
A Comparative Analysis of LAPACK Routines for Solving
Eigenproblems on Real Symmetric Tridiagonal Matrices

Yao Xiao
yaoxiao@g.harvard.edu

Declaration

Textbook chapter. The chapter of Heath’s textbook [6] that this work is closest to is Chapter 4,
Eigenvalue Problems, and in particular Chapter 4.5, Computing Eigenvalues and Eigenvectors.
The most relevant sections are §4.5.3, §4.5.6, §4.5.9, §4.5.10, and §4.5.11.

Contributions of the authors. I declare that this work was composed entirely by myself,
except where it is acknowledged through reference or citation.

Use of AI tools. GitHub Copilot is used for code completion. ChatGPT is used for learning
Fortran syntaxes and for reading certain parts of the LAPACK documentation [1].

Other sources. There are no other sources involved in this work, except where it is acknowl-
edged through reference or citation.

0

mailto:yaoxiao@g.harvard.edu

1 Introduction
Eigenproblems on symmetric tridiagonal matrices are a cornerstone of numerical linear algebra,
with applications spanning physics, engineering, and data science. LAPACK [1], a widely
adopted library for linear algebra computations, offers multiple routines for solving these
eigenproblems, each leveraging distinct algorithms with varying computational complexities and
performance characteristics. This report provides a comparative analysis of the LAPACK routines
STEV, STEVD, STEVX, and STEVR. Through synthetic and real-world matrices, we evaluate their
performance and accuracy under different scenarios.

Organization. In §2 we will go over the routines and their underlying algorithms, and briefly
analyze their theoretical computational complexities. In §3 we will discuss the testing environ-
ment, testing matrices, and evaluation metrics used in this report. §4 and §5 will demonstrate
the evaluation results on performance and accuracy, respectively, of the routines. The report will
be concluded in §6.

2 Algorithms Overview
In this section, we breifly will go over the algorithms used by the four LAPACK routines, STEV,
STEVD, STEVX, and STEVR, for solving eigenproblems on symmetric tridiagonal matrices T of
size n×n.

Routine Algorithm Complexity Heath [6]
STEV (§2.1) QR Iteration O(n3) §4.5.6
STEVD (§2.2) Divide & Conquer O(n3), better when clustered §4.5.10
STEVX (§2.3) Bisection O(n3), O(n2) when isolated §4.5.3, §4.5.9
STEVR (§2.4) MRRR O(n2) §4.5.11

Table 1: The four LAPACK routines for solving symmetric tridiagonal eigenproblems and
their underlying algorithms. Note that the computational complexity here is theoretical and
considering solving the full eigenproblem, i.e., solving for all eigenvalues and eigenvectors.

2.1 STEV: QR Iteration
The STEV routine utilizes the QR iteration algorithm with shifts. At each step k, the algorithm
performs QR decomposition on the shifted matrix, such that

Tk −σkI = QkRk, (1)

where Qk is orthogonal, Rk is upper triangular, the σk is the shift (typically) chosen as the bottom
right corner of Tk (some eigenvalue of a submatrix). The matrix Tk is then updated as

Tk+1 = RkQk +σkI. (2)

This is essentially a similarity transform as eigenvalues are preserved. The tridiagonal form is
also preserved across iterations. The symmetry ensures that off-diagonal elements decrease over
iterations until negligible so that Tk converges to a diagonal matrix where the diagonal entries
are the eigenvalues of T . The implicit use of shifts accelerates this convergence by ensuring
more rapid convergence of the largest eigenvalues.

1

During the QR iteration, the eigenvectors can be accumulated by successively applying the
matrices Qk at each step k to the matrix of basis vectors (identity matrix of standard basis). This
will finally result in an orthogonal matrix V , whose columns are the normalized eigenvectors
corresponding to the eigenvalues of T . QR iteration is known to be an O(n3) algorithm.

2.2 STEVD: Divide and Conquer
The STEVD routine implements the divide-and-conquer method [7]. The eigenproblem on T is
recursively split into eigenproblems on smaller submatrices of T , with their eigenvalues and
eigenvectors computed independently and merged together (conquer). The split will be until the
submatrix size drops under a fixed threshold. In particular, each split looks like

T =

(
T1 0
0 T2

)
+βuu⊤, (3)

where T1 and T2 are the tridiagonal submatrices to be processed (if under threshold) or split
further (otherwise), and the second term is a rank-1 correlation with u being all 0 except for the
two terms in its middle being 1. Consider that the recursive splits form a binary tree, and we find
the eigenvalues and eigenvectors of the leaves with some direct method, then the conquer step
will merge the eigenvalues (and eigenvectors) in the leaves bottom-up the tree. Let T1 = Q1Λ1Q⊤

1
and T2 = Q2Λ2Q⊤

2 with Q1 and Q2 orthogonal. Plugging into (3), we have that

QΛQ⊤ = D+βvv⊤, (4)

where Q and Λ are Q1,Q2 and Λ1,Λ2 combined in the way T is obtained from T1,T2, and
v consists of the last row of Q1 and the first row of Q2. The conquer of eigenvalues would
essentially be solving the secular equation

