN0 < . . . < aNN < aNN+1 < ∞ is a partition of the interval [aN0 , aNN+1] with aN0 → −∞, aNN+1 → ∞, and
|aNj+1 − aNj | → 0 uniformly in j as n → ∞. Then∫ ∞

−∞
g(x)dF (x) =

∫
R
g(x)µ(dx), (180)

where µ is the law of X.

Proof. The proof is left as an exercise and can be done using the Standard Machine. See also Rudin, Principles of
Mathematical Analysis, pp. 104–114.

Theorem 5.3. The characteristic function ϕ(θ) of any probability distribution is a uniformly continuous function
of θ, such that for any ξ1, . . . , ξn ∈ Cn and θ1, . . . , θn ∈ Rn, it satisfies that

n∑
i=1

n∑
j=1

ϕ(θi − θj)ξiξj ≥ 0. (181)

Proof. Note that

n∑
i=1

n∑
j=1

ϕ(θi − θj)ξiξj =

n∑
i=1

n∑
j=1

ξiξj

∫
exp(i(θi − θj)x)µ(dx) =

∫ ∣∣∣∣∣∣
n∑

j=1

ξj exp(iθjx)

∣∣∣∣∣∣
2

µ(dx) ≥ 0. (182)
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Therefore, it suffices to prove that ϕ is uniformly continuous. Indeed, we have that

|ϕ(θ)− ϕ(θ̃)| =
∣∣∣∣∫ (exp(iθx)− exp(iθ̃x)

)
µ(dx)

∣∣∣∣ ≤ ∫
| exp(iθ̃x)︸ ︷︷ ︸

≤1

|
∣∣∣exp(i(θ − θ̃)x)− 1

∣∣∣︸ ︷︷ ︸
≤2, →0

µ(dx) → 0, (183)

as |θ − θ̃| → 0, by the dominated convergence theorem (Theorem 3.8). The proof is thus complete.

Remark 5.4. Let ϕ = ϕX for a random variable X, then the following properties hold.

(1) ϕ(0) = 1.

(2) Triangle inequality: |ϕ(θ)| ≤ 1 for all θ ∈ R.

(3) Dominated convergence theorem: θ 7→ ϕ(θ) is continuous on R.

(4) ϕ−X(θ) = ϕX(θ) for all θ ∈ R.

(5) ϕaX+b(θ) = exp(ibθ)ϕX(aθ) for all a, b ∈ R and θ ∈ R.

(6) If E(|X|n) < ∞ for some n ∈ N, then ϕ is n times differentiable and ϕ(n)(θ) = E((iX)n exp(iθX)). In particular,
we have that ϕ(n)(0) = inE(Xn).

Lemma 5.5. Let X and Y be independent random variables. Then ϕX+Y (θ) = ϕX(θ)ϕY (θ) for all θ ∈ R.

Proof. For fixed independent random variables X and Y , we have that

E(exp(iθ(X + Y ))) = E(exp(iθX) exp(iθY )) = E(exp(iθX))E(exp(iθY )), (184)

so we can conclude that ϕX+Y (θ) = ϕX(θ)ϕY (θ) as desired.

5.2 Lévy Inversion Formula

A natural question is whether we can retrieve the distribution function F (x) = µ((−∞, x]) from ϕ. The answer is
positive and will be shown right afterwards. However, a difficulty arises from the presense of atoms a ∈ R, such
that µ({a}) = F (a)−F (a−) ̸= 0. Note that there are only countably many (since there are at most n of size ≥ 1/n).

Theorem 5.6 (Lévy inversion formula). Let ϕ be the characteristic function of a random variable X with law µ
and distribution function F . Then for a < b, we have that

lim
T→∞

1

2π

∫ T

−T

exp(−iθa)− exp(−iθb)

iθ
ϕ(θ)dθ =

µ({a})
2

+ µ((a, b)) +
µ({b})

2
=

F (b) + F (b−)

2
− F (a) + F (a−)

2
.

(185)

Proof. Let a, b ∈ R with a < b and let T > 0. Define

F (a, b, T ) =
1

2π

∫ T

−T

exp(−iθa)− exp(−iθb)

iθ
ϕ(θ)dθ. (186)

By Fubini’s theorem, we can compute that

F (a, b, T ) =
1

2π

∫ T

−T

exp(−iθa)− exp(−iθb)

iθ

(∫
R
exp(iθx)µ(dx)

)
dθ

=
1

2π

∫
R

(∫ T

−T

exp(iθ(x− a))− exp(iθ(x− b))

iθ
dθ

)
µ(dx)

=
1

2π

∫
R

(∫ T

−T

(χ(θ, x− a)− χ(θ, x− b))dθ

)
µ(dx), (187)
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where χ is the function defined by χ(θ, x) = exp(iθx)/(iθ). Note that for all y < z, we have that

|χ(θ, y)− χ(θ, z)| ≤
∫ z

y

∣∣∣∣ ∂∂sχ(θ, s)
∣∣∣∣ ds = ∫ z

y

| exp(iθs)|︸ ︷︷ ︸
≤1

ds ≤ |y − z|, (188)

so the integrand of F (a, b, T ) as expressed above is upper bounded by

1

2π

∫ T

−T

(χ(θ, x− a)− χ(θ, x− b))dθ ≤ 1

2π

∫ T

−T

|a− b|dθ =
|a− b|T

π
, (189)

meaning that F (a, b, T ) as expressed above is indeed integrable. On the other hand, for all y ∈ R, we know that
ϕ 7→ Re(χ(θ, y)) and ϕ 7→ Im(χ(θ, y)) are respectively even and odd with respect to θ, so that∫ T

−T

Im(χ(θ, y))dθ = 0, so the imaginary part vanishes, (190)∫ T

−T

Re(χ(θ, y))dθ = 2

∫ T

0

sin(θy)

θ
dθ = 2sgn(y)

∫ T |y|

0

sin(θ)

θ
dθ = 2S(Ty), (191)

where sgn(x) = 0,±1 depending on the sign of x, and S is defined as

S(u) =

∫ u

0

sin(x)

x
dx = sgn(u)

∫ |u|

0

sin(x)

x
dx, u ∈ R. (192)

Note that
∫∞
0

sin(x)/xdx = π/2 (which follows from a very beautiful mathematical proof but will be ignored here),
so that as T → ∞, we can see that

S(T (x− a))− S(T (x− b)) = sgn(x− a)

∫ T |x−a|

0

sin(x)

x
dx− sgn(x− b)

∫ T |x−b|

0

sin(x)

x
dx

→ π

2
(sgn(x− a)− sgn(x− b)) =


0, if x ∈ (−∞, a) ∪ (b,∞),

π/2, if x = a or x = b,

π, if x ∈ (a, b).

(193)

Therefore, by the dominated convergence theorem (Theorem 3.8), we can see as T → ∞ that

F (a, b, T ) =
1

π

∫
R
(S(T (x− a))− S(T (x− b)))µ(dx) → µ({a, b})

2
+ µ((a, b)) =

µ({a})
2

+ µ((a, b)) +
µ({b})

2
, (194)

because only on {a, b} does the integrand take π/2 and only on (a, b) does the integrand take π. Now we can conclude
the last equality in the theorem by observing that

µ({a})
2

+ µ((a, b)) +
µ({b})

2
=

F (a)− F (a−)

2
+ (F (b−)− F (a)) +

F (b)− F (b−)

2
=

F (b) + F (b−)

2
− F (a) + F (a−)

2
.

