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Abstract

The invasion percolation process is widely known related to the standard
Bernoulli bond percolation model. It is known that the infinite cluster density
P∞(pc) = 0 at critical point for Bernoulli bond percolation in Z2, but this
conclusion is not yet proven to extend to higher dimensions. We note that it
is easy to show the equivalence between P∞(pc) = 0 in Zd and GZd(0, x) →
0 as |x| → ∞ for the invasion percolation process, where GZd(0, x) is the
probability that x is invaded by an invasion percolation process starting from
the origin. In this paper, we will then show by simulation the dominance
of GZ3(0, x) by GZ2(0, x) for the same |x|, based on which we show that
P∞(pc) = 0 in Z3. Finally we will numerically estimate the fractal dimension
of invasion percolation cluster in Z3.
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1. Introduction

Bernoulli percolation. A percolation model is defined by a distribution on percolation configu-

rations on a graph G = (V,E), where a percolation configuration ω = {ωe; e ∈ E} is an element

of {0, 1}E , with ωe = 1 indicating that the edge e is open and ωe = 0 indicating that the edge e

is closed. Bernoulli bond percolation is one of the simplest percolation model, where each edge is

open with probability p and closed with probability 1− p, each being determined independently.

In the rest of the article we will use the term Bernoulli percolation to refer to Bernoulli bond

percolation. In this paper, we will treat Bernoulli percolation on Zd, the d-dimensional integer

lattice. Define the size of the cluster C(x) of x ∈ Zd by the number of open edges in the cluster

containing x, denoted as |C(x)|. Then the cluster size distribution is given by

Pn = P(|C(0)| = n), n ∈ N, (1)

and the infinite cluster density would be

P∞ = lim
n→∞

Pn = lim
n→∞

P(|C(0)| = n). (2)

There are many kinds of definitions of the critical point of p, all shown to be equivalent [1, 2, 3].

In this paper, we will use the version

pc = sup{p ∈ [0, 1]; P∞(p) = 0}. (3)

Invasion percolation. Invasion percolation starting at the origin on Zd, on the other hand,

is given by the following process. Assign weights to the edges independently and identically

distributed. Start with an empty set C0 = ∅. At the first step, C1 is obtained by adding to C0

the edge of the smallest weight that is incident to the origin. At the second step, C2 is obtained

by adding to C1 the edge of the smallest weight that is incident to an endpoint of the edge in C1.

Iteratively at the n-th step, Cn is obtained by adding to Cn−1 the edge of the smallest weight

that is incident to some endpoint of some edge in Cn−1, and so on. Let GZd(0, x) denote the

probability that x ∈ Zd is invaded by an invasion percolation process starting at the origin.

Organization. The main goal of this paper is to investigate the critical behavior of Bernoulli

percolation in Z3, and in particular discuss the possiblity of showing P∞(pc) = 0 in Z3. This is
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done in several sections.

• In Section 2, we will present a proof that in Zd,

P∞(pc) = 0 ⇐⇒ GZd(0, x)→ 0 as |x| → ∞. (4)

In particular, what we would like to use of this general result are that in Z2,

P∞(pc) = 0 =⇒ GZ2(0, x)→ 0 as |x| → ∞, (5)

and that in Z3,

GZ3(0, x)→ 0 as |x| → ∞ =⇒ P∞(pc) = 0, (6)

• In Section 3, we will investigate by simulation the distribution of GZ2(0, x) and GZ3(0, x)

and their relation for the same |x|. We observe that GZ3(0, x) ≤ GZ2(0, x) for each |x| (in

particular for large |x|), so that by (5) and the fact that P∞(pc) = 0 in Z2 [4], we have

GZ2(0, x) → 0 as |x| → ∞, and hence GZ3(0, x) → 0 as |x| → ∞, and by (6) we reach

P∞(pc) = 0 in Z3, i.e., the probability that there exists an infinite cluster in a critical

Bernoulli percolation in Z3 is zero, which has not been rigorously proven yet (Section 3.1).