1+β

n

∑
i=1

v2
i

di −λ
= 0. (5)

The merged eigenvector corresponding to the merged eigenvalue λ would then be given by
(D−λ I)−1v normalized. In practice, the STEVD routine alternatively performs a scaling on the
eigenvectors of T1 and T2 first, then multiplies by the eigenvector matrix accumulated bottom-up
to obtain the merged eigenvector. The cost for obtaining the eigenvalues and eigenvectors of T
is theoretically O(n3). However, deflations can occur when the eigenvalue and eigenvector com-
puted from a smaller eigenproblem can be directly used for a larger eigenproblem, which saves
computation. Deflations can happen frequently for symmetric tridiagonal matrices, depending
on many factors such as the distribution of eigenvalues. In the worst case when no delation
happens, this is still O(n3), but is much better than O(n3) especially when eigenvalues of T are
clustered and eigenvectors are sparse.

2.3 STEVX: Bisection and Inverse Iteration
The STEVX routine employs the bisection method that can find all or a subset of eigenvalues
and eigenvectors [2]. This method is based on an inexpensive recurrence relation to count the
number of eigenvalues below a fixed threshold µ , enabled by the tridiagonal nature of T . In
particular, let pk(µ) be the characteristic polynomial of submatrix of first k rows and k columns
of T , then

pk+1(µ) = (µ −Tj+1, j+1)pk(µ)−T 2
j+1, j pk−1(µ). (6)

2

The number of eigenvalues less than µ would then be equal to the number of consecutive terms
with the same sign in the sequence {pk(µ)}. With this observation, by computing the initial
spectral bounds of T (for instance by the Gershgorin circle theorem), the intervals that contain at
least one eigenvalue of T can be successively halved until shrinking below the desired precision.
Note that (6) is prone to overflow so the recurrence relation used in practice is on pk(µ)/pk−1(µ)
instead of directly on pk(µ). With the bisection method, each eigenvalue can be found with O(n)
additions and divisions. Hence finding a subset of m eigenvalues would be O(mn) and finding
all eigenvalues would be O(n2) operations.

After eigenvalues are obtained, the corresponding eigenvectors can be computed by inverse
iteration. In particular, for each eigenvalue λi, per step k it solves

(T −λiI)x(k+1) = τkv(k), (7)

starting from some approximation v(0) of the i-th eigenvector and τk’s are scalars. The inverse
iteration works best when the eigenvalues are sufficiently isolated, which results in O(mn)
operations for m eigenvectors. If the eigenvalues are clustered together, then Gram-Schmidt
orthogonalization is needed as a remedy to retain the orthogonality on the approximated eigen-
vectors, which increases the number of operations to O(m2n) (and O(n3) in the worst case if all
eigenvalues are relatively close to each other). If finding all eigenvalues and eigenvectors, this is
O(n2) for well-separated eigenvalues and O(n3) otherwise.

2.4 STEVR: MRRR Algorithm
The STEVR routine employs the Multiple Relatively Robust Representations (MRRR) algo-
rithm [3, 4]. Like STEVX, it supports computing only a subset of eigenvalues and eigenvectors,
say m. The critical component of this algorithm is the Relatively Robust Representation (RRR),
such that

LpDpL⊤
p −σ I = LDL⊤, (8)

where L is unit lower bidiagonal, D is diagonal, and σ is a proper shift near some cluster of
eigenvalues. The eigenvalues of LpDpL⊤

p should be computed to high relative accuracy, using
techniques like bisection of DQDS (differential quotient with shifts). These eigenvalues will be
grouped into clusters (or isolated if an eigenvalue is not close to any of its neighbors). For each
isolated eigenvalue, an approximate eigenvector can be formed based on some formula on top of
the DQDS transform which we will not specify here. For each cluster, compute a partial RRR
based on the DQDS transform, shifting by some eigenvalue in the cluster. The eigenvalues in
this cluster will be updated by the partial RRR, and they will go through the grouping process
again. This recursively refines the partial RRR until eigenvalues become sufficiently isolated
so that a final RRR can be obtained. Note that for the shifting when dealing with clusters, the
algorithm can avoid traversing all eigenvalues in the cluster by early breaking when reaching
some tolerance, which in practice can save much complexity.

The MRRR algorithm costs O(n) operations per requested eigenvalue and eigenvector, so that
the total cost is O(mn) and O(n2) when requesting all eigenvalues and eigenvectors. Moreover,
unlike STEVX, numerically orthogonal eigenvectors can be obtained in O(n2) even when eigen-
values are clustered, without relying on Gram-Schmidt orthogonalization to remedy the results.
Note that this is the only theoretically O(n2) algorithm among STEV, STEVD, STEVR, and STEVX
to solve the full eigenproblem on a symmetric tridiagonal matrix.

3

3 Testing Setup
In this section, we will give a brief overview of the testing setup, including test environment
(§3.1), test matrices (§3.2), and evaluation metrics (§3.3).

3.1 Environment
All tests will be performed on a single machine with the Intel Core Ultra 7 155H CPU, which
has 22 virtual cores and 24MB L3 cache. The operating system is Windows WSL2.