(195)

The proof is thus complete.

Remark 5.7. Taking the limit when a → ∞, note that F (a), F (a−) → 0, we can retrieve F (b) from ϕ at any b ∈ R
which is not an atom (i.e., at which F (b) = F (b−)), enabling us to retrieve F from ϕ. In particular, we can deduce
that if F and G are distribution functions such that ϕF = ϕG, then necessarily F = G.

Corollary 5.8. Under the assumptions of the Lévy inversion formula (Theorem 5.6), and assuming furthermore
that

∫
R |ϕ(θ)|dθ < ∞, then X has continuous probability density function f , with

f(x) =
1

2π

∫
R
exp(−iθx)ϕ(θ)dθ. (196)
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Proof. Let a < b be such that F is continuous at a and b, then by Lévy inversion formula (Theorem 5.6), we have

F (b)− F (a) =
1

2π

∫ ∞

−∞

exp(−iθa)− exp(−iθb)

iθ
ϕ(θ)dθ =: G(a, b), (197)

where we can directly write
∫∞
−∞ instead of limT→∞

∫ T

−T
because we can bound the integrand from above by∣∣∣∣exp(−iθa)− exp(−iθb)

iθ
ϕ(θ)

∣∣∣∣ = ∣∣∣∣∫ a

b

exp(−iθ)dθ

∣∣∣∣ |ϕ(θ)| ≤ |a− b||ϕ(θ)| = (b− a)|ϕ(θ)|. (198)

By the dominated convergence theorem (Theorem 3.8), we can see that G(a, bn) → G(a, b) for any sequence bn → b,
so that G(a, b) is continuous in b (and similarly in a), and thus F (b) − F (a) is continuous in both a and b as well.
Hence F is continuous. Now for all a, b ∈ R with a < b, we have that

F (b)− F (a)

b− a
=

1

2π

∫ ∞

−∞

exp(−iθa)− exp(−iθb)

iθ(b− a)
ϕ(θ)dθ, (199)

and again we have the upper bound∣∣∣∣exp(−iθa)− exp(−iθb)

iθ(b− a)
ϕ(θ)

∣∣∣∣ = ∣∣∣∣ 1

b− a

∫ a

b

exp(−iθ)dθ

∣∣∣∣ |ϕ(θ)| ≤ |a− b|
|b− a|

|ϕ(θ)| = |ϕ(θ)|, (200)

so that the dominated convergence theorem (Theorem 3.8) implies that

lim
bn→a

F (bn)− F (a)

bn − a
= lim

bn→a

1

2π

∫ ∞

−∞

exp(−iθa)− exp(−iθbn)

iθ(bn − a)
ϕ(θ)dθ

=
1

2π

∫ ∞

−∞

(
lim
bn→a

exp(−iθa)− exp(−iθbn)

iθ(bn − a)

)
ϕ(θ)dθ

=
1

2π

∫ ∞

−∞

(
lim
bn→a

iθ exp(−iθbn)

iθ

)
︸ ︷︷ ︸

L’Hospital

ϕ(θ)dθ =
1

2π

∫ ∞

−∞
exp(−iθa)ϕ(θ)dθ. (201)

Therefore, F is differentiable at a with the derivative as we computed above, and is itself continuous by the dominated
convergence theorem (Theorem 3.8). This is exactly the probability density function f of X, so the proof is complete.

11/22 Lecture

5.3 Weak Convergence

Definition 5.9. Let Cb(R) be the space of bounded continuous functions on R and Prob(R) be the space of probability
measures on R. We say that a sequence of probability measures µn converges weakly to µ, denoted by µn

w−→ µ,
if and only if µn(h) → µ(h) for all h ∈ Cb(R).

Remark 5.10. Since {(−∞, x]; x ∈ R} is a π-system, we know that there is a bijection between Prob(R) and the
distribution functions F through the correspondence F (x) = µ((−∞, x]) = FI(x) where I is the identity mapping.

Therefore, we write Fn
w−→ F if and only if µn

w−→ µ, where Fn(x) = µn((−∞, x]) and F (x) = µ((−∞, x]).

Definition 5.11. Given a random variable X, we denote by L (X) the law of X, i.e., L (X) = P ◦X−1. We say
that a sequence of random variables {Xn}n∈N converges weakly (or in law, or in distribution) to X, and write

Xn
L−→ X or Xn

w−→ X, if and only if L (Xn)
w−→ L (X).

Lemma 5.12. If Xn → X in probability, then L (Xn)
w−→ L (X).

41



Proof. Take arbitrary h ∈ Cb(R), and let M = supx∈R |h(x)|. Then for any K > 0, we have that

E(|h(Xn)− h(X)|) = E(|h(Xn)− h(X)|1{|Xn−X|≤δ}∩{|X|≤K}) + E(|h(Xn)− h(X)|1{|Xn−X|>δ}∪{|X|>K})

≤ E(|h(Xn)− h(X)|1{|Xn−X|≤δ}∩{|X|≤K})︸ ︷︷ ︸
I

+2M(P(|Xn −X| > δ)︸ ︷︷ ︸
II

+P(|X| > K)︸ ︷︷ ︸
III

). (202)

Firstly, we have that P(|X| ≥ K) ≤ E(|X|)/K → 0 as K → ∞ by Chebyshev’s inequality (Theorem 3.18). Secondly,
h is uniformly continuous on [−K−1,K+1], and thus for any ϵ > 0, there exists δ > 0, such that |x−y| < δ implies
that |h(x)− h(y)| < ϵ. Fix arbitrary ϵ > 0 and choose this δ, so that

E(|h(Xn)− h(X)|1{|Xn−X|≤δ}∩{|X|≤K}) < ϵ. (203)

Now assuming that Xn → X in probability, we have that P(|Xn −X| > δ) → 0 as n → ∞. To conclude, we have
that I is at smaller that arbitrary ϵ > 0, II converges to 0 as K → ∞, and III converges to 0 as n → ∞, so that
E(|h(Xn)− h(X)|) → 0 as n → ∞. Therefore, L (Xn)

w−→ L (X).

Remark 5.13. By Theorem 2.20, the above lemma implies that if Xn → X almost surely, then L (Xn)
w−→ L (X).

Remark 5.14. Xn
w−→ X does not imply that FXn

(x) → FX(x) for all x ∈ R. For instance, Xn = 1/n converges
weakly to X = 0, but 0 = FXn

(0) ̸→ FX(0) = 1.

Lemma 5.15. Let {Fn}n∈N be a sequence of distribution functions on R and F be a distribution function on R.
Then fn

w−→ f if and only if Fn(x) → F (x) as n → ∞ for all x ∈ R at which F is continuous.

Proof. To be done...

