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4 Itô Formula 14
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3/27 Lecture

1 Construction of Brownian Motion

1.1 Brownian Motion and Its Motivation

Loosely speaking, Brownian motion is a “random path” that satisfies the following properties.

• The path is continuous.

• At any given point in time, where the path goes next is independent of where the path came from.

• At any given point in time, where the path ends up in any finite time is normally distributed.

1.2 Symmetric Random Walk

It is always easier to start with a discrete case. Consider a symmetric random walk (SRW). Let Xj ’s be independent
and identically distributed such that P[Xj = 1] = P[Xj = −1] = 1/2. We now define M(n) such that

M(0) = 0, M(n) =

n∑
j=1

Xj . (1)

The process M(n) is called a symmetric random walk. With each step, it either steps up or steps down one unit,
and each of the two possible moves is equally likely.

1.2.1 Increments of the SRW

SRW has independent increments, which means that if we choose nonnegative integers 0 = n0 < n1 < · · · < nk, then
the random variables

M(n1) = M(n1)−M(n0), M(n2)−M(n1), · · · , M(nk)−M(nk−1) (2)

are independent. Each of these random variables

M(ni+1)−M(ni) =

ni+1∑
j=ni+1

Xj (3)

is called an increment of the random walk. It is the change in the position of the random walk between times ni and
ni+1. Increments over non-overlapping time intervals are indeed independent, since Xj ’s are independent. Moreover,

E[M(ni+1)−M(ni)] =

ni+1∑
j=ni+1

E[Xj ] = 0, (4)

and

Var[M(ni+1)−M(ni)] =

ni+1∑
j=ni+1

Var[Xj ] = ni+1 − ni, (5)

since Var[Xj ] = 1 and this holds by independence.

2



1.2.2 Martingale Property of the SRW

In order to define martingale we need the notion of σ-algebra. There is a very important, nontechnical reason to
include σ-algebras in the study of stochastic processes, and that is to keep track of the amount of information. The
temporal feature of a stochastic process suggests a flow of time, in which at each moment t ≥ 0, we can talk about
the past, the present, and the future, and can ask about how much an observer of the process knows about it at
present, as compared to how much he know at some point in the past or will know at some time in the future.

Definition 1.1. A filtration on (Ω,F )is a family {Ft}t≥0 of σ-algebras Ft ⊆ F , such that

0 ≤ s ≤ t =⇒ Fs ⊆ Ft, (6)

i.e., {Ft}t≥0 is increasing.

Thus informally, one can think about the σ-algebra Ft in the above definition as the “knowledge” available at time t.
The fact that {Ft}t≥0 is monotonically increasing just reflects the fact that as time goes on, the amount of available
information cannot decrease.

Definition 1.2. A stochastic process {Zt}t≥0 is called a martingale with respect to a filtration {FT }t≥0 if

(1) Zt is Ft-measurable for all t.

(2) E[|Zt|] < ∞ for all t.

(3) E[Zt|Fs] = Zs for all s ≤ t.

The first two conditions are for technical reasons, since we can only define measures on measurable sets, and we
assume that the first moments are finite. The most important property in the above definition is the third property.
Simply put, it states that the “best guess” for Xt given information available at moment s is Xs, and thus the process
Xt has neither upward or downward drift.

Now we want to check that the SRW is a martingale. First, we need to specify a filtration {Ft}t≥0. Let Fn be the
σ-algebra (read information) generated by the set of random variables X1, X2, · · · , Xn.

(1) M(n) is Fn-measurable since it depends only on Xj , j ≤ n, i.e., on the information available at time n.

(2) From the fact that |M(t)| ≤ t, we can easily see that E[|M(t)|] ≤ t < ∞.

(3) Using the fact that E[M(s)|Fs] = M(s) and the fact that the random variable M(t)−M(s) is independent of
σ-algebra Fs, we can deduce that

E[M(t)|Fs] = E[M(t)−M(s) +M(s)|Fs] = E[M(t)−M(s)|Fs] + E[M(s)|Fs]

= E[M(t)−M(s)] +M(s) = 0 +M(s) = M(s). (7)

1.2.3 Quadratic Variation of the SRW

The quadratic variation of a discrete stochastic process up to time t is defined as

⟨M,M⟩t =
t∑

j=1

(M(j)−M(j − 1))2. (8)

The quadratic variation up to time t along the path is computed by taking all the one-step incrementsM(j)−M(j−1)
along that path, squaring these increments and then summing them up. Clearly, the SRM increments can only take
values ±1, and thus ⟨M,M⟩t = t. Note that in general, the quadratic variation of a stochastic process is stochastic
itself. The fact that the quadratic variation in this case is deterministic is a special feature of the SRW.
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1.3 Scaled Symmetric Random Walk

To approximate a Brownian motion, we speed up time and scale down the step size of an SRW. More precisely, we
fix a positive integer n and define the scaled SRW at rational points k/n as

B(n)

(
k

n

)
=

1√
n
M(k). (9)

At all other points we define B(n)(t) as the linear interpolation between its values at the nearest points of the form
k/n. The following properties of the scaled SRW could be easily proved using the corresponding properties of the
SRW and we leave their proof as an exercise.

(1) Independence of increments, i.e., for all rational numbers 0 = t0 < t1 < · · · < tn of the form k/n, the random
variables

B(n)(t1)−B(n)(t0), B
(n)(t2)−B(n)(t1), · · · , B(n)(tn)−B(n)(tn−1) (10)

are independent.

(2) E[B(n)(t)−B(n)(s)] = 0, Var[B(n)(t)−B(n)(s)] = t− s.

(3) E[B(n)|Fs] = B(n)(s).

(4) The quadratic variation of the scaled SRW
〈
B(n), B(n)

〉
t
= t.

1.3.1 Limiting Distribution of the Scaled SRW

Now the idea is to let n → ∞ in the scaled SRW and in the limit we obtain something satisfying the intuitive
properties outlined for Brownian motion. By definition,

B(n)(t) =
1√
n
Mnt. (11)

Since Mk =
∑k

j=1 Xj has a binomial distribution with parameters k and 1/2, we can easily calculate the distribution

of B(n)(t). In particular, one can draw the histogram of B(n)(t). We know that the random variable B(n)(t) has
mean 0 and variance t. If we draw on top of the histogram of B(n)(t) the graph of normal density with mean 0 and
variance t, we will see that the distribution of B(n)(t) is nearly normal. In fact, the central limit theorem asserts that
B(n)(t) converges in distribution to the normal random variable N (0, t), but let us not use this theorem and prove
the convergence of b(n)(t) from scratch. The whole point of this exercise is to learn a very powerful mathematical
tool known as characteristic functions.

4/3 Lecture

Definition 1.3. Let X be a random variable with distribution P. The characteristic function of X is defined as

ϕX(u) = E[eiuX ] =

∫
eiuxdP[x] (12)

for every u ∈ R.

Example 1.4. (1) If X = Ber(p), then

ϕX(u) = p(eiu − 1) + 1. (13)

(2) If X = Bin(n, p), then P[X = k] =
(
n
k

)
pk(1− p)n−k, and

ϕX(u) = (p(eiu − 1) + 1)n. (14)
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(3) If X = Pois(λ), then P[X = k] = e−λλk/k!, and

ϕX(u) =

∞∑
k=0

e−λλk

k!
eiuk = e−λ

∞∑
k=0

(λeiu)k

k!
= exp

(
λ(eit − 1)

)
. (15)

(4) If X is a Gaussian random variable N (m,σ2), then

ϕX(u) = exp

(
ium− u2σ2

2

)
. (16)

The importance of the characteristics functions could be summarized in the following two theorems.

Theorem 1.5. If two random variables have the same characteristic function, then they have the same distribution.
Of course, the converse also holds, in that if two random variables have the same distribution, then they have the
same characteristic function.

Theorem 1.6 (Paul Lévy theorem). Let Xn be a sequence of random variables on R. Then

(1) If Xn converges to X in distribution, then ϕXn
(u) → ϕX(u) as n → ∞ for every u, and in fact this convergence

is uniform.