The LAPACK routines used in the testing are their Fortran versions, wrapped by scipy with
f2py under the scipy.linalg.lapack module. These are very thin wrappers that perform only
bare metal checks like array alignment, which reflects the actual performance of the LAPACK
routines effectively. scipy.linalg.lapack, however, do not contain wrappers of all LAPACK
routines (in particular, it does not contain STEVD, STEVR, and STEVX wrappers as of version
1.15.0), so we implement our own wrappers within its framework (Appendix A). We use the
double precision versions of the routines, i.e., the ones prefixed D.

The Fortran compiler is GCC Fortran 13.3.0 with O2 level optimization. The underlying BLAS
library is OpenBLAS 0.3.28 on the Prescott architecture, with OpenMP disabled.

3.2 Test Matrices
We include two classes of test matrices. The first class consists of symmetric tridiagonal matrices
that are synthetically generated based on different eigenvalue distributions and some special
matrices that are notoriously famous for failing certain numerical algorithms. The second
consists of symmetric tridiagonal matrices from real-world applications, collected from public
datasets.

Synthetic matrices. We include the following synthetic matrices in the test suite [4]. The
matrix sizes range from 100 to 2000. The implementations are included in Appendix B.1.

• uniform_eps: The first n−1 eigenvalues are uniformly distributed from ε to (n−1)ε ,
and the n-th eigenvalue is 1.

• uniform_sqeps: The first eigenvalue is ε , the second to the (n− 1)-th eigenvalues are
uniformly distributed from 1+

√
ε to 1+(n−2)

√
ε , and the n-th eigenvalue is 2.

• uniform_equi: The eigenvalues are uniformly distributed from ε to 1.

• geometric: The eigenvalues are geometrically distributed between ε and 1.

• normal: The eigenvalues are sampled from a standard normal distribution.

• clustered_one: The first eigenvalue is ε , and the rest of the eigenvalues are all around 1
with random perturbations at ε-scale.

• clustered_pmone: The first eigenvalue is ε , and the rest of the eigenvalues are all around
either ±1 with random perturbations at ε-scale.

• clustered_machep: The first n−1 eigenvalues are all around ε with random perturbations
at ε-scale, and the n-th eigenvalue is 1.

4

• clustered_pmmachep: The first n−1 eigenvalues are all around either ±ε with random
perturbations at ε-scale, and the n-th eigenvalue is 1.

• wilkinson: Wilkinson matrices, such that diagonal entries are 1 to n and off-diagonal en-
tries are 1. Wilkinson matrices are known to have highly clustered by unequal eigenvalues.

Real-world matrices. For real-world matrices, we take the BCSSTK01 to BCSSTK33 matri-
ces in the BCS structural engineering matrices dataset (excluding too large matrices n > 5000),
from the Harwell-Boeing collection [5]. These are large sparse real symmetric matrices for
real-world eigenproblems coming from a variety of applications. We will use LAPACK’s SYTRD
routine to generate their tridiagonal forms for testing.

3.3 Evaluation Metrics
Except for the trivial metric of time taken to execute the routine which measures the performance,
we include two metrics, loss of orthogonality and maximum residual norm, for evaluating the
accuracy of the results. The implementations are included in Appendix B.2. Let T be the
original real symmetric tridiagonal matrix of size n, λ1, . . . ,λn be the computed eigenvalues, and
z1, . . . ,zn be the corresponding computed eigenvectors.

Loss of orthogonality. The loss of orthogonality metric measures the deviation of the com-
puted eigenvectors from being perfectly orthogonal, defined as

Loss of orthogonality = max
i̸= j

|z⊤i z j|
nε

, (9)

where ε is the machine epsilon and the term nε is for normalization of the metric. This essentially
captures the largest off-diagonal entry of the Gram matrix of the eigenvectors. In theoretical
settings, the eigenvectors of symmetric matrices are expected to form an orthonormal basis,
but due to numerical errors and finite-precision arithmetic, the computed eigenvectors may not
perfectly adhere this property. The larger this metric, the worse orthogonality is maintained in
the computed eigenvectors.

Maximum residual norm. The maximum residual norm metric evaluates the quality of the
computed eigenpairs by measuring how closely they satisfy the eigenvalue equation T zi = λizi,
such that

Maximum residual norm = max
i

∥T zi −λizi∥
nε∥T∥

, (10)

where the term nε is again for normalizing the metric. A large maximum residual norm means
that some eigenpair is highly inaccurate, highlighting potential numerical instability in the
algorithm.

4 Performance
In this section, we will compare the performance of the different LAPACK routines for solving
eigenproblems on different real symmetric tridiagonal matrices. We will compare the perfor-
mances on both synthetic matrices (§4.1) and on real-world matrices (§4.2).

5

4.1 Synthetic Matrices

(a) STEV: QR iteration (b) STEVD: Divide and conquer

(c) STEVX: Bisection and inverse iteration (d) STEVR: MRRR algorithm

Figure 1: Performance of the routines on different synthetic matrices, solving for both eigenvalues
and eigenvectors. The points are the actual data and the lines are the least-squares fits in log-log
scale. The numbers in the legend are the slopes of the fitted lines.