Theorem 5.16. Suppose that {Fn}n∈N is a sequence of distribution functions in R, and that F is a distribution
function on R such that Fn(x) → F (x) as n → ∞ for all x ∈ R at which F is continuous. Then there exists a
probability triple (Ω,F ,P) carrying a sequence {Xn}n∈N of random variables and a random variable X, such that
Fn = FXn

and F = FX , and Xn → X almost surely.

Proof. To be done...

Lemma 5.17 (Helly-Bray). Let {Fn}n∈N be a sequence of distribution functions on R, then there exists a subsequence
{ni}i∈N and a right-continuous non-decreasing function F on R with 0 ≤ F ≤ 1, such that Fni(x) → F (x) as i → ∞
for all x ∈ R at which F is continuous.

Proof. To be done...

Remark 5.18. Note that F is not necessarily a distribution function in the lemma above, since F (x) is not required
to converge to 0 and 1 when x → −∞ and x → ∞, respectively. Therefore, we cannot write the convergence in the
lemma above as a weak convergence in Prob(R), but rather in Prob(R) where R = [−∞,∞].

Definition 5.19. A sequence {Fn}n∈N of distribution functions is called tight if, for all ϵ > 0, there exists K > 0,
such that for all n ∈ N, we have that

µn([−K,K]) = Fn(K)− Fn(−K−) > 1− ϵ. (204)

Lemma 5.20. Let {Fn}n∈N be a sequence of distribution functions.

(1) If Fn
w−→ F for some distribution function F , then {Fn}n∈N is tight.

(2) If {Fn}n∈N is tight, then there exists a subsequence {ni}i∈N, such that Fni

w−→ F as i → ∞ for some distribution
function F .

Proof. To be done...

5.4 Lévy’s Convergence Theorem
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Theorem 5.21 (Lévy’s convergence theorem). Let {Fn}n∈N be a sequecence of distribution functions, with corre-
sponding characteristic functions {ϕn}n∈N. Assume that g(θ) = limn→∞ ϕn(θ) exists for all θ ∈ R and that g is

continuous at 0. Then g = ϕF for some distribution function F , and Fn
w−→ F .

Proof. To be done...

5.5 Proof of the Central Limit Theorem (CLT)

Theorem 5.22 (Central limit theorem). Let X1, . . . , Xn be independent identically distributed random variables
with mean 0 and variance 1. Define Sn :=

∑n
k=1 Xk, then

Sn√
n

L−→ N (0, 1), (205)

where N (0, 1) denotes the normal distribution centered 0 of variance 1.

Proof. To be done...
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A Recitations

9/1 Recitation

Example A.1. Let Ω be a non-empty set. If Fi is a σ-algebra for each i ∈ I, where I is a non-empty set of indices.
Show that F =

⋂
i∈I Fi is a σ-algebra.

Proof. We have that ∅,Ω ∈ Fi, ∀i ∈ I, thus ∅,Ω ∈ F . Take an arbitrary A ∈ F , we have that A ∈ Fi, ∀i ∈ I,
and thus AC ∈ Fi, ∀i ∈ I, so that AC ∈ F . Now take arbitrary {An}n≥1 ⊆ F , then An ∈ Fi, ∀i ∈ I, ∀n ≥ 1.
Therefore,

⋃
n≥1 An ∈ Fi, ∀i ∈ I. This means that

⋃
n≥1 An ∈ F , and the proof is complete.

Example A.2. Let Ω be a non-empty set.

(1) Show that if F1 ⊂ F2 ⊂ . . . are σ-algebras, then F =
⋃

n≥1 Fn is an algebra.

(2) Show that F is not a σ-algebra.

Proof. (1) We have that ∅,Ω ∈ Fn, ∀n. Therefore, ∅,Ω ∈ F . Take an arbitrary A ∈
⋃

n≥1 Fn, then there exists

n0 ≥ 1, such that A ∈ Fn0 . This means that AC ∈ Fn0 , and thus AC ∈ F . Now take arbitrary A,B ∈ F ,
then there exists n1, n2 ≥ 1, such that A ∈ Fn1

and B ∈ Fn2
. We have that A ∪ B ∈ Fmax(n1,n2), so that

A ∪B ∈ F . This completes the proof.

(2) Take a counterexample Fn = P({1, . . . , n}), the set of all subsets of {1, . . . , n}. We can see that F is then
the set of subsets of N with finite cardinality. Now consider An = {n} ∈ Fn, n ≥ 1, then the countable union⋃

n≥1 An = N /∈ F . Therefore F is not a σ-algebra in this case.

Example A.3. Let µ be a finitely additive measure in an algebra S . Consider (An)n≥1 disjoint sets in S such
that A =

⋃
n≥1 An ∈ S . Show that

µ(A) ≥
∞∑

n=1

µ(An). (206)

Proof. Note that S is not necessarily a σ-algebra. Decompose

A =

∞⋃
n=1

An =

(
k⋃

n=1

An

)
︸ ︷︷ ︸

∈S

∪

( ∞⋃
n=k+1

An

)
︸ ︷︷ ︸

∈S

. (207)

Therefore, we can see that

µ(A) = µ

(
k⋃

n=1

An

)
+ µ

( ∞⋃
n=k+1

An

)
︸ ︷︷ ︸

≥0

≥ µ

(
k⋃

n=1

An

)
. (208)

If µ(A) = ∞, we are done, so we assume that µ(A) < ∞. Taking k → ∞, we can conclude that

µ(A) ≥ µ

( ∞⋃
n=1

An

)
. (209)

Example A.4. Consider a probability space (Ω,F ,P) and a family of measurable sets {An}n≥1 such that P(An) = 1.
Show that

P

( ∞⋂
n=1

An

)
= 1. (210)
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Proof. We can see that

P

( ∞⋃
n=1

AC
n

)
≤

∞∑
n=1

P(AC
n ) =

∞∑
n=1

0 = 0, (211)

so the proof is complete by taking the complement.

Example A.5. For a sequence of events (An)n≥1 with limn→∞ P(An) = 1 and 0 < c < 1, show that there exists a
subsequence (nk)k≥1 with nk → ∞, such that

P

( ∞⋂
k=1

Ank

)
> c. (212)

Proof. Fix ϵ0 = 1− c > 0, and take ϵi = ϵ0/2
i, ∀i ≥ 1. From the given limit, we can see that ∀ϵ > 0, ∃n0 ≥ 1, such

that ∀n ≥ n0, we have that |1− P(An)| < ϵ. Therefore, we can take nk such that |1− P(Ank
)| < ϵk. Then, we have

that

P

( ∞⋃
k=1

AC
nk

)
≤

∞∑
k=1

P(AC
nk
) <

∞∑
k=1

ϵ0
2k

= ϵ0 = 1− c. (213)

Then we can conclude that

P

( ∞⋃
k=1

Ank

)
= 1− P

( ∞⋃
k=1

AC
nk

)
> c (214)

so the proof is complete.

9/8 Recitation

Example A.6. Let Ω = R and F be a set of all A ∈ Ω such that either A or AC is countable. Define

P(A) =

{
0, if A is countable,

1, if AC is countable.
(215)

Show that (Ω,F ,P) forms a probability space.