We will further look into G(0, x) in slabs which are useful in proofs (Section 3.2). Finally,

we will revise a rigorous proof for supercritical Bernoulli percolation in high dimensions

using slabs, and briefly mention why such proofs cannot be extended to the critical case,

thus the need for the simulation (Section 3.3).

Finally in Section 4, we will numerically estimate the fractal dimension of invasion percolation

cluster in Z3.

2. Relation Between Bernoulli and Invasion Percolations

To start with, we introduce another version of definition of invasion percolation called the per-

colation cluster method, due to the fact that the previously introduced definition is too static to

provide necessary information about the dynamic growth of the invasion percolation model for

proof. Let p ∈ (0, 1) be a parameter, and choose a percolation configuration ω with density p, as

defined for the Bernoulli percolation. Instead of assigning all weights at the very beginning, the
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percolation cluster method assigns weights to the edges only when they join the invaded region,

i.e., be incident to some endpoint of some edge in the invaded set of edges. If the chosen edge to

invade is open, i.e., ωe = 1, then the weight of the edge is assigned uniformly in [0, p], and other-

wise assigned uniformly in [p, 1]. This ensures that we always invade the edge with the smallest

weight that is incident to the invaded region, thus being equivalent to the original definition.

Let wn be the weight of the n-th edge that is invaded. For p ∈ [0, 1], we can then define the

binary random variable Wn by

Wn(p) :=


1, if wn ≤ p,

0, otherwise.
(7)

The empirical distribution function is then given by

Wn(y) :=
1

n

n∑
k=1

Wk(y). (8)

Theorem 2.1. Let pc be the critical point of Bernoulli percolation in Zd. Then with probability

one, we have

Wn(pc)→ 1 as n→∞. (9)

Remark 2.2. We will provide a sketch of the proof of this theorem in the following, building

on top of the proof in [5]. With this theorem, we can see that at critical point, the invasion

percolation process will invade edges with weights at most pc with probability one as the number

of invaded edges goes to infinity. This, in other words, means that at large numbers the process

is unlikely to invade edges with weights exceeding pc. Based on such an observation we can then

argue the relation between the infinite cluster density of Bernoulli percolation and the invasion

percolation process.

Sketch proof of Theorem 2.1. Let pc be the critical point of the half-space percolation, and let

Rm := {x ∈ Zd; | xi| ≤ m, ∀i = 1, . . . , d } , (10)

the hypercube centered at the origin with side length 2m. We consider a percolation configuration

ω of density p > pc and the time t when the corresponding invasion percolation process first
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invades an edge that is incident to some vertex on the boundary of Rm. Let

Mn(p) :=
n∑

k=1

(1−Wk(p)), (11)

which represents the number of invaded edges that have weight larger than p, i.e., that are closed,

as defined in the percolation cluster method, until the n-th invasion step. In the following, we

will approach the proof in a few steps.

Step 1. Show that P(Mn(p)→∞ as n→∞) = 0 where p > pc. In other words, this state-

ment means that it is very unlikely that we invade closed edges at large numbers. To see this, we

start by observing that for any k not exceeding the number of edges in Rm,

P(Mn(p)→∞ as n→∞ |Mt(p) ≥ k) ≤ 1−P∞(p), (12)

Indeed, if we denote by v the vertex on the boundary of Rm that is incident to the edge invaded

at time t, the probability that v invades to infinity along a path consisting only of open edges

outside of Rm is at least P∞(p). Recall also that Mn(p) is the number of closed but invaded

edges, thus the upper bound by 1−P∞(p). Moreover, it is independent from which vertex v is,

because the latter depends purely on the weights of edges within Rm given that v is the first time

the invasion percolation touches the boundary of Rm, thus we can apply the conditioning above.

As a consequence, we can see that

P(Mn(p)→∞ as n→∞) ≤ (1−P∞(p))P(Mt(p) ≥ k), (13)

and bringing k →∞ concludes that

P(Mn(p)→∞ as n→∞) = 0, (14)

under our assumption that p > pc.