(2) If ϕXn
(u) → ϕX(u) for every u pointwise, then Xn converges to X in distribution.

(3) If ϕXn
(u) converges to some function ϕ(u) for every u pointwise, and ϕ(u) is continuous at 0, then there

exists a unique random variable X, such that ϕ is the characteristic function of X and Xn converges to X in
distribution.

We use Part (2) of Paul Lévy theorem to prove that B(n)(t) converges to the normal distribution with expectation
0 and variance t. We have that

ϕB(n)(t)(u) = E
[
exp

(
iuB(n)(t)

)]
= E

[
exp

(
iuMnt√

n

)]
= E

exp
 iu√

n

nt∑
j=1

Xj


=

(
E
[
exp

(
iuXj√

n

)])nt

=

(
1

2
exp

(
iu√
n

)
+

1

2
exp

(
−iu√
n

))nt

. (17)

Now we need to show that as n → ∞, the above result converges to the characteristic function of the normal random
variable with mean 0 and variance t, i.e., to e−u2t/2. Expanding in Taylor series, we can see that

1

2
exp

(
iu√
n

)
+

1

2
exp

(
−iu√
n

)
= 1− u2

2n
+O(n−3/2), (18)

and thus

ϕn(u) =

(
1− u2

2n
+O(n−3/2)

)nt

→ exp

(
−u2

2n
· nt
)

= exp

(
−u2t

2

)
. (19)

Therefore, we can conclude that B(n)(t) converges in distribution to a normal variable with expectation 0 and variance
t. Strictly speaking, we have just demonstrated that for a fixed moment t, the distribution of B(n)(t) converges to
N (0, t), but we did not prove the convergence of the whole stochastic process to Brownian motion. To do this, one
has to further prove the convergence of the finite dimensional distributions and use Prokhorov’s theorem.

1.4 Brownian Motion: A Formal Definition

A one-dimensional Brownian motion is a continuous-time stochastic process that satisfies the following properties.

• Independence of increments: If t0 < t1 < · · · < tn, then the random variables

B(t0), B(t1)−B(t0), · · · , B(tn)−B(tn−1) (20)

are independent.
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• Normally distributed increments: If s, t ≥ 0, then

P[B(t+ s)−B(s) ∈ A] =

∫
A

1√
2πt

e−x2/2tdx. (21)

• Continuous trajectories: With probability 1, B0 = 0 and t 7→ Bt is continuous.

2 Properties of the Brownian Motion

The limiting object described above is called a standard Brownian motion. It will be our main object of study, and
the main building block in many applications.

2.1 Covariance of Brownian Motion

Let 0 ≤ s ≤ t, then

E[B(s)B(t)] = E[B(s)(B(t)−B(s) +B(s))] = E[B(s)(B(t)−B(s))] + E[B2(s)]. (22)

By independence of increments, we have that E[B(s)(B(t)−B(s))] = E[B(s)]E[B(t)−B(s)] = 0. Moreover, from the
fact that B(s)is a normally distributed random variable with expectation 0 and variance s, we have that E[B2(s)] = s.
Bringing these results into the previous expression, we have that

E[B(t)B(s)] = 0 + s = s. (23)

Note that it is important to know how to compute the moments of a normal random variable.

2.2 Non-differentiability of Brownian Paths

In the following theorem we prove that the trajectories of Brownian motion are very special, in that they are non-
differentiable at every point.

Theorem 2.1. With probability 1, Brownian paths are not differentiable at any point.

Proof. Let W = {ω; ∃t ∈ (0, 1), such that B(t) is differentiable at t}. We want to show that P[W ] = 0. We shall
use the following lemma, whose proof is fairly straightforwards and will be left as an exercise.

Lemma. If f : (0, 1) → R is differentiable at x ∈ (0, 1), then there exists C > 0 and δ > 0,
such that f(x)− f(s) ≤ C|x− s|, for any s ∈ [x− δ, x+ δ].

Now let Mn(k) = maxi {|B((i+ 1)/n)−B(i/n)|; i = k − 1, k, k + 1}, and Mn = mink {Mn(k); k = 1, · · · , n}. By
the above lemma, for any ω ∈ W , we can find C > 0 and δ > 0, such that

|B(t)−B(s)| ≤ C|t− s|, ∀s ∈ [t− δ, t+ δ]. (24)

Choose n sufficiently large such that n > max {t, 4/δ}. We also choose k such that (k− 1)/n ≤ t ≤ k/n. The choices
of k and n imply that |i/n− t| < δ for i = k − 1, k, k + 1, k + 2. Furthermore, we can see that∣∣∣∣B( i+ 1

n

)
−B

(
i

n

)∣∣∣∣ ≤ ∣∣∣∣B( i+ 1

n

)
−B(t)

∣∣∣∣+ ∣∣∣∣B( i

n

)
−B(t)

∣∣∣∣ ≤ C

∣∣∣∣ i+ 1

n
− t

∣∣∣∣+ C

∣∣∣∣ in − t

∣∣∣∣ < 2Cδ <
8C

n
. (25)

Note that B ((i+ 1)/n)−B (i/n) are independent and normally distributed with mean 0 and variance 1/n, so that

P
[
|Mn| ≤

8C

n

]
≤ nP

[
|Mn(k)| ≤

8C

n

]
= n

(
P
[
|z| ≤ 8C√

n

])3

≤ n

(
16C√
2πn

)3

=
163C3

√
2πn

, (26)

where z is the standard normal. Let An := {|Mn| ≤ 8C/n}, then the above inequality means that limn→∞ P[An] = 0.
By Fatou’s lemma, we can conclude that

P
[
lim inf
n→∞

An

]
≤ lim inf

n→∞
P[An] = lim

n→∞
P[An] = 0. (27)

Finally, we note that W ⊆ lim infn→∞ An, so P[W ] = 0, and the proof is complete.
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2.3 Scaling Properties of the Brownian Motion

If we fix time t, then the distribution of Brownian motion B(t) is normal with expectation 0 and variance t. In fact,
for any fixed set of times t1 < t2 < · · · < tn, the random variables B(t1), B(t2), · · · , B(tn) are jointly normal with
mean 0 and covariance given by E[B(s)B(t)] = min {s, t}.

Theorem 2.2. If B(0) = 0, then for any λ > 0, the stochastic process B(λt)/
√
λ, t ≥ 0 is a Brownian motion.

Proof. First, note that X(t) = B(λt)/
√
λ is a Gaussian process, i.e., for any set t1 < t2 < · · · < tn, the joint

distribution of X(t1), X(t2), · · · , X(tn) is a multivariate Gaussian distribution. This property is clearly inherited
from Brownian motion properties. Since normal distribution is characterized by its mean and covariance, we have
to check that the mean and covariance of the process X(t) coincide with those of Brownian motion. Indeed,

E[X(t)] = E
[
B(λt)√

λ

]
=

E[B(λt)]√
λ

= 0, (28)

and for s < t, we have that

E[X(s)X(t)] = E
[
B(λs)√

λ
· B(λt)√

λ

]
=

E[B(λs)B(λt)]

λ
=

min {λs, λt}
λ

= s. (29)

Therefore, we can conclude that B(λt)/
√
λ has the same distribution as a Brownian motion, and thus a Brownian

motion. The proof is thus complete.

Theorem 2.3. If B(t) is a Brownian motion starting at 0, then so is the process defined by X(0) = 0 and X(t) =
tB(1/t) for t > 0.

Proof. Fix t1 < t2 < · · · < tn, then clearly X(t1), X(t2), · · · , X(tn) has a multivariate Gaussian distribution. We
just have to check that it has the same mean and covariance structure. First of all, we have that

E[X(t)] = E[tB(1/t)] = tE[B(1/t)] = 0. (30)

Moreover, for 0 < s < t, we can deduce that

E[X(s)X(t)] = E[sB(1/s) · tB(1/t)] = stE[B(1/s)B(1/t)] = stmin {1/s, 1/t} = s. (31)

Therefore, X(t) is indeed a Brownian motion, so the proof is complete.