Proof. We first need to show that F is a σ-algebra on Ω. Clearly, ∅ ∈ Ω since ∅ is countable. Take arbitrary
A,An ∈ F , then AC ∈ F because if A is countable then AC is countable, and otherwise (AC)C = A is countable.
Moreover,

⋃
n∈N An ∈ F because if all An’s are countable then their countable union is still countable, and otherwise

we can see that
(⋃

n∈N An

)C
=
⋂

n∈N(An)
C is countable since some (An)

C would then be countable. Up till now
we have shown that F is a σ-algebra on Ω. Now we check that P is a countably additive measure. Take arbitrary
An ∈ F disjoint, n ∈ N, then there are two cases.

• If all An’s are countable, then
⋃

n∈N An is countable, so 0 = P
(⋃

n∈N An

)
=
∑

n∈N P(An) = 0.

• If there exists An0
uncountable, then

⋃
n∈N An is uncountable. Since the other An’s are disjoint with An0

,
each of them belongs to AC

n0
, but note that AC

n0
is countable. Therefore, all other An’s must be countable, so

1 = P
(⋃

n∈N An

)
=
∑

n ̸=n0
P(An) + P(An0) = 1.

This means that P is countably additive. Furthermore, ΩC = ∅ is countable, so that P(Ω) = 1, meaning that P is a
probability measure, so the proof is complete.

Example A.7. Let Ω = {1, 2, 3, 4}, F = P(Ω), and P the probability measure such that

P({1}) = P({2}) = P({3}) = P({4}). (216)

(1) Show that the two classes of events C1 = {{1, 2}} and C2 = {{2, 3} , {2, 4}} are independent by σ(C1) and
σ(C2) are not.
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(2) We have learned a theorem that stablish an extra condition in which we can conclude σ(C1) and σ(C2) are
independent. Identify the condition that is missing in this example C1 and C2.

Proof. Computing the probabilities of the intersections, we have that

P({1, 2} ∩ {2, 3}) = P({2}) = 1

4
=

1

2
· 1
2
= P({1, 2}) · P({2, 3}), (217)

P({1, 2} ∩ {2, 4}) = P({2}) = 1

4
=

1

2
· 1
2
= P({1, 2}) · P({2, 4}). (218)

Therefore, C1 and C2 are independent. Now note that σ(C1) = {∅, {1, 2} , {3, 4} ,Ω}, and σ(C2) = P(Ω). Then, we
can see that

P({1, 2}︸ ︷︷ ︸
∈σ(C1)

∩ {1, 2}︸ ︷︷ ︸
∈σ(C2)

) = P({1, 2}) = 1

2
̸= 1

2
· 1
2
= P({1, 2}︸ ︷︷ ︸

∈σ(C1)

) · P({1, 2}︸ ︷︷ ︸
∈σ(C2)

), (219)

which means that σ(C1) and σ(C2) are not independent. To answer the second part of this question, this is because
C2 is not a π-system (clearly {2, 3} ∩ {2, 4} = {2} /∈ C2).

Example A.8. Let (Ω,F ,P) be a probability space and X be a measurable function. Show that µ defined in (R,B)
given by µ(B) = P(X−1(B)) is a probability measure.

Proof. To see that µ is a probability measure, we need to check that it is countably additive. Take arbitrary Bn ∈ B
disjoint, n ∈ N, then we have that

µ

(⋃
n∈N

Bn

)
= P

(
X−1

(⋃
n∈N

Bn

))
= P

(⋃
n∈N

X−1(Bn)

)
=
∑
n∈N

P(X−1(Bn)) =
∑
n∈N

µ(Bn), (220)

so µ is indeed countably additive. Clearly µ(B) = P(X−1(B)) = P(Ω) = 1, so µ is a probability measure and the
proof is complete.

Remark A.9. In the above proof, we have used that f−1(A ∪B) = f−1(A) ∪ f−1(B). This is indeed true.

⊆ Take an arbitrary x ∈ f−1(A ∪ B), then f(x) ∈ A ∪ B. This means that either f(x) ∈ A or f(x) ∈ B. Then
either x ∈ f−1(A) or x ∈ f−1(B), implying that x ∈ f−1(A) ∪ f−1(B).

⊇ Take an arbitrary x ∈ f−1(A) ∪ f−1(B), then either x ∈ f−1(A) or x ∈ f−1(B). This means that either
f(x) ∈ A or f(x) ∈ B, implying that f(x) ∈ A ∪B. Thus x ∈ f−1(A ∪B).

Example A.10. Prove that, if {An}n≥1 are independent events, then

µ

( ∞⋂
n=1

An

)
=

∞∏
n=1

µ(An). (221)

Proof. Let Bk =
⋂k

n=1 An, then by independence, we have that

P(Bk) = P

(
k⋂

n=1

An

)
=

k∏
n=1

P(An). (222)

Note that Bn is a decreasing event, such that Bn ↓
⋂∞

n=1 An. By monotone convergence, we thus have that

lim
k→∞

P(Bk) = P

( ∞⋂
n=1

An

)
. (223)

Therefore, we can conclude that

P

( ∞⋂
n=1

An

)
= lim

k→∞

k∏
n=1

P(An) =

∞∏
n=1

P(An), (224)

and the proof is complete.
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Example A.11. Prove that, if {An}n≥1 are independent events, then

µ

( ∞⋃
n=1

An

)
= 1−

∞∏
n=1

(1− µ(An)). (225)

Proof. We know that if {An}n≥1 are independent, then
{
AC

n

}
n≥1

are independent as well. Therefore, using the

conclusion of Example A.10, we can deduce that

µ

( ∞⋃
n=1

An

)
= 1− µ

( ∞⋂
n=1

AC
n

)
= 1−

∞∏
n=1

µ(AC
n ) = 1−

∞∏
n=1

(1− µ(An)), (226)

so the proof is complete.

Example A.12. Prove that

lim sup
n→∞

AC
n =

(
lim inf
n→∞

An

)C
, lim sup

n→∞

(
lim inf
k→∞

(An ∩AC
k )

)
= ∅. (227)

Proof. By definition, we have that

(
lim inf
n→∞

An

)C
=

⋃
n≥1

⋂
m≥n

Am

C

=
⋂
n≥1

⋃
m≥n

AC
m = lim sup

n→∞
AC

n , (228)

lim sup
n→∞

(
lim inf
k→∞

(An ∩AC
k )

)
= lim sup

n→∞

⋃
k≥1

⋂
p≥k

(An ∩AC
p )

 = lim sup
n→∞

An ∩

⋃
k≥1

⋂
p≥k

AC
p


= lim sup

n→∞

(
An ∩ lim inf

k→∞
AC

k

)
=

(
lim sup
n→∞

An

)
∩
(
lim inf
k→∞

AC
k

)
= ∅, (229)

so the proof is complete.

9/15 Recitation

Example A.13. In a sequence of independent Bernoulli random variables {Xn}n≥1 with

P(Xn = 1) = p = 1− P(Xn = 0). (230)

Let An be the event that a run of n consecutive 1’s occur between the (2n − 1)th and 2n+1th trials. If p ≥ 1/2, show
that there is probability 1 that infinitely many An occurs.