Step 2. Show that P(Wn(pc)→ 1 as n→∞) = 1. Since this is related to the critical behavior,

we need to extend the conclusion in the first step from supercritical to critical density p = pc.

To do this, we first introduce some more notations. Let Kn be the number of new edges that

must be checked after invading the n-th edge, i.e., the number of edges that are incident to some
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endpoint of the n-th invaded edge and have not been checked before. Let

Sn :=
n∑

k=0

Kk, (15)

the total number of edges that have been checked until after invading the n-th edge. We now

define zn corresponding to wn, but the weights of the n-th checked edge if we assume some

deterministic order of checking edges after each invasion step. Again, we can define the binary

random variable Zn by

Zn(p) :=


1, if zn ≤ p,

0, otherwise.
(16)

The empirical distribution function is then given by

Zn(p) :=
1

Sn

Sn∑
k=1

Zk(p). (17)

Now observe that the number of edges invaded in some weight interval is always smaller than

the number of edges checked in that same interval. Indeed, if the former is larger, then we

must have invaded some edge without checking whether it is of the smallest possible weight,

which is impossible by definition of the percolation cluster method. As a consequence, for any

p1, p2 ∈ [0, 1], we can see that

lim sup
n→∞

|Wn(p1)−Wn(p2)| ≤ lim sup
n→∞

Sn
n
|Zn(p1)− Zn(p2)|. (18)

It is trivial that Zn(p) → p as n → ∞ by the law of large numbers (see also [5]). Moreover,

for each n we have Kn ≤ 2d − 1 because one of the endpoints of an invaded edge must be the

endpoint of another previously invaded edge (thus all edges incident to it must have already been

checked in earlier invasion steps), and the other endpoint can have at most 2d incident edges in

Zd for check, while we have to exclude the currently invaded edge itself. Hence, we can deduce

that

lim sup
n→∞

|Wn(p1)−Wn(p2)| ≤
∑n

k=1(2d− 1)

n
|p1 − p2| = (2d− 1)|p1 − p2|. (19)
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Note that

Wn(p) =
1

n

n∑
k=1

Wk(p) = 1− 1

n

n∑
k=1

(1−Wk(p)) = 1− Mn(y)

n
. (20)

Now, (14) as in the first step trivially implies that P(Wn(p)→ 1 as n→∞) = 1 for any p > pc.

Combined with the result in (19), we can then extend the conclusion to the critical point, such

that Wn(pc)→ 1 as n→∞, with probability one.

Step 3. Finally, it has been shown in the literature that pc = pc for any dimension. Hence, we

can conclude that, with probability one, Wn(pc)→ 1 as n→∞ in Zd, as desired.

Theorem 2.3. Let pc be the critical point of Bernoulli percolation in Zd. Then

P∞(pc) = 0 ⇐⇒ GZd(0, x)→ 0 as |x| → ∞, (21)

where GZd(0, x) is the probability that x is invaded by an invasion percolation process starting

from the origin.

Remark 2.4. What in particular is useful about this theorem is that, we know that P∞(pc) = 0

in Z2 [4], so this theorem would imply that GZ2(0, x) → 0 as |x| → ∞. Then by comparing

GZd(0, x), d ≥ 2 with GZ2(0, x) for the same |x|, we can possibly show that GZd(0, x) → 0 as

|x| → ∞ for certain higher dimensions. Then by the other direction of the theorem, we can

conclude that P∞(pc) = 0 in those dimensions.

Sketch proof of Theorem 2.3. We will show the forward direction directly and the backward di-

rection by its contrapositive statement.