2.4 Quadratic Variation of Brownian Motion

Last time we computed quadratic variation of scaled SRW and it turned out to be t. In the following theorem we
prove that the quadratic variation of the Brownian motion is also t. Let me again emphasize that the paths of
Brownian motion are unusual in that their quadratic variation is not zero. This makes stochastic calculus different
from ordinary calculus. In fact, non-zero quadratic variation is the source of the volatility term in the Black-Scholes
equation.

To see how Brownian motion is different from functions we are used to in ordinary calculus, consider a function
f : R → R that is continuously differentiable and compute its quadratic variation up to time T . Let us introduce the
norm of the partition 0 = t0 < t1 < · · · < tn = T , such that

∥Π∥ = max
0≤j≤n−1

(tj+1 − tj). (32)

Then, its quadratic variation can be computed as

⟨f, f⟩T = lim
∥Π∥→0

n−1∑
j=0

(f(tj+1)− f(tj))
2. (33)

We will use the mean value theorem which says that in each interval (x1, x2), there exists a point x0, such that

f(x2)− f(x1) = f ′(x0)(x2 − x1). (34)
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Applying to each interval (tj , tj+1), we get that there is a point t∗j in each such interval, such that

f(tj+1)− f(tj) = f ′(t∗j )(tj+1 − tj). (35)

Therefore, we can compute that

n−1∑
j=0

(f(tj+1)− f(tj))
2 =

n−1∑
j=0

|f ′(t∗j )|2(tj+1 − tj)
2 ≤ max

0≤j≤n−1
|tj+1 − tj |

n−1∑
j=0

|f ′(t∗j )|2(tj+1 − tj)

= ∥Π∥
n−1∑
j=0

|f ′(t∗j )|2(tj+1 − tj) → ∥Π∥
∫ T

0

|f ′(t)|2dt → 0, as ∥Π∥ → 0. (36)

Therefore, we have shown that continuously differentiable function has zero quadratic variation. For this reason we
rarely consider quadratic variation in ordinary calculus.

Theorem 2.4. Let B(t) be a Brownian motion. Then ⟨B,B⟩T = T almost surely.

Proof. Define

QΠ =

n−1∑
j=0

(B(tj+1)−B(tj))
2. (37)

We shall prove that E[QΠ] → T and Var[QΠ] → 0 as ∥Π∥ → 0. In other words, we shall prove the L2 convergence of
QΠ, which is stronger than almost sure convergence. First, notice that

E[(B(tj+1)−B(tj))
2] = Var[B(tj+1)−B(tj)] = tj+1 − tj . (38)

Therefore, we can compute that

E[QΠ] =

n−1∑
j=0

E[(B(tj+1)−B(tj))
2] =

n−1∑
j=0

(tj+1 − tj) = T. (39)

Now, in order to show that Var[QΠ] → 0 as ∥Π∥ → 0, note that

Var[(B(tj+1)−B(tj))
2] = E[((B(tj+1)−B(tj))

2 − (tj+1 − tj))
2]

= E[(B(tj+1)−B(tj))
4 − 2(tj+1 − tj)(B(tj+1)−B(tj))

2 + (tj+1 − tj)
2]

= E[(B(tj+1)−B(tj))
4]− 2(tj+1 − tj)E[(B(tj+1)−B(tj))

2] + (tj+1 − tj)
2

= 3(tj+1 − tj)
2 − 2(tj+1 − tj)

2 + (tj+1 − tj)
2 = 2(tj+1 − tj)

2. (40)

In the previous deduction, we used the fourth moment of a normal random variable. Now, we can see that

Var[QΠ] =

n−1∑
j=0

Var[(B(tj+1)−B(tj))
2] =

n−1∑
j=0

2(tj+1 − tj)
2 ≤ 2 ∥Π∥

n−1∑
j=0

(tj+1 − tj) = 2 ∥Π∥T, (41)

which clearly tends to 0 as ∥Π∥ → 0. Therefore, we can conclude that ⟨B,B⟩T = lim∥Π∥→0 QΠ which has expectation
T and variance 0, thus being T almost surely. Our proof is thus complete.

Remark 2.5. ⟨B,B⟩t = t can be informally written as

dB(t)dB(t) = dt. (42)

Remark 2.6. In addition to computing the quadratic variation of Brownian motion, we can also compute the cross
variation of B(t) with t and the quadratic variation of t itself, which are

lim
∥Π∥→0

n−1∑
j=0

(B(tj+1)−B(tj))(tj+1 − tj) = 0, lim
∥Π∥→0

n−1∑
j=0

(tj+1 − tj)
2 = 0. (43)

These can be informally written as

dB(t)dt = 0, dtdt = 0. (44)
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4/10 Lecture

2.5 Volatility of Geometric Brownian Motion

Let α and σ be constants and define the geometric Brownian motion as

S(t) = S(0) exp

(
σB(t) +

(
α− σ2

2
t

))
. (45)

This is the asset-price model used in the Black-Scholes formula. We show how to use the quadratic variation of
Brownian motion to identify the volatility σ from a path of the process. Let 0 ≤ T1 ≤ T2 be given and suppose that
we observe the geometric Brownian motion S(t) on the time interval T1 ≤ t ≤ T2. We may then choose a partition
of this interval T1 = t0 < t1 < · · · < tm = T2 and observe the “log-return” over each interval [tj , tj+1], such that

log
S(tj+1)

S(tj)
= σ (B(tj+1)−B(tj)) +

(
α− σ2

2

)
(tj+1 − tj). (46)

The sum of the squares of the log-returns, sometimes called the realized volatility, is

m−1∑
j=0

(
log

S(tj+1)

S(tj)

)2

= σ2
m−1∑
j=0

(B(tj+1)−B(tj))
2
+

(
α− σ2

2

)2 m−1∑
j=0

(tj+1 − tj)
2

+ 2σ

(
α− σ2

2

)m−1∑
j=0

(B(tj+1)−B(tj)) (tj+1 − tj) → σ2(T2 − T1). (47)

3 Construction of the Itô Integral

Consider an asset whose price per share is equal to Xt, t ≥ 0. Also consider a portfolio that initially consists of
∆0 shares. Now consider the following trading strategy. Keep the initial position ∆0 up to time t1 ≥ t0 = 0 and
then rebalance the portfolio by taking position ∆1 in the asset. Keep it up to time t2 ≥ t1 and then rebalance the
portfolio again by taking position ∆2 in the asset. In general, we rebalance the portfolio at trading date ti by taking
position ∆i in the asset and keeping it till the next trading date ti+1. Then we are interested in the profit IT (∆) of
the above trading strategy at time T . Clearly, we have that

IT (∆) = ∆0(X(t1)−X(t0)) + ∆1(X(t2)−X(t1)) + · · ·+∆n(X(tn)−X(tn−1)), (48)

and by an analogy with the Riemann integral, we write symbolically that

IT (∆) =

∫ T

0

∆(t)dX(t), (49)

where ∆(t) is a piecewise constant function which is equal to ∆i on [ti, ti+1].

3.1 Construction of the Stochastic Integral

We fix an interval [S, T ] and try to make sense of∫ T

S

f(t, w)dXt(w), (50)

where f(t, w) is a random function and dXt(w) refers to the increments of stochastic process Xt. Before we proceed
we make the following clarifications.

Remark 3.1. (1) We restrict our attention to functions f , such that for any fixed t, the random variable f(t, w)
is Ft-measurable. To explain this restriction we come back to the previous example. Position ∆i that we take
in the asset of time ti, i ≥ 1 may depend on the price history Ft of the asset, but it must be independent of
the future behavior of the process Xt.
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(2) We restrict our consideration to the case where Xt is a Brownian motion, though the case of general stochastic
process Xt is quite similar.

The problem we face when trying to assign meaning to the integral (50) is that Brownian motion paths cannot be
differentiated with respect to time. If X(t) is a differentiable function, then we can define∫ T

S

f(t, w)dX(t) =

∫ T

S

f(t, w)X ′(t)dt, (51)

where the right-hand side is an ordinary integral with respect to time. This approach unfortunately does not work
for Brownian motion as we have proved that the trajectories of Brownian motion are not differentiable.