Proof. Let Bn be the event that there exists a block of all 1’s, where we split the interval [2n − 1, 2n+1] into disjoint
blocks of length n (from left to right). Then we have that

P(An) ≥ P(Bn) = P

⌊2n/n⌋⋃
k=1

Ck

 =

⌊2n/n⌋∑
k=1

pn =

⌊
2n

n

⌋
pn ≥ 2n

2n
pn ≥ 1

2n
. (231)

This implies that
∑∞

n=1 P(An) = ∞. Furthermore, {An}n≥1 are clearly independent, because the desired intervals,
with different values of n, are disjoint. By the second Borel-Cantelli lemma (Lemma 1.37), we can conclude that An

occurs infinitely often, which completes the proof.

Remark A.14. In problems that require the use of the second Borel-Cantelli lemma, it is common to use the
strategy of “making blocks” as in the example above.

Example A.15. Consider E = {0, 1} with P(X = 1) = p and 0 < p < 1. Let Ω = EN with Borel σ-algebra. For a
fixed finite sequence ω = {ωk}tk=1 with ωk ∈ {0, 1} and t < ∞, we define

An =
{
{Xk}k≥1 ∈ Ω; Xn = ω1, . . . , Xn+t−1 = ωt

}
. (232)

Show that P(An i.o.) = 1.
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Proof. Let Bm =
{
{Xk}k≥1 ∈ Ω; X(m−1)t+1 = ω1, . . . , Xmt = ωt

}
. Note that Bm are independent, because the

blocks are non-intersecting. Moreover, we have that

∞∑
m=1

P(Bm) =

∞∑
m=1

P(B1) = ∞. (233)

By the second Borel-Cantelli lemma (Lemma 1.37), we can see that Bn occurs infinitely often. Now since {Bn i.o.} ⊆
{An i.o.}m we can conclude that An occurs infinitely often as well.

Example A.16. Let 0 < α ≤ 1, µ be a probability measure, and {An}n≥1 be a sequence of events in a σ-algebra

F . If µ(An i.o.) ≥ α and B ∈ F such that
∑∞

n=1 µ(An ∩B) < ∞, prove that µ(B) ≤ 1− α.

Proof. By the first Borel-Cantelli lemma (Lemma 1.36), we can see that µ(lim supAn ∩B) = 0. This means that

0 = µ

⋂
n∈N

⋃
m≥n

(An ∩B)

 = µ

B ∩

⋂
n∈N

⋃
m≥n

An

 = µ(B) + µ

⋂
n∈N

⋃
m≥n

An


︸ ︷︷ ︸

≥α

−µ

B ∪

⋂
n∈N

⋃
m≥n

An


︸ ︷︷ ︸

≤1

≥ µ(B) + α− 1. (234)

This necessarily implies that µ(B) ≤ 1− α, so the proof is complete.

Example A.17. Assume that {An}n≥1 are independent with P(An) ≥ 1 for all n.

(1) Show that

P

( ∞⋃
n=1

An

)
= 1−

∞∏
n=1

(1− P(An)). (235)

(2) Show that if
∑∞

n=1 P(An) = ∞, then

∞∏
n=1

(1− P(An)) = 0. (236)

(3) Show that if P (
⋃∞

n=1 An) < 1, then P(An i.o.) = 0.

Proof. (1) See Example A.11.

(2) We have that

0 ≤
∞∏

n=1

(1− P(An)) ≤
∞∏

n=1

exp(−P(An)) = exp

(
−

∞∑
n=1

P(An)

)
= 0. (237)

(3) By the first part, we can see that
∏∞

n=1(1 − P(An)) > 0. Using the contrapositive of the second part, clearly∑∞
n=1 P(An) < ∞. Then by the first Borel-Cantelli lemma (Lemma 1.36), we can conclude that P(An i.o.) = 0,

so the proof is complete.

Example A.18. Assume that {An}n≥1 are independent with P(An) < 1 for all n. Show that, if P (
⋃∞

n=1 An) = 1,
then P(An i.o.) = 1.

Proof. We assume for contradiction that
∑∞

n=1 P(An) < ∞. Then by definition, for any ϵ > 0, there exists N ∈ N,
such that

∑∞
n=N P(An) < ϵ. Take ϵ = 1, we have that

0 < 1−
∞∑

n=N

P(An) ≤
∞∏

n=N

(1− P(An)) ≤
∞∏

n=1

(1− P(An)) = 1− P

( ∞⋃
n=1

An

)
︸ ︷︷ ︸

1st part of Example A.17

= 0, (238)

which is clearly a contradiction. Therefore,
∑∞

n=1 P(An) = ∞. By the second Borel-Cantelli lemma (Lemma 1.37),
we can thus conclude that P(An i.o.) = 1, and the proof is complete.
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Example A.19. Let Ω = {1, 2, 3} and F = {∅,Ω, {1, 2} , {3}}. Define X : (Ω,F ) → (R,B(R)), such that X(i) = i
for i = 1, 2, 3. Is (Ω,F ) a measurable space? Is X a random variable?

Proof. Since F = σ({1, 2}) which means that it is a σ-algebra of Ω, we can conclude that (Ω,F ) is a measurable
space. Now note that a random variable must be measurable. However, we have many connterexamples, for instance,
(3/2, 4) ∈ B(R) but X−1((3/2, 4)) = {2, 3} /∈ F . Therefore, X is not a random variable.

Example A.20. Show that any distribution function has at most a countable number of discontinuity points.

Proof. Let F be a distribution function and A be the set of all discontinuity points of F . Note that F would be
right-continuous and monotonically increasing (Lemma 2.8). The discontinuity points should thus satisfy that

lim
x↑x0

F (x) < lim
x↓x0

F (x) = F (x0). (239)

Now let An be the set of discontinuity points x0 such that limx↓x0
F (x) − limx↑x0

F (x) ≥ 1/n. Since we know that
0 ≤ F (x) ≤ 1 (Lemma 2.8), partition it into Ij = [j/n, (j + 1)/n) for 0 ≤ j ≤ n− 2 and In−1 = [(n− 1)/n, 1]. Now
assume that some interval Ij contains two values F (x1) and F (x2) with x1 < x2 in An. It is clear that each partition
Ij can contain the values of at most one x0 ∈ An. Therefore, |An| ≤ n. Note that the set of all discontinuities
A =

⋃
n∈N An, so that A is countable and the proof is complete.

Example A.21. Show that, if X and Y are random variables, then X + Y is a random variable.

Proof. We need to show that X + Y is measurable, so it suffices to check that {X + Y ≤ x} ∈ F for any x ∈ R.
Since X and Y are random variables, {X < x} ∈ F and {Y < x} ∈ F for any x ∈ R. Then we have that

{X + Y < x} =
⋃
q∈Q

({X < q} ∩ {Y < x− q}) ∈ F , (240)

since F is a σ-algebra. This completes the proof. Alternatively, see Lemma 2.4.

Example A.22. Let X and Y be random variables on (Ω,F ,P) and take A ∈ F . Show that

Z(ω) =

{
X(ω), if ω ∈ A,

Y (ω), if ω ∈ AC ,
(241)

is a random variable.