Figure 1 shows the performance of the four LAPACK routines on different synthetic matrices,
solving for both eigenvalues and eigenvectors. The y-axis of the four subfigures are aligned,
from which we can clearly see that STEV and STEVX are significantly slower than STEVD and
STEVR. STEV (QR iteration) is indeed the theoretical slowest, having a computational complexity
of O(n3). STEVX (bisection) needs the inverse iteration process to compute the eigenvectors,
which also makes it O(n3) as long as eigenvalues are not sufficiently isolated. STEVD (divide
and conquer) is theoretically O(n3) must benefits from frequent deflations in most scenarios,
thus performing much better than the previous two. STEVR (MRRR) is a theoretically O(n2)
algorithm so its good performance is also reasonable.

From the slopes, we can see that STEV and STEVX are less sensitive to different distributions
of eigenvalues, almost always near 3 (and indeed they are O(n3) algorithms). In constrast,
STEVD and STEVR are more sensitive to the distributions of eigenvalues. Indeed, the performance
of STEVD (divide and conquer) largely depends on how many deflations occur during the
process, which is in turn dependent on the distributions of eigenvalues. STEVR seems to perform
particularly well on clustered_machep and clustered_pmmachep matrices, possibly because it is
easy to reach the tolerance when refining the partial RRRs, saving a lot of computations. Both

6

STEVD and STEVR achieves slopes of around 2 (meaning O(n2) complexity) at least for some
types of matrices.

(a) STEV: QR iteration (b) STEVD: Divide and conquer

(c) STEVX: Bisection and inverse iteration (d) STEVR: MRRR algorithm

Figure 2: Performance of the routines on different synthetic matrices, solving for only eigenvalues
(not eigenvectors). The points are the actual data and the lines are the least-squares fits in log-log
scale. The numbers in the legend are the slopes of the fitted lines.

Figure 2, different from Figure 1, show the performance comparison when solving for only
eigenvalues. The results become very different, particularly for STEV and STEVX. First of all,
note that the y-axis has changed from range [0.0001,10] to [0.0001,0.1], and we can see that all
four routines can finish much faster than when eigenvectors are also requested. Moreover, the
performance of STEV and STEVX are now comparable to that of STEVD and STEVR, all having
slopes near 2, meaning that they achieve near O(n2) performance. We particularly focus on the
former two. For STEV (QR iteration), we note that square root operations can be tens of times
more expensive than additions and multiplications. It has been shown that when computing only
for eigenvalues, the O(n2) square root operations involved in the QR iteration can be mitigated
with O(n2) additions and multiplications with larger constant, but the square root operations
are not avoidable when eigenvectors also need to be computed. Thus STEV is around O(n3)
when solving for both eigenvalues and eigenvectors but improves to around O(n2) when only
eigenvalues are needed. For STEVX (bisection), the O(n3) complexity comes from the inverse
iteration process for computing eigenvectors when eigenvalues are not sufficiently isolated,
while the computation of all eigenvalues only is indeed O(n2) in theory.

7

4.2 Real-World Matrices

(a) Eigenvalues and eigenvectors (b) Eigenvalues only

Figure 3: Performance of the routines on the collection of real-world matrices. Each data point
is the size of a real-world matrix mapping to computation time. The lines are the least-squares
fits in log-log scale. The numbers in the legend are the slopes of the fitted lines. The different
characteristics of the matrices are not distinguishable in the plot.

Figure 3 shows the performance evaluation results on real-world matrices, with Figure 3a
computing both eigenvalues and eigenvectors and Figure 3b computing only eigenvalues. The
results are similar to those on synthetic matrices. From Figure 3a we can see that when computing
both eigenvalues and eigenvectors, STEV (QR iteration) and STEVX (bisection) are approximately
O(n3) as expected. STEVD (divide and conquer) performs the best at O(n2) complexity. STEVR
(MRRR) is however worse than its theoretical O(n2) complexity, being approximately O(n2.5)
on the chosen collection of real-world matrices. This is likely related to the characteristics of
the matrices, since we have also seen complexities worse than O(n2) for STEVR in Figure 1d,
for instance on Wilkinson matrices. Now from Figure 3b, when computing only eigenvalues,
similar to previous results on synthetic matrices, all routines achieve comparable performance at
approximately O(n2). We see that STEV and STEVX, which perform much worse than STEVD and
STEVR in most test cases, are achieving better performance on real-world matrices.

5 Accuracy
In this section, we will report the worst-case maximum residual norm and orthogonality loss
metrics of the routines on different synthetic matrices.

From Figure 4a, there is no clear pattern based on the routines and types of matrices, but in
general STEVR (MRRR) performs slightly worse then the other three routines. This pattern is
much clearer in Figure 4b, where STEVR has significantly worse orthogonality loss than the other
three routines. Though the plot shows only the worst-case scenario, even the best-case scenario
follows this pattern. This however makes sense because the MRRR algorithm achieves its O(n2)
computational complexity primarily by mitigating the need of the expensive reorthogonalization
via Gram-Schmidt process, and this is at the cost of orthogonality accuracy. The same can be
seen in Figure 5 on real-world matrices.