Just like in the definition of the usual Riemann integral
∫ T

S
f(t)dt, where f(t) is a deterministic function, we start

with a definition for a simple class of functions f and then extend by some approximation procedure. Assume that
Π = {t0, · · · , tn} is a partition of [S, T ], i.e., S = t0 < t1 < · · · < tn = T , and that f(t, w) is constant in t on
each subinterval [tj , tj+1). Such a process f(t, w) is called a simple process. We start with defining integral (50) for
simple processes. Consider the interval [t0, t1), on which f(t, w) = e1(w) is a random quantity, but independent of t.
Therefore, it is natural to assume that∫ t1

t0

f(t, w)dBt(w) =

∫ 1

0

e1(w)dBt(w) = e1(w)(B(t1)−B(t0)). (52)

Applying this procedure to intervals [t1, t2), [t2, t3), · · · , [tn−1, tn), we can obtain that∫ T

S

f(t, w)dBt(w) = e1(w)(B(t1)−B(t0)) + e2(w)(B(t2)−B(t1)) + · · ·+ en(w)(B(tn)−B(tn−1)). (53)

Now, to extend this definition of stochastic integral (50) for general processes f(t, w), we approximate it with simple
processes in a similar way that we approximate continuous functions by stepwise constant functions in the theory of
Riemann integration. But without any further assumption on approximating functions ei(w), our definition of the
integral leads to difficulties. Here is an example of what kind of difficulties we can expect. Consider∫ T

0

BtdBt. (54)

Riemann integral is just a limit of Riemann sums, such that∫ T

S

f(t)dt ≈
∑
i

f(t∗i )(ti+1 − ti), (55)

where t∗i is any point on the interval [ti, ti+1]. When the length of the longest interval in the partition tends to
zero, we will obtain the correct limit. Note that it was not important what point t∗i we take. For instance, it could
be t∗i = ti (left point approximation) or t∗i = ti+1 (right point approximation) or something else. Let us try to do
something similar for integral (54). The left point approximation can be written as

I1 ∼
∑
i

B(ti)(B(ti+1)−B(ti)), (56)

and the right point approximation can be written as

I2 ∼
∑
i

B(ti+1)(B(ti+1)−B(ti)). (57)

From the independence of increments of Brownian motion and the fact that E[B(ti+1)−B(ti)] = 0 and E[B(t1)] = 0,
we have that

E[I1] =
∑
i

E[B(ti)(B(ti+1)−B(ti))] =
∑
i

E[B(ti)]E[B(ti+1)−B(ti)] = 0, (58)

E[I2] =
∑
i

E[B(ti+1)(B(ti+1)−B(ti))] =
∑
i

(
E[B2(ti+1)]− E[B(ti+1)B(ti)]

)
=
∑
i

(ti+1 − ti) = T, (59)

10



where in right point approximation, the result follows by observing that E[B2(ti+1)] = ti+1 (quadratic variation) and
E[B(ti+1)B(ti)] = min(ti+1, ti) = ti. Consequently, we can see that depending on the choice of the point t∗i in the
approximation, we can get very different results, unlike in Riemann integrals where such a choice does not matter.
Now since the function f(t, w) is Ft-measurable, it is reasonable to choose the approximating simple function to be
Ft-measurable as well, so the left point approximation t∗i = ti would be our only choice. This leads to the definition
of the Itô integrals.

Remark 3.2. If for each t ≥ 0, the random variable f(t, w) is Ft-measurable, then we say that the process f(t, w) is
Ft-adapted. For instance, if Ft is a filtration of Brownian motion, then the process ft(t, w) = B(t/2) is Ft-adapted,
while ft(t, w) = B(2t) is not.

3.2 Properties of the Itô Integral for Simple Processes

The Itô integral (50) is defined as the gain from treading in the martingale Bt. A martingale has no tendency to rise
or fall, and hence it is to be expected that

It(f) =

∫ t

0

f(t, w)dBt (60)

also has no tendency to rise or fall.

Theorem 3.3. Itô integral is a martingale.

Proof. It suffices to prove for simple processes, since the same conclusion for general stochastic processes can be
obtained up to taking limits. Let W (t) be a simple process, 0 ≤ s < t ≤ T be given, and Π be a partition. Assume
that there exists partition points tl < tk, such that s ∈ [tl, tl+1) and t ∈ [tk, tk+1). Let Dj = W (tj+1) −W (tj) for
for 0 ≤ j ≤ k − 1 and Dk = W (t)−W (tk). Thus we split the sum as

I(t) =

l−1∑
j=0

∆jDj +∆lDl +

k−1∑
j=l+1

∆jDj +∆kDk. (61)

We investigate the four summands respectively. For the first summand, since tl ≤ s, ∆jDj is Fs-measurable for all
0 ≤ j ≤ l − 1. Hence, we have that

E[∆jDj |Fs] = ∆jDj . (62)

For the second summand, we can compute that

E[∆lDl|Fs] = ∆lE[W (tl+1)|Fs]−∆lE[W (tl)|Fs] = ∆l(W (s)−W (tl)). (63)

For the third summand, we can compute for each l + 1 ≤ j ≤ k − 1 that

E[∆jDj |Fs] = E[E[∆jDj |Ftj ]|Fs] = E[∆jE[W (tj+1)|Ftj ]−∆jE[W (tj)|Ftj ]|Fs]

= E[∆j(W (tj)−W (tj))|Fs] = 0. (64)

The fourth summand is similar to the third, which would vanish in expectation when conditioned on Fs. Combining
the previous results, we can then conclude that

E[I(t)|Fs] =

l−1∑
j=0

∆jDj +∆l(W (s)−W (tl)) = I(s), (65)

which implies that I(t) is a martingale, so the proof is complete.

Now, since It(f) is a martingale and I0 = 0, we have that E[It(f)] = 0 for all t ≥ 0. It then follows that Var[It(f)] =
E[I2t (f)], which can be evaluated by the formula in the following theorem.

Theorem 3.4. The Itô integral satisfies that

E[I2t (f)] = E
[∫ t

0

f2(s, w)ds

]
. (66)
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Proof. For the simplicity of notation we introduce ∆Bi = B(ti+1) − B(ti) and ei = ei(w). Then by definition, we
can write that

It(f) =

∫ t

0

f(s, w)dBs =
∑
i

ei∆Bi. (67)

Squaring on both sides, we will obtain that

I2t (f) =
∑
i

e2i (∆Bi)
2 + 2

∑
i<j

eiej∆Bi∆Bj . (68)

Now by taking expectation on both side, we can see that

E[I2t (f)] =
∑
i

E[e2i (∆Bi)
2] + 2

∑
i<j

E[eiej∆Bi∆Bj ] =
∑
i

E[e2i ]E[(∆Bi)
2] + 2

∑
i<j

E[eiej ]E[∆Bi]︸ ︷︷ ︸
=0

E[∆Bj ]︸ ︷︷ ︸
=0

=
∑
i

E[e2i ]Var[∆Bi] =
∑
i

E[e2i ](ti+1 − ti) = E

[∑
i

e2i (ti+1 − ti)

]
= E

[∫ t

0

f2(s, w)ds

]
, (69)

as desired, so the proof is complete.