Forward. P∞(pc) = 0 =⇒ GZd(0, x)→ 0 as |x| → ∞. Assume that P∞(pc) = 0, i.e., with

zero probability will there be an infinite cluster at the origin in Bernoulli percolation at critical

point. Take a sequence of x ∈ Zd such that |x| → ∞, and assume for contradiction that there

exists a path from the origin to each x with all edges on the path having weight at most pc. If

we consider the percolation cluster method, these edges must all be open, so that as |x| → ∞ we

have a path of all open edges connecting the origin to x, forming an infinite cluster at the origin,

which is contradictory to the assumption that P∞(pc) = 0. Then as |x| → ∞, any path in Zd

connecting the origin to x must have at least one edge with weight exceeding pc. By Theorem 2.1,
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we know that the invasion percolation process will invade edges with weights at most pc with

probability one as the number of invaded edges goes to infinity. In other words, it is asympotically

unlikely that invade any path starting from the origin towards x as |x| → ∞. Hence, we can

conclude that GZd(0, x)→ 0 as |x| → ∞, as desired.

Backward. P∞(pc) = 0 ⇐= GZd(0, x)→ 0 as |x| → ∞. We prove the contrapositive state-

ment. Assume that P∞(pc) > 0, then there is positive probability that the origin is in an infinite

cluster. By definition of P∞(pc), translation invariance is trivial so that we any point in Zd has

positive probability of being in an infinite cluster. In particular, let x ∈ Zd be an arbitrary point

in the infinite cluster, then GZd(0, x) > 0, i.e., x will be invaded by the invasion percolation

process starting at the origin with positive probability. Indeed, there exists a path of open edges

that connects the origin to x, and if we use the percolation cluster method, all edges on this

path would have weight at most pc due to openness. By Theorem 2.1, we know that the invasion

percolation process will invade edges with weights at most pc with probability one as the number

of invaded edges goes to infinity. Hence, we can conclude x will always be finally invaded with

positive probability, i.e., GZd(0, x) > 0. Pick a sequence of such x with |x| → ∞ (this is possible

because we are in an infinite cluster), then we have shown that

P∞(pc) > 0 =⇒ GZd(0, x) ̸→ 0 as |x| → ∞, (22)

so taking its contrapositive statement gives the desired result.

3. Simulation of Invasion Percolations

In this section, we will simulate the invasion percolation process on Z2 and Z3 at critical point

pc, intending to compare GZ2(0, x) and GZ3(0, x) for the same |x| (Section 3.1). Then, we will

simulate the invasion percolation process in slabs Z2 × {x3 ∈ Z; | x3| ≤ l } and compare the

results with that in Z2 and Z3 (Section 3.2). This is useful because the invasion percolation

process is usually investigated in slabs and then extended to the whole of Zd space. Finally, we

will provide a brief sketch proof of the exponential decay of the cluster size distribution Pn of

a supercritical Bernoulli percolation (i.e., p > pc) in Zd, using the invasion percolation analysis

presented in [6] (Section 3.3). The proof, however, cannot be intuitively extended to the critical

behavior of Bernoulli percolation in Zd (d ≥ 3), which is the reason why we use the simulation
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Algorithm 1 Simulation of invasion percolation on Zd.
1: x0 ← (0, . . . , 0); // Initial vertex
2: S0 ← { (0, . . . , 0) }; // Set of invaded vertices
3: C0 ← ∅; // Set of invaded edges
4: C ′

0 ← ∅; // Set of candidate edges for the next invasion step
5: while i = 1, 2, . . . do
6: C ′

i ← C ′
i−1;

7: for e ∈ {edges with xi−1 as one of its endpoints} \ Ci−1 \ C ′
i−1 do

8: Pick a weight uniformly at random in [0, 1] and assign it to e;
9: C ′

i ← C ′
i ∪ { e };

10: end for
11: Pick ei ∈ C ′

i with the smallest weight wi;
12: Ci ← Ci−1 ∪ { ei };
13: C ′

i ← C ′
i \ { ei };

14: xi ← the other endpoint of ei;
15: end while

approach to investigate the critical Bernoulli percolation in Z3.

3.1. Invasion Percolation on Z2 and Z3

Algorithm. It is clear that it is impossible to algorithmically assign weights to all the edges in

the infinite space Zd, thus the previous definitions of the invasion percolation process, including

the percolation cluster method, are not directly applicable. However, thanks to the independence

of the weights of the edges, it does not matter in which order or at which time we assign the

weights to the edges, as long as they are ready when included into the boundary of the invasion.