Proof. For a fixed B ∈ B(R), we have that

Z−1(B) = {ω; X(ω) ∈ B and ω ∈ A} ∪ {ω; Y (ω) ∈ B and ω /∈ A} = (X−1(B) ∩A) ∪ (Y −1(B) ∩AC). (242)

Since X and Y are random variables, we have that X−1(B) ∈ F and Y −1(B) ∈ F . Since F is a σ-algebra, we thus
have that Z−1(B) ∈ F . By arbitrariness of B ∈ B(R), we can conclude that Z is measurable, and thus a random
variable. The proof is now complete.

Example A.23. Assume that A is a non-empty set and S is a σ-algebra. Show that if S = σ(A ), then

σ(X) = σ(X−1(A )) :=
{
X−1(A); A ∈ A

}
. (243)

Proof. Recall that σ(X) := X−1(S ) :=
{
X−1(B); B ∈ S

}
.

⊇ Take an arbitrary C ∈ X−1(A ), then there exists A ∈ A , such that C = X−1(A). Since A ∈ A ⊆ S , we have
that C ∈ σ(X). Therefore, X−1(A) ⊆ σ(X), and thus σ(X) is a σ-algebra containing X−1(A). But note that
σ(X−1(A )) is the smallest σ-algebra containing X−1(A ), so necessarily σ(X) ⊇ σ(X−1(A )).

⊆ Take an arbitrary C ∈ X−1(S ), then there exists B ∈ S , such that C = X−1(B). Since S = σ(A ), B
can necessarily be written as a countable combination of unions and complements of elements of A . Since
X is a random variable and thus measurable, these set operations are preserved by X−1. Therefore, C can
be written as a countable combination of unions and complements of elements of X−1(A ). In other words,
C ∈ σ(X−1(A )), and thus σ(X−1(A )) is a σ-algebra containing X−1(S ). But note that σ(X) is the smallest
σ-algebra containing X−1(S ), so necessarily σ(X) ⊆ σ(X−1(A )).

The proof is thus complete.
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Example A.24. Let (Ω,F ,P) be a probability space with Ω = {−1, 1}N. For each sequence X = {Xn}n≥1 ∈ Ω, let
P(Xn = 1) = P(Xn = −1) = 1/2 for all n ≥ 1. Now let {an}n≥1 be a fixed sequence of real numbers. Show that

P

( ∞∑
n=1

anXn converges

)
∈ {0, 1} . (244)

Proof. It suffices to prove that A = {
∑∞

n=1 anXn converges} is a tail event. Indeed,
∑∞

n=1 anXn converges if and
only if

∑∞
n=k anXn converges for all k ≥ 1. Therefore, A ∈ Tk for all k ≥ 1 and thus A is a tail event. Now by

Kolmogorov’s 0-1 law (Theorem 2.17, we have our desired result.

Example A.25. Let (Ω,P(Ω),P) with Ω = {−1, 0, 1}. Consider {Xn}n≥1 to be a sequence of independent identi-

cally distributed random variables with X1 = 0. Define Sn =
∑n

k=1 Xk and consider the following events.

i) limn→∞ Sn = ∞,

ii) limn→∞ Sn = −∞,

iii) −∞ = lim infn→∞ Sn < lim supn→∞ Sn = ∞.

iv) −∞ < lim infn→∞ Sn < lim supn→∞ Sn = ∞.

v) −∞ = lim infn→∞ Sn < lim supn→∞ Sn < ∞.

vi) −∞ < lim infn→∞ Sn ≤ lim supn→∞ Sn < ∞.

vii) Sn = 0 almost surely for all n ≥ 1.

The problem is as follows.

(1) Events i) through vi) are mutually exclusive. Prove that precisely one of them occurs with probability 1.

(2) Replace vi) with vii) and prove the same as the previous part.

Proof. (1) Note that events i) through vi) are all tail events. Indeed, there are all related only to the limiting
behavior of Xn, and in particular, changing finitely many values of Xk does not change the values of the limits,
limit superiors, and limit inferiors. Now since {Xn}n≥1 are independent, we can apply Kolmogorov’s 0-1 law
(Theorem 2.17) to see that each of them has probability 0 or 1. But since the events are mutually exclusive,
precisely one of them occurs with probability 1, so the proof is complete.

(2) To be done...

Example A.26. Show that if f is continuous, X is finite almost surely, and Xn → X almost surely, then f(Xn) →
f(X) almost surely.

Proof. Since Xn → X almost surely, we have that P (limn→∞ Xn = X) = 1. Let ω be an event in {limn→∞ Xn = X},
then limn→∞ Xn(ω) = X(ω). Since f is continuous, we can see that limn→∞ f(Xn(ω)) = f(X(ω)). Therefore, we
can duduce that

1 = P
(
lim
n→∞

Xn = X
)
≤ P

(
lim
n→∞

f(Xn) = f(X)
)

︸ ︷︷ ︸
contains all events ω

≤ 1, (245)

which necessarily means that P (limn→∞ f(Xn) = f(X)) = 1, i.e., f(Xn) → f(X) almost surely. The proof is thus
complete.

Example A.27. Let {Xn}n≥1 and X be random variables, such that for every ϵ > 0, we have that

∞∑
n=1

P(|Xn −X| ≥ ϵ) < ∞. (246)

Show that Xn → X almost surely.
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Proof. By the first Borel-Cantelli lemma (Lemma 1.36), we have that P(|Xn −X| ≥ ϵ i.o.) = 0. Note that if for
some ω we have that Xn(ω) ̸→ X(ω), this means that there exists ϵ > 0, such that for any N ∈ N, there exists
n ≥ N , such that |Xn(ω)−X(ω)| ≥ ϵ. Therefore, we can write that

P ({ω; Xn(ω) ̸→ X(ω)}) = P

⋃
ϵ>0

⋂
N∈N

⋃
n≥N

{ω; |Xn(ω)−X(ω)| ≥ ϵ}

 = P

(⋃
ϵ>0

{|Xn −X| ≥ ϵ i.o.}

)
= 0. (247)

Therefore, we can conclude that Xn → X almost surely, and the proof is complete.

Example A.28. Let {Xn}n≥1 be independent identically distributed random variables with uniform distribution

on [0, 1], i.e., P(Xn < t) = t for all t ∈ [0, 1]. Show that X
1/n
n → 1 almost surely.

Proof. Fix an arbitrary 0 < ϵ < 1. Since each Xn is uniformly distributed on [0, 1], we have that

P(|X1/n
n − 1| ≥ ϵ) = P(X1/n

n ≤ 1− ϵ) = P(Xn ≤ (1− ϵ)n) = (1− ϵ)n. (248)

Then we can check that

∞∑
n=1

P(|X1/n
n − 1| ≥ ϵ) =

∞∑
n=1

(1− ϵ)n =
1− ϵ

ϵ
< ∞. (249)

By the first Borel-Cantelli lemma (Lemma 1.36), we can thus see that P({|X1/n
n − 1| ≥ ϵ i.o.}) = 0. By arbitrariness

of ϵ > 0, we can thus conclude that P({X1/n
n → 1}) = 1, i.e., X

1/n
n → 1 almost surely. The proof is thus complete.