Theorem 3.5. The quadratic variation of the stochastic integral〈∫ t

0

f(t, w)dBt,

∫ t

0

f(t, w)dBt

〉
T

=

∫ T

0

f2(t, w)dt =
∑
i

e2i∆ti. (70)

Proof. We take Π = {t0, · · · , tn} to be a partition of [0, T ], i.e., 0 = t0 < t1 < · · · < tn = T , then the quadratic
variation can be computed as

QΠ =

〈∫ t

0

f(t, w)dBt,

∫ t

0

f(t, w)dBt

〉
T

= lim
∥Π∥→0

n−1∑
j=0

(∫ tj+1

0

f(t, w)dBt −
∫ tj

0

f(t, w)dBt

)2

= lim
∥Π∥→0

n−1∑
j=0

(
ej(w)(Btj+1

−Btj )
)2

. (71)

To this end, we consider the quantity

E


n−1∑

j=0

(
ej(w)(Btj+1

−Btj )
)2 − n−1∑

j=0

ej(w)
2(tj+1 − tj)

2


= E


n−1∑

j=0

ej(w)︸ ︷︷ ︸
=:ej

2

(Btj+1
−Btj︸ ︷︷ ︸

=:∆Bj

)2 − (tj+1 − tj︸ ︷︷ ︸
=:∆tj

)




2
=
∑
j

E
[
e4j
(
(∆Bj)

2 −∆tj
)2]

+ 2
∑
i<j

E
[
e2i e

2
j

(
(∆Bi)

2 −∆ti
) (

(∆Bj)
2 −∆tj

)]
=
∑
j

E
[
e4j
]
E
[(
(∆Bj)

2 −∆tj
)2]

+ 2
∑
i<j

E
[
e2i e

2
j

]
E
[
(∆Bi)

2 −∆ti
]︸ ︷︷ ︸

=0

E
[
(∆Bj)

2 −∆tj
]︸ ︷︷ ︸

=0

=
∑
j

E
[
e4j
]
E
[
(∆Bj)

2 − E
[
(∆Bj)

2
]]

=
∑
j

E
[
e4j
]
Var

[
(∆Bj)

2
]
=
∑
j

E
[
e4j
]
· 2 (∆tj)

2 ≤ 2 ∥Π∥
∑
j

E
[
e4j
]
∆tj .

(72)

Now, if ∥Π∥ → 0, we have that
∑

j E
[
e4j
]
∆tj →

∫ T

0
E[f4(t, w)]dt < ∞, so that the expected value as computed

above must vanish. As a result, the quadratic variation is shown to be∑
i

e2i∆ti =

∫ T

0

f2(t, w)dt, (73)

as desired, and the proof is complete.
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3.3 Itô Integral for General Functions

We now introduce the class of general functions f(t, w) for which is Itô integral will be defined.

Definition 3.6. Let V = V (S, T ) be the class of functions f(t, w) : [0,∞)×Ω → R, such that f(t, w) is Ft-adapted

and
∫ T

S
f2(t, w)dt < ∞. The Itô integral is defined for V (S, T ).

We claim that each function f ∈ V (S, T ) can be approximated by a sequence {ϕn}n≥1 of simple functions (or
equivalently, by a sequence of simple processes) in the sense that

E

[∫ T

S

(f − ϕn)
2dt

]
→ 0, as n → ∞. (74)

The approximation is done in three steps.

(1) Approximate bounded continuous functions with simple functions. Let g ∈ V be bounded, with every trajectory
g(·, w) (w is fixed and t changes) being continuous. Then, there exists a sequence of simple functions ϕn ∈ V ,
such that

E

[∫ T

S

(g − ϕn)
2dt

]
→ 0, as n → ∞. (75)

(2) Approximate bounded functions with bounded continuous functions. Let h ∈ V be bounded, then there exists
a sequence of bounded continuous functions gn, such that

E

[∫ T

S

(h− gn)
2dt

]
→ 0, as n → ∞. (76)

(3) Approximate general functions with bounded functions. Let f ∈ V , then there exists a sequence of bounded
functions hn, such that

E

[∫ T

S

(f − hn)
2dt

]
→ 0, as n → ∞. (77)

Putting together the three steps above, we get that for any function f(t, w) ∈ V , there exists a sequence of simple
functions ϕn(t, w), such that (74) holds. We then define the Itô integral of the function f(t, w) as

I(f) =

∫ T

S

f(t, w)dBt = lim
n→∞

I(ϕn). (78)

The limit exists since by Theorem 3.4, we can deduce that

E
[
(I(ϕn)− I(ϕm))2

]
= E

[∫ T

S

(ϕn − ϕm)2dt

]
≤ E

[∫ T

S

(f − ϕn)
2dt

]
+ E

[∫ T

S

(f − ϕm)2dt

]
→ 0, (79)

as m,n → ∞. Thus, the sequence of random variables
{∫ T

S
ϕn(t, w)dBt

}
forms a Cauchy sequence in L2(Ω,F ,P).

Since L2(Ω,F ,P) is a complete space, there exists a limit of I(ϕn) as an element of it. This limit is by definition
the Itô integral I(f).

Example 3.7. Consider the Itô integral ∫ T

0

BtdBt. (80)

By definition, we can write that ∫ T

0

BtdBt = lim
n→∞

∫ T

0

ϕn(t, w)dBt, (81)
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where ϕn are Ft-adapted simple functions such that

E

[∫ T

0

(ϕn −Bt)
2dt

]
→ 0, as n → ∞. (82)

We now approximate f(t, w) = Bt by partitioning [0, T ] into [0, t1], [t1, t2], · · · , [tn−1, T ] and defining ϕn(t, w) = B(ti)
for t ∈ [ti, ti+1]. We check that

E

[∫ T

0

(ϕn −Bt)
2dt

]
= E

[∑
i

∫ ti+1

ti

(ϕn −Bt)
2dt

]
= E

[∑
i

∫ ti+1

ti

(B(ti)−Bt)
2dt

]

=
∑
i

∫ ti+1

ti

E
[
(B(ti)−B(t))2

]
dt =

∑
i

∫ ti+1

ti

(t− ti)dt =
∑
i

(ti+1 − ti)
2

2
. (83)

By defining Mn = maxi(ti+1 − ti), we can thus see that

E

[∫ T

0

(ϕn −Bt)
2dt

]
=
∑
i

(ti+1 − ti)
2

2
≤ Mn

2

∑
i

(ti+1 − ti) =
MnT

2
→ 0. (84)

Therefore, now it suffices to compute∫ T

0

ϕndBt =
∑
i

B(ti) (B(ti+1)−B(ti))︸ ︷︷ ︸
=:∆Bi

=
∑
i

B(ti)∆Bi. (85)

Note that we have the identity

∆B2
i = B2(ti+1)−B2(ti) = (∆Bi)

2 + 2B(ti+1)B(ti)− 2B2(ti) = (∆Bi)
2 + 2B(ti)∆Bi. (86)

Summing both sides over i, we would then obtain that

B2(T ) =
∑
i

∆B2
i =

∑
i

(∆Bi)
2 + 2

∑
i

B(ti)∆Bi =
∑
i

(∆Bi)
2 + 2

∫ T

0

ϕndBt

=⇒
∫ T

0

ϕndBt =
1

2

(
B2(T )−

∑
i

(∆Bi)
2

)
→ 1

2

(
B2(T )− T

)
, (87)

where the limit is in the L2 sense. Therefore, we can conclude that∫ T

0

BtdBt =
B2(T )− T

2
. (88)

4/17 Lecture

4 Itô Formula

During the last lecture we defined Itô integral ∫ t

0

f(s, w)dBs = I(f) (89)

for stochastic processes f(t, w) that are Ft-adapted and square-integrable. We defined I(f) to be the limit in
L2(Ω,F ,P) of I(ϕn) for any sequence of approximating simple stochastic processes ϕn. Approximating sequence
was defined as satisfying

E
[∫ t

0

(ϕn − f)2dt

]
→ 0, as n → ∞. (90)
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Thus the procedure of calculating Itô integral from the definition is rather work consuming. Let us step back a
second and take a look at the Riemann integral. Even though it is defined as the limit of Riemann sums, in practice
one never does that. Instead, one uses the fundamental theorem of calculus and the chain rule. For instance, to
compute

I(t) =

∫ t

0

s exp

(
−s2

2

)
ds, (91)

we notice that
(
− exp

(
−s2/2

))′
= s exp

(
−s2/2

)
, and thus

I(t) =

∫ t

0

s exp

(
−s2

2

)
ds =

∫ t

0

(
− exp

(
−s2

2

))′

ds = − exp

(
−s2

2

) ∣∣∣∣t
s=0

= 1− exp

(
− t2

2

)
. (92)

In general, it is desirable to have some analog of the chain rule in the case of Itô integral (to avoid taking the limit
of I(ϕn)). The analog for the chain rule is the Itô formula.