8

(a) Worst-case maximum residual norm (b) Worst-case orthogonality loss

Figure 4: Accuracy metrics of different routines on different synthetic matrices.

Figure 5: Accuracy metrics of different routines on the collection of real-world matrices.

6 Conclusion
This report has presented a comprehensive evaluation of four LAPACK routines — STEV, STEVD,
STEVX, and STEVR — for solving eigenproblems on real symmetric tridiagonal matrices. The
findings reveal significant differences in performance and accuracy, influenced by algorithmic

9

design and matrix properties. STEVD and STEVR are in general much faster than their counterparts,
particularly for large matrices. STEVD is, in many cases, even faster than STEVR despite being a
theoretical O(n3) algorithm, thanks to the large number of deflations in practice on tridiagonal
matrices. STEVR can also suffer from inaccuracies, particularly loss of orthgonality in the
eigenvectors. Yet though not discussed in detail in this report, STEVR supports finding a subset
of eigenvalues and eigenvectors, which STEVD is unable to. As for STEV and STEVX, though
being slower when STEVD and STEVR, provide the most accurate results. Moreover, in cases
where eigenvectors are not needed, they can also achieve comparable performance with their
counterparts.

References
[1] Edward Anderson, Zhaojun Bai, Christian Bischof, L Susan Blackford, James Demmel,

Jack Dongarra, Jeremy Du Croz, Anne Greenbaum, Sven Hammarling, Alan McKenney,
and others. LAPACK Users’ Guide. SIAM, 1999.

[2] James W. Demmel, Inderjit Dhillon, and Huan Ren. On the Correctness of Parallel Bisection
in Floating Point. Technical Report UCB//CSD-94-805, University of California, Berkeley,
March 1994.

[3] Inderjit S. Dhillon, Beresford N. Parlett, and Christof Vomel. LAPACK Working Note 162:
The Design and Implementation of the MRRR Algorithm. Technical Report UCB//CSD-04-
1346, University of California, Berkeley, December 2004.

[4] Inderjit Singh Dhillon. A New O(n^2) Algorithm for the Symmetric Tridiagonal Eigenval-
ue/Eigenvector Problem, 1997. ISBN: 0591525461.

[5] I. S. Duff, Roger G. Grimes, and John G. Lewis. Sparse Matrix Test Problems. ACM
Transactions on Mathematical Software, 15(1):1–14, March 1989.

[6] Michael T Heath. Scientific Computing: An Introductory Survey, Revised Second Edition.
SIAM, 2018.

[7] J. Rutter. A Serial Implementation of Cuppen’s Divide and Conquer Algorithm for the Sym-
metric Eigenvalue Problem. Technical Report UCB/CSD 94/799, University of California,
Berkeley, March 1994.

10

A Fortran LAPACK Routine Wrappers
f2py is a Fortran to Python interface generator to enable calling Fortran routines in Python code.
On top of that, scipy wraps the Fortran LAPACK routines with utilities such as array alignment
so that LAPACK routines can be called from Python at ease. Unfortunately, scipy only exposes
part of the LAPACK routines, not including the ones we are using in this report. In this appendix
we show our implementation of the f2py wrappers (signatures) over the routines used in this
report. We show only the double precision variants.

A.1 STEV: QR Iteration
The f2py wrapper is implemented as follows.

1 subroutine dstev(d,e,compute_v ,n,z,ldz ,work ,info)
2 ! computes all eigenvalues , and , optionally eigvectors of a real ,
3 ! symmetric tridiagonal matrix , using QR iteration.
4

5 callstatement (* f2py_func)((compute_v?"V":"N"),&n,d,e,z,&ldz ,work ,
6 &info)
7 callprotoargument char*,F_INT*,double*,double*,double*,F_INT*,
8 double*,F_INT*
9

10 integer optional ,intent(in) :: compute_v = 1
11 double precision dimension(n),intent(in ,out ,copy ,out=vals) :: d
12 integer depend(d),intent(hide),check(n>0) :: n = shape(d,0)
13 double precision depend(n),dimension(MAX(n-1,1)),intent(in ,copy)
14 :: e
15 integer intent(hide),depend(n) :: ldz = (compute_v?n:1)
16 double precision dimension(ldz ,(compute_v?n:1)),intent(out),
17 depend(n,ldz) :: z
18 double precision dimension ((compute_v?MAX(1,2*n-2):1)),depend(n),
19 intent(hide) :: work
20 integer intent(out) :: info
21

22 end subroutine dstev

It can be called in Python as follows.

1 import numpy as np
2 from scipy.linalg.lapack import get_lapack_funcs
3

4 dstev = get_lapack_funcs("stev", dtype=np.float64)
5

6 # Inputs:
7 # d The diagonal of the input matrix
8 # e The subdiagonal of the input matrix
9 # Outputs:

10 # vals First m entries are the obtained eigenvalues
11 # z First m columns are the obtained eigenvectors
12 vals , z, _ = dstev(d, e)

A.2 STEVD: Divide and Conquer
The f2py wrapper is implemented as follows.