In particular, let Cn be the set edges that we have included during the invasion percolation

process until the n-th step. The boundary ∂Cn of Cn is the set of edges that are incident to

some endpoint of some edge in Cn but not in Cn. At the (n+ 1)-th step, all the weights that we

need to check before invading the next edge are the weights of the edges in Cn = Cn ∪ ∂Cn, so

it suffices to make sure that all the weights of the edges in Cn are assigned before the (n+ 1)-th

invasion step, and that the weights of previously assigned edges do not change in further steps.

One can easily see that this process is equivalent to the previous definitions by independence.

The algorithm is shown as in Algorithm 1.

Results in two dimensions. We simluate the invasion percolation process on Z2 and as shown

in Figure 1 are the visualization results using two different random seeds. The simulation is

done for 106 steps, but we visualize only 104 steps since otherwise the visualization of the graph

would be too dense and cluttered. The point marked in red is the origin 0 ∈ Z2 where the
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Figure 1: Simulation of invasion percolation in Z2 for 104 steps.

invasion percolation process begins, and the black lines are the edges that have been included

into the invaded region, i.e., C104 . As we can see, the invasion percolation process differs a lot

with different random seeds, going in different major directions and forming different fractal-like

shapes.

One particular aspect of interest is the distribution of GZ2(0, x). Existing work has exploited

that G(0, x) follows a power law with respect to |x| in Z2, as well as similar results in Z3 and

Z4 [7, 8]. However, these results are based on assumptions of finite-sized boxes, special behaviors

when hitting the box boundaries, and more. Here we focus on the infinite space of Z2 without

any constraints, except that we simulate only 106 steps and obtain 300 samples for computing

the probabilities due to technical constraints.

As is shown in Figure 2 is the distribution of GZ2(0, x) with 0 < |x| ≤ 100. The reason

for limiting |x| ≤ 100 is that larger |x| may suffer from marginal effects due to the constraints

in the number of steps of simulation, i.e., that 106 steps of simulation may not have reached a

steady state for larger distances. As we can see from the fitted curve (where the fitting is done

using the non-linear least squares method), the distribution of GZ2(0, x) respects the power law

GZ2(0, x) ∼ |x|−α, with α ≈ 0.13 by simulation. This is consistent with the conclusions of [7, 8],

though with a smaller estimated α value. This is, however, reasonable because we do not impose

stopping conditions until hitting the maximum number of simulation steps, thus having much

larger opportunities to explore the space around the origin, leading to higher probabilities of

invasion and thus slower decay of GZ2(0, x).

Results in three dimensions. We also simluate the invasion percolation process on Z3 and as

shown in Figure 3 with the same setup as in Z2. The simulation is done for 106 steps, but we
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Figure 2: Distribution of GZ2(0, x) with 106 steps of invasion percolation in Z2, with each prob-
ability GZ2(0, x) computed from 300 independent samples.

Figure 3: Simulation of invasion percolation in Z2 for 104 steps.

visualize only 104 steps, with the point marked in red is the origin 0 ∈ Z3 where the invasion

percolation process begins, and the black lines are the edges that have been included into the

invaded region, i.e., C104 . Again, we can see how the invasion percolation process differs a lot

with different random seeds in its major invading direction and fractal shape.

Also, with the same setup as for Z2, we validate that the distribution of GZ3(0, x) follows

a power law with respect to |x|. As shown in Figure 4, the distribution of GZ3(0, x) with

0 < |x| ≤ 100 respects the power law GZ3(0, x) ∼ |x|−α, with α ≈ 0.61 by simulation. This
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Figure 4: Distribution of GZ3(0, x) with 106 steps of invasion percolation in Z3, with each prob-
ability GZ3(0, x) computed from 300 independent samples.

is significantly larger thatn the α ≈ 0.13 in Z2, which is consistent with the intuition since the

invasion percolation process in Z3 has more freedom of exploring the additional dimension com-

pared with Z2, thus leading to lower probability of invading in a certain direction away from the

origin, and thus faster decay of GZ3(0, x) compared with GZ2(0, x).