4.1 Itô Formula for Brownian Motion

If Brownian motion were differentiable, then the chain rule would give

df(Bt)

dt
=

df

dx

∣∣∣∣
x=Bt

dBt

dt
. (93)

However, the problem we face is the fact that the Brownian motion Bt is non-differentiable, and thus the chain rule
above would not apply.

Theorem 4.1 (Itô formula for Brownian motion). Let f(t, x) be a function for which the partial derivatives ft(f, x),
fx(t, x), and fxx(t, x) are defined and continuous, and let Bt be a Brownian motion. Then for every T ≥ 0, we have

f(T,BT ) = f(0, B0) +

∫ T

0

ft(t, Bt)dt+

∫ T

0

fx(t, Bt)dBt +
1

2

∫ T

0

fxx(t, Bt)dt. (94)

Proof. From the Taylor series expansion, we can obtain that

f(tj+1, xj+1)− f(tj , xj) = ft(tj , xj)(tj+1 − tj) + fx(tj , xj)(xj+1 − xj) +
1

2
ftt(tj , xj)(tj+1 − tj)

2

+
1

2
fxx(tj , xj)(xj+1 − xj)

2 + ftx(tj , xj)(tj+1 − tj)(xj+1 − xj) + higher order terms. (95)

Let Π = {t0, · · · , tn} be a partition of the interval [0, T ]. Applying this formula with xj+1 = B(tj+1) and xj = B(tj)
and summing over j, we thus have that

f(T,BT )− f(0, B0) =

n−1∑
j=0

(f(tj+1, B(tj+1))− f(tj , B(tj)))

=

n−1∑
j=0

ft(tj , B(tj))(tj+1 − tj) +

n−1∑
j=0

fx(tj , B(tj))(B(tj+1)−B(tj)) +
1

2

n−1∑
j=0

ftt(tj , B(tj))(tj+1 − tj)
2

+
1

2

n−1∑
j=0

fxx(tj , B(tj))(B(tj+1)−B(tj))
2 +

n−1∑
j=0

ftx(tj , B(tj))(tj+1 − tj)(B(tj+1)−B(tj)) + higher order terms.

(96)

We investigate each summand respectively. For the first summand, we can see that

n−1∑
j=0

ft(tj , B(tj))(tj+1 − tj) →
∫ T

0

ft(t, Bt)dt, as ∥Π∥ → 0. (97)
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For the second summand, we can see that

n−1∑
j=0

fx(tj , B(tj))(B(tj+1)−B(tj)) →
∫ T

0

fx(t, Bt)dBt, as ∥Π∥ → 0. (98)

For the third summand, let aj = ftt(tj , B(tj)), so we can write that

E


n−1∑

j=0

ftt(tj , B(tj))(tj+1 − tj)
2

2
 =

∑
j

E
[
a2j (∆tj)

4
]
+ 2

∑
i<j

E
[
aiaj(∆ti)

2(∆tj)
2
]

=
∑
j

E
[
a2j
]
(∆tj)

4 + 2
∑
i<j

E [aiaj ] (∆ti)
2(∆tj)

2 → 0, as ∥Π∥ → 0. (99)

Therefore, the third summand vanishes. For the fourth summand, let bj = fxx(tj , B(tj)), so we can write that

n−1∑
j=0

fxx(tj , B(tj))(B(tj+1)−B(tj))
2 =

n−1∑
j=0

bj(∆Bj)
2. (100)

We then consider

E


n−1∑

j=0

bj(∆Bj)
2 −

n−1∑
j=0

bj∆tj

2
 =

∑
j

E
[
b2j
(
(∆Bj)

2 −∆tj
)2]

+ 2
∑
i<j

E
[
bibj

(
(∆Bi)

2 −∆ti
) (

(∆Bj)
2 −∆tj

)]
=
∑
j

E
[
b2j
]
E
[
(∆Bj)

4 − 2(∆Bj)
2∆tj + (∆tj)

2
]
+ 2

∑
i<j

E [bibj ]E
[
(∆Bi)

2 −∆ti
]
E
[
(∆Bj)

2 −∆tj
]

=
∑
j

E
[
b2j
] (

3(∆tj)
2 − 2(∆tj)

2 + (∆tj)
2
)
= 2

∑
j

E
[
b2j
]
(∆tj)

2 → 0, as ∥Π∥ → 0. (101)

Thus the fourth summand converges to ∫ T

0

bdt =

∫ T

0

fxx(t, Bt)dt. (102)

Finally for the fifth summand, let cj = ftx(tj , B(tj)), so we can write that

E


n−1∑

j=0

ftx(tj , B(tj))(tj+1 − tj)(B(tj+1)−B(tj))

2
 =

∑
j

E
[
c2j (∆tj)

2(∆Bj)
2
]
+ 2

∑
i<j

E [cicj∆ti∆tj∆Bi∆Bj ]

=
∑
j

E
[
c2j
]
(∆tj)

2E
[
∆B2

j

]
+ 2

∑
i<j

E [cicj ] ∆ti∆tjE [∆Bi]E [∆Bj ] =
∑
j

E
[
c2j
]
(∆tj)

3 → 0, as ∥Π∥ → 0.

(103)

Therefore, the fifth summand vanishes. Putting these summand together, we finally obtain that

f(T,BT ) = f(0, B0) +

∫ T

0

ft(t, Bt)dt+

∫ T

0

fx(t, Bt)dBt +
1

2

∫ T

0

fxx(t, Bt)dt, (104)

as desired, so the proof is complete.

Remark 4.2. One often writes Itô formulain the differential form, such that

df(t, Bt) = ft(t, Bt)dt+ fx(t, Bt)dBt +
1

2
fxx(t, Bt)dt. (105)

Yet the mathematically meaningful form of the Itô formula is (94). This is because we have precise definitions for
all terms appearing on the right-hand side: the first and the third terms are ordinary Riemann integrals, while the
second term is an Itô integral as we have defined.
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Example 4.3. In the last lecture, we have shown that∫ T

0

BtdBt =
B2

T

2
− T

2
. (106)

Let us show how Itô formula simplifies the computation of this Itô integral. Take f(t, x) = x2

2 , then the Itô formula
says that

df(t, Bt) = ft(t, Bt)dt+ fx(t, Bt)dBt +
1

2
fxx(t, Bt)dt = 0dt+BtdBt +

1

2
· 1dt. (107)

By integration, we can thus obtain that∫ T

0

BtdBt =

∫ T

0

df(t, Bt)−
1

2

∫ T

0

dt = (f(T,BT )− f(0, B0))−
1

2
(T − 0) =

B2
T

2
− T

2
, (108)

same as the result we have obtained earlier but much simpler to compute.

Example 4.4. Let βk(t) = E
[
Bk

t

]
. We will use the Itô formula to prove the recursive relation

βk(t) =
1

2
k(k − 1)

∫ t

0

βk−2(s)ds, for k ≥ 2. (109)

Note that we can choose f(t, x) = xk, then the Itô formula says that

df(t, Bt) = ft(t, Bt)dt+ fx(t, Bt)dBt +
1

2
fxx(t, Bt)dt = 0dt+ kBk−1

t dBt +
1

2
k(k − 1)Bk−2

t dt. (110)

Written in the integral form and taking expectation, this gives

βk(t) = E
[
Bk

t

]
= kE

[∫ t

0

Bk−1
s dBs

]
+

1

2
k(k − 1)E

[∫ t

0

Bk−2
s ds

]
. (111)

Since Bk−1
s is Fs-adapted, we have that

E
[∫ t

0

Bk−1
s dBs

]
= 0. (112)

Therefore, we can compute that

βk(t) =
1

2
k(k − 1)E

[∫ t

0

Bk−2
s ds

]
=

1

2
k(k − 1)

∫ t

0

E
[
Bk−2

s

]
ds =

1

2
k(k − 1)

∫ t

0

βk−2(s)ds. (113)

4.2 Itô Formula for General Diffusion

We extend the Itô formula to stochastic processes more general than Brownian motion.