11

1 subroutine dstevd(d,e,compute_v ,n,z,ldz ,work ,lwork ,iwork ,liwork ,info)
2 ! computes all eigenvalues , and , optionally eigvectors of a real ,
3 ! symmetric tridiagonal matrix , using divide and conquer.
4

5 callstatement (* f2py_func)((compute_v?"V":"N"),&n,d,e,z,&ldz ,work ,
6 &lwork ,iwork ,&liwork ,&info)
7 callprotoargument char*,F_INT*,double*,double*,double*,F_INT*,
8 double*,F_INT*,F_INT*,F_INT*,F_INT*
9

10 integer optional ,intent(in) :: compute_v = 1
11 double precision dimension(n),intent(in ,out ,copy ,out=vals) :: d
12 integer depend(d),intent(hide),check(n>0) :: n = shape(d,0)
13 double precision depend(n),dimension(n-1),intent(in,copy) :: e
14 integer intent(hide),depend(n) :: ldz = (compute_v?n:1)
15 double precision dimension(ldz ,(compute_v?n:1)),intent(out),
16 depend(n,ldz) :: z
17 integer depend(n),optional ,intent(in),
18 check(lwork >=((compute_v &&n>1) ?1+4*n+n*n:1))
19 :: lwork = max (((compute_v &&n>1) ?1+4*n+n*n:1) ,1)
20 double precision dimension(lwork),depend(lwork),intent(hide)
21 :: work
22 integer depend(n),optional ,intent(in),
23 check(liwork >=((compute_v &&n>1) ?3+5*n:1))
24 :: liwork = ((compute_v &&n>1) ?3+5*n:1)
25 integer dimension(MAX(liwork ,1)),depend(liwork),intent(hide)
26 :: iwork
27 integer intent(out) :: info
28

29 end subroutine dstevd

It can be called in Python as follows.

1 import numpy as np
2 from scipy.linalg.lapack import get_lapack_funcs
3

4 dstevd = get_lapack_funcs("stevd", dtype=np.float64)
5

6 # Inputs:
7 # d The diagonal of the input matrix
8 # e The subdiagonal of the input matrix
9 # Outputs:

10 # vals First m entries are the obtained eigenvalues
11 # z First m columns are the obtained eigenvectors
12 vals , z, _ = dstevd(d, e)

A.3 STEVX: Bisection and Inverse Iteration
The f2py wrapper is implemented as follows.

1 subroutine dstevx(d,e,range ,vl ,vu,il,iu,compute_v ,abstol ,n,m,w,z,ldz ,
work ,iwork ,ifail ,info)

2 ! computes selected eigenvalues , and , optionally eigvectors of a
3 ! real , symmetric tridiagonal matrix , using bisection.
4

5 callstatement (* f2py_func)((compute_v?"V":"N"),
6 (range >0?(range ==1?"V":"I"):"A"),&n,d,e,
7 &vl ,&vu ,&il ,&iu ,&abstol ,&m,w,z,&ldz ,

12

8 work ,iwork ,ifail ,&info)
9 callprotoargument char*,char*,F_INT*,double*,double*,double*,

10 double*,F_INT*,F_INT*,double*,F_INT*,double*,
11 double*,F_INT*,double*,F_INT*,F_INT*,F_INT*
12

13 integer optional ,intent(in) :: compute_v = 1
14 double precision dimension(n),intent(in ,copy) :: d
15 integer depend(d),intent(hide),check(n>0) :: n = shape(d,0)
16 double precision depend(n),dimension(MAX(n-1,1)),intent(in ,copy)
17 :: e
18 integer intent(in) :: range
19 double precision intent(in) :: vl
20 double precision intent(in) :: vu
21 integer intent(in) :: il
22 integer intent(in) :: iu
23 double precision optional ,intent(in) :: abstol =0.0
24 integer intent(out) :: m
25 double precision dimension(n),depend(n),intent(out) :: w
26 integer intent(hide),depend(n) :: ldz = (compute_v?n:1)
27 double precision dimension(ldz ,(compute_v?n:1)),intent(out),
28 depend(n,ldz) :: z
29 double precision dimension (5*n),depend(n),intent(hide) :: work
30 integer dimension (5*n),depend(n),intent(hide) :: iwork
31 integer dimension(n),depend(n),intent(hide) :: ifail
32 integer intent(out) :: info
33

34 end subroutine dstevx

It can be called in Python as follows.

1 import numpy as np
2 from scipy.linalg.lapack import get_lapack_funcs
3

4 dstevx = get_lapack_funcs("stevx", dtype=np.float64)
5

6 # Inputs:
7 # d The diagonal of the input matrix
8 # e The subdiagonal of the input matrix
9 # range 0 - all; 1 - value range (vl, vu]; 2 - index range [il, iu]

10 # vl Used when range == 1
11 # vu Used when range == 1
12 # il Used when range == 2
13 # iu Used when range == 2
14 # Outputs:
15 # m Number of obtained eigenvalues
16 # vals First m entries are the obtained eigenvalues
17 # z First m columns are the obtained eigenvectors
18 m, vals , z, _ = dstevx(d, e, range , vl , vu , il, iu)

A.4 STEVR: MRRR Algorithm
The f2py wrapper is implemented as follows.