Comparison between GZ2(0, x) and GZ3(0, x). We can finally compare GZ2(0, x) and GZ3(0, x)

for the same |x|, which is the missing component in proving P∞(pc) = 0 for Z3. We extend

the comparsion to |x| ≤ 1000 (in constrast to |x| ≤ 100 in previous analyses) to obtain a more

comprehensive result. As we can see in Figure 5, GZ2(0, x) dominates GZ3(0, x) for all 0 < |x| ≤

1000, and the trend indicates that GZ2(0, x) will continue to dominate GZ3(0, x) for larger |x| as

well. Extending from previous power law conclusions that GZ2(0, x) ∼ |x|−0.13 and GZ3(0, x) ∼

|x|−0.61 to larger |x| assuming more steps of invasion gives the same result. Hence, we have the

following important observation.

Observation 3.1. GZ3(0, x) ≤ GZ2(0, x) for all |x|. This is not rigorously proven yet, but is

supported by the simulation results in Figure 5.

Remark 3.2. P∞(pc) = 0 in Z3, i.e., there exists an infinite cluster in a critical Bernoulli

percolation in Z3 with probability zero. The proof we provide is, however, not rigorous because

it is built on top of Observation 3.1 which is in turn simulation-based.
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Figure 5: Comparing GZ2(0, x) and GZ3(0, x) for the same |x|, with 106 steps of invasion percola-
tion in Z2 and Z3, respectively. Each probability GZ2(0, x) and GZ3(0, x) is computed
from 300 independent samples.

Proof. This is a direct consequence of Observation 3.1 and the fact that P∞(pc) = 0 in Z2 [1].

By Theorem 2.3, since P∞(pc) = 0 in Z2, we have that GZ2(0, x)→ 0 as |x| → ∞. By Observa-

tion 3.1, we have that GZ3(0, x) ≤ GZ2(0, x) for all |x| (and in particular as |x| → ∞), and thus

GZ3(0, x) → 0 as |x| → ∞. By Theorem 2.3 again but the reverse direction, we can conclude

that P∞(pc) = 0 in Z3.

3.2. Invasion Percolation in Slabs

Slabs are often used in the study of invasion percolation. For instance in Zd, one might be

interested in the behavior of invading a certain hyperplane {x ∈ Zd; xd = N }, which can then

be used in proofs for the whole of Zd. In the process of invading a certain hyperplane, it is

common to divide the process into serveral steps, each step being the invasion across a slab with

a certain thickness subject to translation in the d-th dimension. In order to investigate more

fine-grained details of the invasion percolation process, especially when extending from Z2 to Z3,

in this section we will further simulate the invasion percolation process in slabs

Z2,l := Z2 × {x3 ∈ Z; | x3| ≤ l } , l ∈ Z, (23)
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Algorithm 2 Simulation of invasion percolation in slabs Zd−1,l.

1: x0 ← (0, . . . , 0); // Initial vertex
2: S0 ← { (0, . . . , 0) }; // Set of invaded vertices
3: C0 ← ∅; // Set of invaded edges
4: C ′

0 ← ∅; // Set of candidate edges for the next invasion step
5: while i = 1, 2, . . . do
6: C ′

i ← C ′
i−1;

7: for e ∈ {edges with xi−1 as one of its endpoints} \ Ci−1 \ C ′
i−1 do

8: /* Avoid invading outside the slab */
9: if the other endpoint xe of e has |xe| > l then

10: Pick a weight uniformly at random in [0, 1] and assign it to e;
11: C ′

i ← C ′
i ∪ { e };

12: end if
13: end for
14: Pick ei ∈ C ′

i with the smallest weight wi;
15: Ci ← Ci−1 ∪ { ei };
16: C ′

i ← C ′
i \ { ei };

17: xi ← the other endpoint of ei;
18: end while

for l = 5, 10, 20 and compare the results with Z2 and Z3. In order to limit the invasion percolation

process within slabs, we first introduce a modified algorithm for simulating

Zd−1,l := Zd−1 × {xd ∈ Z; | xd| ≤ l } , l ∈ Z, (24)

as in Algorithm 2. The main difference with the basic version for Zd is that, we do not add any

edge that is not within the slab to the set of candidate edges C ′
n (Line 9), and thus by edges

beyond the slab boundaries will not be invaded in the process.