Definition 4.5. An Itô process is a stochastic process Xt on (Ω,F ,P) of the form

Xt = X0 +

∫ t

0

µ(s, w)ds+

∫ t

0

ν(s, w)dBs, (114)

where ν ∈ V and the event P
[∫ t

0
ν2(s, w)ds < ∞,∀t ≥ 0

]
= 1. We also assume that µ is Ft-adapted and the event

P
[∫ t

0
|µ(s, w)|ds < ∞,∀t ≥ 0

]
= 1.

The Itô process is often written in the differential form as

dXt = µdt+ νdBt, (115)

where µdt is called the drift, and νdBt is called the volatile part.
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Theorem 4.6 (Itô’s lemma). Let Xt be an Itô process given by (114). Let g(t, x) ∈ C2([0,∞)×R]), i.e., g is twice
continuously differentiable on [0,∞)× R. Then Yt = g(t,Xt) is again an Itô process, and we have that

dYt = gt(t,Xt)dt+ gx(t,Xt)dXt +
1

2
gxx(t,Xt)(dXt)

2, (116)

We note that

(dXt)
2 = (µdt+ νdBt)

2 = µ2(dt)2 + ν2(dBt)
2 + 2µνdtdBt = 0 + ν2dt+ 0 = ν2dt. (117)

Substituting this expression into the Itô’s lemma, we thus have that

dYt = gt(t,Xt)dt+
1

2
gx(t,Xt)(µdt+ νdBt) + gxx(t,Xt)(ν

2dt) =

(
gt + µgx +

ν2

2
gxx

)
dt+ νgxdBt. (118)

Again, the first term is the new drift, and the second term is the new volatility term.

4.3 Stochastic Differential Equations

The general stochastic differential equations can be written in the form

Xt = X0 +

∫ t

0

b(s, w)ds+

∫ t

0

σ(s, w)dBs. (119)

This is stochastic since
∫ t

0
σ(s, w)dBs is a random component, and also b = b(s, w) can be a random function. The

solution to a stochastic differential equation is not a function, but a family of functions. In the short differential
form, we can also write that

dXt = bdt+ σdBt, X(0) = X0. (120)

Black-Scholes SDE. The Black-Schole equation is given by

dSt = rStdt+ σStdBt, (121)

with the initial condition S(0) = S0, and the term σStdBt represents uncertainty. To interpret this equation, r is
the risk-free interest rate (assumed constant), σ is the volatility (also assumed constant), Bt is a standard Brownian
motion, and St is the stock price. We first consider the ordinary differential equation without uncertainty, such that

dSt = rStdt, S(0) = S0. (122)

This would solve to St = S0 exp(rt). In other words, investing S0 at time 0 would result in S0 exp(rt) at time t.
This is simply a formula for return on risk-free investment. Now Black-Scholes equation adds uncertainty to it. Let
Yt = g(t, St) = logSt, then the Itô formula gives that

dYt =

(
0 + rSt ·

1

St
+

(σSt)
2

2
· −1

S2
t

)
dt+ σSt ·

1

St
dBt =

(
r − σ2

2

)
dt+ σdBt. (123)

Converting back to the integral form, this means that

logSt − logS0 =

(
r − σ2

2

)
(t− 0) + σ(Bt −B0) =

(
r − σ2

2

)
t+ σBt =⇒ St = S0 exp

((
r − σ2

2

)
t+ σBt

)
.

(124)

The solution to the Black-Scholes equation implies that St ≥ 0 as long as S0 ≥ 0. The result above allows to calculate
the prices for vanilla European options. In particular, the call price

c(t, S0) = exp (−rt)E
[
(St −K)+

]
= S0N(d+(t, S0))−K exp (−rt)N(d−(t, S0)), (125)

where N is the cumulative standard normal distribution and

d±(t, x) =
1

σ
√
t

(
log

x

K
+

(
r ± σ2

2

)
t

)
, N(x) =

∫ x

−∞

1√
2π

exp

(
−y2

2

)
dy. (126)
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Ornstein-Uhlenbeck SDE. To be done...

4/24 Lecture

5 Girsanov’s Theorem

Recall that in standard probability theory, given a probability space (Ω,F ,P) and a nonnegative random variable
Z such that E[Z] = 1, we can define a new probability measure P̃ as

P̃(A) =

∫
A

Z(w)dP (w), ∀A ∈ F . (127)

Let Ẽ denote the expectation taken under this new measure, then the expectations for any random variable X under
these two probability measures satisfy

Ẽ[Z] = E[XZ]. (128)

Conversely, if P[Z > 0] = 1, then

Ẽ

[
X

Z

]
= E[X]. (129)

We say that Z is the Radon-Nikodỳm derivative of P̃ with respect to P, and we write that

Z =
dP̃
dP

. (130)

Now we extend this idea to stochastic processes. Given a probability space (Ω,F ,P) and a filtration Ft, we define
the Radon Nikodỳm derivative as

Z(t) = Ẽ[Z|Ft]. (131)

It is clear that Z(t) is a martingale under P, such that

E[Z(t)|Fs] = E[E[Z|Ft]|Fs] = E[Z|Fs] = Z(s). (132)

Lemma 5.1. Let Y be an Ft-measurable random variable, then Ẽ[Y ] = E[Y Z(t)].

Proof. We can see that

Ẽ[Y ] = E[Y Z] = E[E[Y Z|Ft]] = E[Y E[Z|Ft]] = E[Y Z(t)]. (133)

Lemma 5.2. Let Y be an Ft-measurable random variable, then Z(s)Ẽ[Y |Fs] = E[Y Z(t)|Fs].

Proof. By definition of conditional expectation, we need to show that∫
A

Y dP̃ =

∫
A

1

Z(s)
E[Y Z(t)|Fs]dP̃, ∀A ∈ Fs. (134)

Note that ∫
A

1

Z(s)
E[Y Z(t)|Fs]dP̃ = Ẽ

[
1A

1

Z(s)
E[Y Z(t)|Fs]

]
= E[1AE[Y Z(t)|Fs]] = E[E[1AY Z(t)|Fs]]

= E[1AY Z(t)] = Ẽ[1AY ] =

∫
A

Y dP̃, (135)

so the proof is complete.
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Before we prove Girsanov’s theorem, we first state (without proof) Lévy’s theorem.

Theorem 5.3 (Lévy’s theorem). Let M(t) be a martingale relative to Ft. Assume that M(0) = 0 and M(t) has
continuous paths. Furthermore, the quadratic variation [M,M ](t) = t for all t ≥ 0. Then M(t) is a Brownian motion.

Now we state and prove Girsanov’s theorem.

Theorem 5.4 (Grisanov’s theorem). Let B(t) be a Brownian motion relative to Ft, 0 ≤ t ≤ T , and Θ(t) be an
adapted process. Define

Z(t) = exp

(
−
∫ t

0

Θ(u)dB(u)− 1

2

∫ t

0

Θ2(u)du

)
, (136)

B̃(t) = B(t) +

∫ t

0

Θ(u)du, (137)

and assume that

E

[∫ T

0

Θ2(u)Z2(u)du

]
< ∞. (138)

Set Z = Z(t), then E[Z] = 1 and under P̃ as defined before, B̃(t) is a Brownian motion.