1 subroutine dstevr(d,e,range ,vl ,vu,il,iu,compute_v ,abstol ,n,m,w,z,ldz ,
isuppz ,work ,lwork ,iwork ,liwork ,info)

2 ! computes selected eigenvalues , and , optionally eigvectors of a
3 ! real , symmetric tridiagonal matrix , using MRRR.

13

4

5 callstatement (* f2py_func)((compute_v?"V":"N"),
6 (range >0?(range ==1?"V":"I"):"A"),&n,d,e,
7 &vl ,&vu ,&il ,&iu ,&abstol ,&m,w,z,&ldz ,
8 isuppz ,work ,&lwork ,iwork ,&liwork ,&info)
9 callprotoargument char*,char*,F_INT*,double*,double*,double*,

10 double*,F_INT*,F_INT*,double*,F_INT*,double*,
11 double*,F_INT*,F_INT*,double*,F_INT*,F_INT*,
12 F_INT*,F_INT*
13

14 integer optional ,intent(in) :: compute_v = 1
15 double precision dimension(n),intent(in ,copy) :: d
16 integer depend(d),intent(hide),check(n>0) :: n = shape(d,0)
17 double precision depend(n),dimension(MAX(n-1,1)),intent(in ,copy)
18 :: e
19 integer intent(in) :: range
20 double precision intent(in) :: vl
21 double precision intent(in) :: vu
22 integer intent(in) :: il
23 integer intent(in) :: iu
24 double precision optional ,intent(in) :: abstol =0.0
25 integer intent(out) :: m
26 double precision dimension(n),depend(n),intent(out) :: w
27 integer intent(hide),depend(n) :: ldz = (compute_v?n:1)
28 double precision dimension(ldz ,(compute_v?n:1)),intent(out),
29 depend(n,ldz) :: z
30 integer dimension ((compute_v ?2*n:1)),depend(n),intent(hide)
31 :: isuppz
32 integer depend(n),optional ,intent(in),check(lwork >=MAX (20*n,1))
33 :: lwork = max (20*n,1)
34 double precision dimension(MAX(1,lwork)),depend(lwork),
35 intent(hide) :: work
36 integer depend(n),optional ,intent(in),check(liwork >=MAX (10*n,1))
37 :: liwork = (10*n)
38 integer dimension(MAX(1,liwork)),depend(liwork),intent(hide)
39 :: iwork
40 integer intent(out) :: info
41

42 end subroutine dstevr

It can be called in Python as follows.

1 import numpy as np
2 from scipy.linalg.lapack import get_lapack_funcs
3

4 dstevr = get_lapack_funcs("stevr", dtype=np.float64)
5

6 # Inputs:
7 # d The diagonal of the input matrix
8 # e The subdiagonal of the input matrix
9 # range 0 - all; 1 - value range (vl, vu]; 2 - index range [il, iu]

10 # vl Used when range == 1
11 # vu Used when range == 1
12 # il Used when range == 2
13 # iu Used when range == 2
14 # Outputs:
15 # m Number of obtained eigenvalues
16 # vals First m entries are the obtained eigenvalues

14

17 # z First m columns are the obtained eigenvectors
18 m, vals , z, _ = dstevr(d, e, range , vl , vu , il, iu)

B Testing Suite Implementation
In this appendix we show the implementation of our synthetic matrix generators (§B.1) and the
evaluation metrics (§B.2). machep is the machine epsilon, np.finfo(np.float64).eps.

B.1 Synthetic Matrix Generators
The function names correspond to the types of the generated synthetic matrices, as specified in
§3.2. Here rng refers to a random number generator instance for reproducibility.

1 def uniform_eps(n, rng):
2 eigenvalues = machep * np.arange(1, n, dtype=np.float64)
3 eigenvalues = np.append(eigenvalues , 1.0)
4

5 Q, _ = np.linalg.qr(rng.random ((n, n)))
6 Lambda = np.diag(eigenvalues)
7 A = Q @ Lambda @ Q.T
8 _, d, e, _, info = dsytrd(A, lower=True)
9 assert info == 0, f"info={info}"

10 return d, e

1 def uniform_sqeps(n, rng):
2 eigenvalues = 1 + np.sqrt(machep) * np.arange(2, n, dtype=np.

float64)
3 eigenvalues = np.insert(eigenvalues , 0, machep)
4 eigenvalues = np.append(eigenvalues , 2.0)
5

6 Q, _ = np.linalg.qr(rng.random ((n, n)))
7 Lambda = np.diag(eigenvalues)
8 A = Q @ Lambda @ Q.T
9 _, d, e, _, info = dsytrd(A, lower=True)

10 assert info == 0, f"info={info}"
11 return d, e

1 def uniform_equi(n, rng):
2 tau = (1.0 - machep) / (n - 1)
3 eigenvalues = machep + tau * np.arange(n, dtype=np.float64)
4