Example A.29 (Simplified version of Slutsky’s theorem). Let (Ω,F ,P) be a probability space. If {Xn}n≥1 is a
sequence of random variables such that Xn converges to X in probability, where X is finite almost surely and ϕ is a
continuous function, show that ϕ(Xn) → ϕ(X) in probability.

Proof. Fix an arbitrary ϵ > 0. Note that for any η > 0, we can write that

P(|f(Xn)− f(X)| ≥ ϵ) = P({|f(Xn)− f(X)| ≥ ϵ} ∩ {|Xn −X| ≥ η}) + P({|f(Xn)− f(X)| ≥ ϵ} ∩ {|Xn −X| < η})
≤ P({|Xn −X| ≥ η}) + P({|f(Xn)− f(X)| ≥ ϵ} ∩ {|Xn −X| < η}). (250)

We argue that Xn being far away from X is a rare event (the first part), and when Xn is close to X, we exploit the
continuity of ϕ (the second part). Since Xn converges to X in probability, we have that limn→0 P(|Xn−X| ≥ η) = 0
for any η > 0, so the first part converges to 0. For the second part, since X is finite almost surely, Xn must take
values in some compact set [−c, c]. Since ϕ is continuous, it is uniformly continuous on [−c, c]. This means that there
exists η > 0, such that for any |ϕ(x) − ϕ(y)| < ϵ whenever |x − y| < η. Take this specific η > 0, so the second part
would be 0. By the previous arguments, we can see that P(|f(Xn) − f(X)| ≥ ϵ) converges to 0 as n → ∞, which
means that f(Xn) converges to f(X) in probability. The proof is thus complete.
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Example A.30. Let (Ω,F , µ) be a probability measure. Assume that fn ≥ 0 is integrable and fn → f pointwise,
that is, fn(x) → f(x) for all x ∈ Ω. Assume that µ(fn) → µ(f) < ∞. Show that µ(fn1A) → µ(f1A) for every
A ∈ F using Fatou’s lemma.

Proof. Take an arbitrary A ∈ F , then by Fatou’s lemma (Lemma 3.3), we can see that

µ(f1A) = µ
(
lim inf
n→∞

fn1A

)
≤ lim inf

n→∞
µ(fn1A), µ(f1AC ) = µ

(
lim inf
n→∞

fn1AC

)
≤ lim inf

n→∞
µ(fn1AC ). (251)

The second inequality moreover implies that

lim sup
n→∞

µ(fn1A) = lim sup
n→∞

µ(fn − fn1AC ) = lim sup
n→∞

µ(fn)− lim inf
n→∞

µ(fn1AC ) ≤ µ(f)− µ(f1AC ) = µ(f1A). (252)

But lim inf µ(fn1A) ≤ lim supµ(fn1A), so clearly we have that lim inf µ(fn1A) = lim supµ(fn1A) = µ(f1A). There-
fore, we can conclude that µ(fn1A) → µ(f1A) for any A ∈ F , and the proof is thus complete.
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Example A.31. Let (R,B(R), µ) be a probability space and f ≥ 0 be integrable on R. Show that, for every ϵ > 0,
there exists E ∈ B(R) with E ̸= R, such that ∫

E

fdµ >

∫
R
fdµ− ϵ. (253)

Proof. Let En := {x ∈ R; f(x) > 1/n} and let fn := f1En
. We can see that fn is non-negative and clearly fn ↑ f .

By monotone convergence theorem (Theorem 3.2), we can conclude that∫
En

fdµ =

∫
R
fndµ ↑

∫
R
fdµ, (254)

and thus the proof is complete by the characterization of limits.

Example A.32. Let {fn}n≥1 be an increasing sequence functions such that fn ↑ f and
∫
f−
1 dµ < ∞. Show that∫

fndµ ↑
∫

fdµ. (255)

Proof. Since {fn}n≥1 is increasing, we have that f−
n = (−fn)∨ 0 ≥ (−fn+1)∨ 0 = f−

n+1, i.e., {f−
n }n≥1 is decreasing.

In particular, f−
n ≤ f−

1 and f− ≤ f−
1 , so that

∫
f−
n dµ ≤

∫
f−
1 dµ < ∞ and

∫
f−dµ ≤

∫
f−
1 dµ < ∞. By the monotone

convergence theorem (Theorem 3.2), since f+
n and f−

1 − f−
n are both non-negative and increasing, we have that∫

f+
n dµ ↑

∫
f+dµ,

∫
(f−

1 − f−
n )dµ ↑

∫
(f−

1 − f−)dµ. (256)

Putting them together, we have that
∫
(f−

1 +fn)dµ ↑
∫
(f−

1 +f)dµ, and the desired result can be concluded by noting
that

∫
f−
1 dµ < ∞. The proof is thus complete.

Example A.33. Let (Ω,F ,P) be a probability space and {Xt}t∈R be a family of random variables, such that (1)
Xt(ω) : R → R is continuous in t for each ω ∈ Ω, and (2) there exists an L 1 random variable Y such that |Xt| ≤ Y
for all t ∈ R. Show that the function F : R → R given by F (t) = E(Xt) is well-defined and continuous.

Proof. For ant t ∈ R, note that ∫
Ω

|Xt|dµ ≤
∫
Ω

Y dµ < ∞. (257)

Hence, F is well-defined. Now take t0 ∈ R and tn → t0. Since Xt(ω) is continuous in t for each ω ∈ Ω, we have that
Xtn(ω) → Xt0(ω) for each ω ∈ Ω. Since |Xtn | ≤ Y for all n ∈ N, by dominated convergence theorem (Theorem 3.8),
we can see that

F (tn) = E(Xtn) =

∫
Ω

Xtndµ →
∫
Ω

Xt0dµ = E(Xt0) = F (t0), (258)

implying that F is continuous. The proof is thus complete.

Example A.34. Let (Ω,F ,P) be a probability space, I ⊆ R be an open interval, and t0 ∈ I. Moreover, let {Xt}t∈I

be a family of random variables, such that (1) Xt(ω) : I → R is differentiable in t on I, P-almost surely, and (2)
there exists an L 1 random variable Y such that |Xt| + |dXt/dt| ≤ Y P-almost surely for all t ∈ I. Show that the
function F : I → R given by F (t) = E(Xt) is well-defined and differentiable at t0 with

F ′(t0) = E

(
d

dt
Xt

∣∣∣∣
t=t0

)
. (259)

Proof. Since |Xt| ≤ Y P-almost surely for all t ∈ I, we have that F is well-defined. Take t0 ∈ R and tn → t0. By
definition, we have that

F ′(t0) = lim
n→∞

F (tn)− F (t0)

tn − t0
= lim

n→∞

E(Xtn)− E(Xt0)

tn − t0
= lim

n→∞
E
(
Xtn −Xt0

tn − t0

)
. (260)
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By the mean value theorem, there exists σn between t0 and tn, such that

Xtn −Xt0

tn − t0
=

d

dt
Xt

∣∣∣∣
t=σn

. (261)

Moreover since |dXt/dt| ≤ Y P-almost surely, we have that |Xtn −Xt0 |/|tn − t0| ≤ Y P-almost surely as well, for all
n ≥ 1. Hence by the dominated convergence theorem (Theorem 3.8), we can see that

F ′(t0) = lim
n→∞

E
(
Xtn −Xt0

tn − t0

)
= lim

n→∞

∫ ∣∣∣∣Xtn −Xt0

tn − t0

∣∣∣∣ dµ =

∫
lim
n→∞

∣∣∣∣Xtn −Xt0

tn − t0

∣∣∣∣ dµ =

∫ (
d

dt
Xt

∣∣∣∣
t=t0

)
dµ

= E

(
d

dt
Xt

∣∣∣∣
t=t0

)
. (262)

The proof is thus complete.