Proof. It is clear that B̃(0) = 0 and B̃(t) has continuous paths. Also, [B̃, B̃](t) = [B,B](t) = t, since the term∫ t

0
Θ(u)du contributes zero quadratic variation. Therefore by Lévy’s theorem, we only need to show that B̃(t) is a

martingale under P̃ in order to conclude that B̃(t) is a Brownian motion under P̃. Let

X(t) = −
∫ t

0

Θ(u)dB(u)− 1

2

∫ t

0

Θ2(u)du, (139)

then by Itô’s formula, we have that

dZ(t) = d (exp(X(t))) = exp(X(t))dX(t) +
1

2
exp(X(t))(dX(t))2

= exp(X(t))

(
−Θ(t)dB(t)− 1

2
Θ2(t)dt

)
+

1

2
exp(X(t))Θ2(t)dt = −Θ(t)Z(t)dB(t). (140)

Therefore, Z(t) is a martingale under P, so we have that Z(t) = E[Z|Ft], which means that Z(t) can be seens as
a Radon-Nikodỳm derivative process and the previous lemmas can be applied. Next we show that B̃(t)Z(t) is a
martingale under P. Note that

d
(
B̃(t)Z(t)

)
= B̃(t)dZ(t) + Z(t)dB̃(t) + dB̃(t)dZ(t)

= − B̃(t)Θ(t)Z(t)dB(t) + Z(t) (dB(t) + Θ(t)dt)− (dB(t) + Θ(t)dt)Θ(t)Z(t)dB(t)

= − B̃(t)Θ(t)Z(t)dB(t) + Z(t)dB(t) + Z(t)Θ(t)dt−Θ(t)Z(t)(dB(t))2 −Θ2(t)Z(t)dtdB(t)

= − B̃(t)Θ(t)Z(t)dB(t) + Z(t)dB(t) + Z(t)Θ(t)dt−Θ(t)Z(t)dt

=
(
−B̃(t)Θ(t) + 1

)
Z(t)dB(t). (141)

Finally, we can see that

Ẽ[B̃(t)|Fs] =
1

Z(s)
E[B̃(t)Z(t)|Fs] =

1

Z(s)
B̃(s)Z(s) = B̃(s), (142)

so indeed B̃(t) is a martingale under P̃, and the proof is complete by Lévy’s theorem.

5/1 Lecture

6 Stochastic Calculus and Partial Differential Equations

Throughout this section, we will be using the following lemma.
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Lemma 6.1. Assume we are given a random variable X on (Ω,F ,P) and a filtration (Ft)t≥0. Then E[X|Ft] is a
martingale with respect to filtration (Ft)t≥0.

Proof. The proof follows directly from the towering property of conditional expectation.

Corollary 6.2. Let Xt be a Markov process and Ft be the natural filtration associated with this process. Then
according to the above lemma, for any function V , the process E[V (XT )|Ft] is a martingale, and applying Markov
property, we get that E[V (XT )|Xt] is a martingale. In the following we often write E[V (XT )|Xt] as EXt=x[V (XT )].

6.1 Expected Value of Payoff

Assume that Xt is a stochastic process satisfying the following stochastic differential equation

dXt = a(t,Xt)dt+ σ(t,Xt)dBt, (143)

or in the integral form

Xt −X0 =

∫ t

0

a(s,Xs)ds+

∫ t

0

σ(s,Xs)dBs. (144)

Let u(t, x) = EXt=x[V (XT )] be the expected value of some payoff V at maturity T > t given that Xt = x. Then the
expected value of payoff u(t, x) solves

ut + a(t, x)ux +
1

2
σ2(t, x)uxx = 0, t < T, (145)

with u(T, x) = V (x). By the corollary we can conclude that u(t, x) is a martingale. Applying Itô’s lemma, we get

du(t,Xt) = utdt+ uxdXt +
1

2
uxx(dXt)

2 =

(
ut + aux +

1

2
σ2uxx

)
dt+ σuxdBt. (146)

Since u(t, x) is a martingale, the drift term must be zero, and thus u(t, x) solves

ut + aux +
1

2
σ2uxx = 0, (147)

and u(T, x) = EXT=x[V (XT )] = V (x).

6.2 Feynman-Kac Formula

Suppose that we are interested in a suitably “discounted” final-time payoff of the form

u(t, x) = EXt=x

[
exp

(
−
∫ T

t

b(s,Xs)ds

)
V (XT )

]
, (148)

for some specific function b(t,Xt). We will show that u then solves

ut + a(t, x)ux +
1

2
σ2(t, x)uxx − b(t, x)u = 0. (149)

with u(T, x) = V (x). The fact that u(T, x) = V (x) is clear from the definition of the function u. Therefore, let us
focus on the proof of the differential equation. Our strategy is to apply the corollary and thus we have to find some
martingale involving u(t, x). For this reason, we consider

exp

(
−
∫ t

0

b(s,Xs)ds

)
u(t, x) = exp

(
−
∫ t

0

b(s,Xs)ds

)
EXt=x

[
exp

(
−
∫ T

t

b(s,Xs)ds

)
V (XT )

]

= EXt=x

[
exp

(
−
∫ T

0

b(s,Xs)ds

)
V (XT )

]
. (150)
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According to the corollary, the above is a martingale. Applying Itô’s lemma, we get

d

(
exp

(
−
∫ t

0

b(s,Xs)ds

)
u(t, x)

)
=

(
ut + a(t, x)ux +

1

2
σ2(t, x)uxx − b(t, x)u

)
exp

(
−
∫ t

0

b(s,Xs)ds

)
dt+ exp

(
−
∫ t

0

b(s,Xs)ds

)
uxdBt.

(151)

Since the drift of a martingale must be zero, we obtain the desired differential equation.

Example 6.3 (Black-Scholes SDE). We assume that the underlying (stock, for instance) follows a geometric Brow-
nian motion. That is, in the risk-neutral measure, it satisfies the SDE

dSt = rStdt+ σStdBt, (152)

where r is the risk-free rate which we assume to be constant. The payoff of the European option at maturity T is
known and is equal to V (ST ). Then to find the value of the option at some earlier time t < T , we have to compute

ESt=x [exp(−rt)V (ST )] . (153)

From the Feynman-Kac formula, we conclude that u(t, x) solves the partial differential equation

ut + rxux +
1

2
σ2x2uxx − ru = 0, (154)

with u(T, x) = V (x). As above is the famous Black-Scholes SDE.

6.3 Running Payoff

Now suppose that we are interested in

u(t, x) = EXt=x

[∫ T

t

b(s,Xs)ds

]
, (155)

for some specified function b(t, x). First of all, let us find the final-time condition for u(t, x). Clearly, u(T, x) = 0.
Our next step is to find a martingale involving u(t, x) so as to use the corollary. Note that

u(t, x) +

∫ t

0

b(s,Xs)ds = EXt=x

[∫ T

t

b(s,Xs)ds

]
+

∫ t

0

b(s,Xs)ds = EXt=x

[∫ T

0

b(s,Xs)ds

]
, (156)

which is a martingale. Applying Itô’s lemma, we get

ut + a(t, x)ux +
1

2
σ2(t, x)uxx + b(t, x) = 0, (157)

analogous to previous deductions (using the fact that the drift of a martingale must be zero).

6.4 Boundary Value Problems and Exit Times

In previous examples, we were interested in the expectation of the form EXt=x[V (XT )], that is, the expectation of
some payoff at specified maturity T . Now let us assume that we are given a region D ⊆ R and a process Xt starting
from some point x ∈ D. Let

τ(x) = min(T, inf {t; Xt /∈ D}). (158)

That is, τ(x) is the first time Xt exits from the region D if prior to T , otherwise τ(x) = T . Assume that at exit time
τ , the payoff of an optionis given by the function V . We are interested in the fair price of such an option at some
earlier time t, i.e., in the following quantity

u(t, x) = EXt=x[V (τ,Xτ )]. (159)

We will see that just like in the previous examples, u(t, x) solves a partial differential equation, but in contrast,
the PDE must be solve inside the region D with suitable boundary data. The key to derivation of the PDE is the
following lemma.
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Lemma 6.4. Let E[τ ] < ∞. Then E[V (Xτ )|Ft] is a martingale with respect to filtration (Ft∧τ )t≥0.

Applying Itô’s lemma, we get

du(t, x) =

(
ut + aux +

1

2
σ2uxx

)
dt+ uxσdBt. (160)

By the lemma above, u(t, x) is a martingale and thus has no drift term. Thus u(t, x) solves the following PDE

ut + aux +
1

2
σ2uxx = 0, (161)

with boundary conditions u(t, x) = V (t, x) for x ∈ ∂D and u(T, x) = V (T, x) for x ∈ D. An application is the
distribution of the first arrivals. Consider EXt=x[1τ<T ] = PXt=x[τ < T ]. According to above, it suffices to solve

ut + aux +
1

2
σ2uxx = 0, (162)

with boundary condition u = 1 on x ∈ ∂D.

Last Modified: May 8, 2023.
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