5 Q, _ = np.linalg.qr(rng.random ((n, n)))
6 Lambda = np.diag(eigenvalues)
7 A = Q @ Lambda @ Q.T
8 _, d, e, _, info = dsytrd(A, lower=True)
9 assert info == 0, f"info={info}"

10 return d, e

1 def geometric(n, rng):
2 numers = n - np.arange(1, n + 1, dtype=np.float64)
3 eigenvalues = np.exp(machep , numers / (n - 1))
4

5 Q, _ = np.linalg.qr(rng.random ((n, n)))
6 Lambda = np.diag(eigenvalues)

15

7 A = Q @ Lambda @ Q.T
8 _, d, e, _, info = dsytrd(A, lower=True)
9 assert info == 0, f"info={info}"

10 return d, e

1 def normal(n, rng):
2 eigenvalues = rng.normal(0, 1, n)
3

4 Q, _ = np.linalg.qr(rng.random ((n, n)))
5 Lambda = np.diag(eigenvalues)
6 A = Q @ Lambda @ Q.T
7 _, d, e, _, info = dsytrd(A, lower=True)
8 assert info == 0, f"info={info}"
9 return d, e

1 def clustered_one(n, rng):
2 eigenvalues = np.ones(n)
3 eigenvalues[1:] += machep * rng.random(n - 1)
4 eigenvalues[0] = machep
5

6 Q, _ = np.linalg.qr(rng.random ((n, n)))
7 Lambda = np.diag(eigenvalues)
8 A = Q @ Lambda @ Q.T
9 _, d, e, _, info = dsytrd(A, lower=True)

10 assert info == 0, f"info={info}"
11 return d, e

1 def clustered_pmone(n, rng):
2 eigenvalues = np.ones(n)
3 eigenvalues[1:] *= rng.choice([-1, 1], n - 1)
4 eigenvalues[1:] += machep * rng.random(n - 1)
5 eigenvalues[0] = machep
6

7 Q, _ = np.linalg.qr(rng.random ((n, n)))
8 Lambda = np.diag(eigenvalues)
9 A = Q @ Lambda @ Q.T

10 _, d, e, _, info = dsytrd(A, lower=True)
11 assert info == 0, f"info={info}"
12 return d, e

1 def clustered_machep(n, rng):
2 eigenvalues = np.full(n, machep)
3 eigenvalues[:-1] += machep * rng.random(n - 1)
4 eigenvalues[-1] = 1.0
5

6 Q, _ = np.linalg.qr(rng.random ((n, n)))
7 Lambda = np.diag(eigenvalues)
8 A = Q @ Lambda @ Q.T
9 _, d, e, _, info = dsytrd(A, lower=True)

10 assert info == 0, f"info={info}"
11 return d, e

1 def clustered_pmmachep(n, rng):
2 eigenvalues = np.full(n, machep)
3 eigenvalues[:-1] *= rng.choice([-1, 1], n - 1)
4 eigenvalues[:-1] += machep * rng.random(n - 1)
5 eigenvalues[-1] = 1.0

16

6

7 Q, _ = np.linalg.qr(rng.random ((n, n)))
8 Lambda = np.diag(eigenvalues)
9 A = Q @ Lambda @ Q.T

10 _, d, e, _, info = dsytrd(A, lower=True)
11 assert info == 0, f"info={info}"
12 return d, e

1 def wilkinson(n, __unused):
2 d = np.arange(1, n + 1, dtype=np.float64)
3 e = np.full(n - 1, 1.0, dtype=np.float64)
4 return d, e

B.2 Evaluation Metrics
Let n be the matrix size and d and e be the diagonal and subdiagonal elements of the symmetric
tridiagonal test matrix. vals and z are the computed eigenvalues and eigenvector matrix,
respectively. The loss of orthogonality and largest residual norm metrics, as specified in §3.3,
are implemented in orthogonality_loss and max_residual_norm as follows.

1 def orthogonality_loss(z, n):
2 inner = np.abs(z.T @ z)
3 np.fill_diagonal(inner , 0)
4 return np.max(inner) / (n * machep)

1 def max_residual_norm(d, e, vals , z, n):
2 T = np.diag(d) + np.diag(e, 1) + np.diag(e, -1)
3 residuals = [
4 np.linalg.norm(T @ z[:, i] - vals[i] * z[:, i])
5 for i in range(n)
6]
7 return np.max(residuals) / (np.linalg.norm(T) * n * machep)

17

	Introduction
	Algorithms Overview
	STEV: QR Iteration
	STEVD: Divide and Conquer
	STEVX: Bisection and Inverse Iteration
	STEVR: MRRR Algorithm

	Testing Setup
	Environment
	Test Matrices
	Evaluation Metrics

	Performance
	Synthetic Matrices
	Real-World Matrices

	Accuracy
	Conclusion
	Fortran LAPACK Routine Wrappers
	STEV: QR Iteration
	STEVD: Divide and Conquer
	STEVX: Bisection and Inverse Iteration
	STEVR: MRRR Algorithm

	Testing Suite Implementation
	Synthetic Matrix Generators
	Evaluation Metrics