Example A.35. Given an example of a strictly inequality in Fatou’s lemma (Lemma 3.3).

Proof. For n ≥ 1, define fn := 1[n,n+1), then clearly fn → 0. Let µ be the uniform measure in R, then

µ
(
lim inf
n→∞

fn

)
=

∫ ∞

−∞
0dµ = 0. (263)

On the other hand, we have that

lim inf
n→∞

µ(fn) = lim inf
n→∞

∫ ∞

−∞
1[n,n+1)dµ = lim inf

n→∞

∫ n+1

n

dµ = lim inf
n→∞

1 = 1 > µ
(
lim inf
n→∞

fn

)
, (264)

so this is a strictly inequality in Fatou’s lemma (Lemma 3.3).

Example A.36. Suppose that (Ω,F ,P) is a probability space and {An}n≥1 is a collection of events such that
P(Ai ∩Aj) = 0 for all i ̸= j. Show that

P

( ∞⋃
n=1

An

)
=

∞∑
n=1

P(An). (265)

Proof. By the series convergence theorem (Theorem 3.10), we can see that

∞∑
n=1

P(An) =

∞∑
n=1

∫
Ω

1An
dP =

∫
Ω

∞∑
n=1

1An
dP =

∫
Ω

1
⋃∞

n=1 An
dP︸ ︷︷ ︸

An’s disjoint

= P

( ∞⋃
n=1

An

)
, (266)

so the proof is complete.

10/18 Midterm Exercises

Example A.37. Let Ω = R and F be a set of subsets of R containing ∅ and all A ∈ P(R) with the property that,
if x ∈ A, then x± 1, x± 2, . . . belong to A. Show that F is a σ-algebra.

Proof. We already have ∅ ∈ F . Fix an arbitrary A ∈ F , then for any x ∈ AC , x + n /∈ A for all n ∈ Z because
otherwise there would be a contradiction. In other words, any x ∈ AC satisfies that x+n ∈ AC for all n ∈ Z, so that
AC ∈ F . Now fix arbitrary {Am}m∈N ⊆ F . For any x ∈

⋃
m∈N Am, there must exist m ∈ N such that x ∈ Am. But

since Am ∈ F , necessarily x+n ∈ Am for all n ∈ Z, and thus x+n ∈
⋃

m∈N Am for all n ∈ Z. Hence
⋃

m∈N Am ∈ F
and the proof is thus complete.

Example A.38. Let Ω be an infinite countable set and F = P(Ω) be the collection of all subsets of Ω. Define, for
each A ∈ F , that

µ(A) =

{
0, if A is finite,

∞, if A is infinite.
(267)

Show that the set function µ is additive but not σ-additive.
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Proof. Take arbitrary A,B ∈ F . If A and B are both finite, then A ∪ B is also finite, and thus µ(A ∪ B) = 0 =
µ(A) + µ(B). If A and B are both infinite, then A ∪ B is also infinite, and thus µ(A ∪ B) = ∞ = µ(A) + µ(B).
Finally if one of them is finite, without loss of generality we assume that A is finite and B is infinite, then A ∪B is
infinite, and thus µ(A ∪ B) = ∞ = µ(A) + µ(B). The above argument has shown that µ is additive. However, it is
not countably additive. As a counterexample, take An = {n} for each n ∈ N, then we can see that

µ

(⋃
n∈N

An

)
= µ

(⋃
n∈N

{n}

)
= µ(N) = ∞ ≠ 0 =

∑
n∈N

0 =
∑
n∈N

µ({n}) =
∑
n∈N

µ(An). (268)

Hence, µ is additive but not countably additive and the proof is thus complete.

Example A.39. Show that if
∑∞

n=1 P(An) < ∞, then the series
∑∞

n=1 1An
is finite almost everywhere.

Proof. By the first Borel-Cantelli lemma (Lemma 1.36), we have that P(An i.o.) = 0. In other words, almost
everywhere there exists N ∈ N, such that for all n ≥ N , we have that An does not hold, i.e., 1An

= 0. Hence, we
can conclude that

∑∞
n=1 1An

is finite almost everywhere, and the proof is complete.

Example A.40. Find an example of a probability space (Ω,F ,P) and function X : Ω → R, such that |X| is a
random variable but X is not.

Proof. Let Ω = R and F = {∅,R}. Take some A ̸= ∅,R and define X(ω) = 1 for any ω ∈ A and X(ω) = −1
otherwise. Clearly |X(ω)| = 1 for all ω ∈ R. Hence, |X|−1(B) is either R or ∅ depending on whether 1 ∈ B or not,
i.e., |X|−1(B) ∈ F . This means that |X| is measurable, and thus a random variable. However, we can see that
X−1({1}) = A /∈ F , so X is not measurable. and thus not a random variable.

Example A.41. Let X be a random variable with probability density function given by

fX(x) =

{
cx2, if |x| ≤ 1,

0, otherwise.
(269)

Find c, E(X), and P(X ≥ 1/2).

Proof. Necessarily
∫∞
−∞ fX(x) = 1, from which we can obtain that c = 3/2 and detailed computations will be ignored

here. Consequently, E(X) can be computed as E(X) =
∫ 1

−1
xfX(x)dx and the answer is 0. Finally, P(X ≥ 1/2) can

be computed as P(X ≥ 1/2) =
∫ 1

1/2
fX(x)dx and the answer is 7/16.

Example A.42. Let X be a random variable with mean m = E(X) and variance σ2 = E((X − E(X))2).

(1) Let u ∈ R. Show that for every α ≥ 0, we have that

P(X −m ≥ α) ≤ σ2 + u2

(α+ u)2
. (270)

(2) Find u that minimizes the right-hand side. Conclude Cantelli’s inequality that

P(X −m ≥ α) ≤ σ2

σ2 + α2
. (271)

Proof. (1) By Chebyshev’s inequality (Theorem 3.18), we have that

P(X −m ≥ α) = P((X −m+ u)2 ≥ (α+ u)2) ≤ E((X −m+ u)2)

(α+ u)2
=

σ2 + 2uE(X −m) + u2

(α+ u)2
=

σ2 + u2

(α+ u)2
.

(272)

(2) u = σ2/α is the critical number (derivative is zero) of the right-hand side, and we can check the derivatives to
see that this u minimizes the right-hand side. By arbitrariness of u in the previous part, we can conclude that

P(X −m ≥ α) ≤
σ2 + σ4

α2(
α+ σ2

α

)2 =
σ2(α2 + σ2)

(α2 + σ2)2
=

σ2

σ2 + α2
, (273)

and the proof is thus complete.
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