We use the same setup as in the previous section, with 106 steps of simulation and 300

independent samples for computing each value of GZ2,l
(0, x). See Appendix A for visualizations

of the first 104 steps of the invasion percolation process for each of l = 5, 10, 20, also as a validation

of the correctness of the modified algorithm. We simulate the invasion percolation process in slabs

Z2,l for l = 5, 10, 20, for which the results are plotted in Figure 6. As we can see, the probability

of invasion GZ2,l
(0, x) decreases with as l increases, which is consistent with the intuition. Indeed,

the smaller the slab width, the more constrained the invasion percolation process is on the third

dimension of the space. This means that the invasion percolation process would be pushed to

invade more in the first two dimensions, leading to higher GZ2,l
(0, x) where we note that x is
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Figure 6: Comparing GZ2,l
(0, x) among l = 5, 10, 20, as well as with GZ2(0, x) and GZ3(0, x) for

the same |x|, with 106 steps of invasion percolation in each space. Each probability
G(0, x) is computed from 300 independent samples.

taken such that x3 = 0. Similarly, we can see that

GZ2(0, x) ≤ GZ2,l
(0, x) ≤ GZ3(0, x), ∀|x| ≤ 1000, l = 5, 10, 20. (25)

With the same analyses as in the previous section, this observation should also naturally extend

to arbitrary |x| and l ∈ Z. To understand this result, we may interpret Z2 as Z2,0, i.e., a slab

with zero width, and Z3 as Z2,∞, i.e., a slab with infinite width in the third dimension. Then

the result would be consistent with the previous observation that GZ2,l
(0, x) decreases with as l

increases.

3.3. Supercritical Bernoulli Percolation in Zd

In this section, we will provide a brief sketch proof of a theorem regarding the supercritical

Bernoulli percolation in Zd for d ≥ 3 [6]. This is not directly related to our goal of investigating

the critical behavior of Bernoulli percolation in Z3, but it is an interesting result that (1) analyzes

Bernoulli percolation via the invasion percolation process, (2) utilizes slabs in Zd for the proof

(though with a slightly different definition as in the previous section), and (3) to some extent,

implies why the rigorous proof cannot be intuitively extended to critical Bernoulli percolation in

Zd, as a partial evidence of the rationality of analyzing via simulation in this paper.
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Define the slabs

Ll := Zd−1 × { 0, 1, . . . , l } . (26)

Note that we are ignoring the dimension d in this notation since throughout the rest of this

section, we will always consider Ll as slabs in Zd. Let ρ(l, p) be the probability that there exists

an infinite cluster in a Bernoulli percolation with density p in Ll, analogous to P∞(p) in Zd.

Define also plc as the critical point as defined in (3), but with P∞(·) in Zd replaced by ρ(l, ·) in

Ll. Then the following theorem holds.

Theorem 3.3 (Chayes et al. [6]). Suppose d ≥ 3 and p > plc for some l ≥ 0. Then for any N ≥ 0,

we have that

P((TN <∞) ∧ (wn > p for some n > TN )) < (1− ρ(l, p))N/(l+1), (27)

where TN is the time at which the invasion percolation process first invades the hyperplane

{x ∈ Zd; xd = N }.

Remark 3.4. This theorem implies that the probability of invading a hyperplane in finite steps

while invading some vertex with weight larger then p after that step vanishes as the hyperplane

is further away from the origin. As a direct consequence, it can be shown that the probability of

x ∈ Zd being included in a finite cluster around the origin is decays exponentially with respect

to |x|, in a supercritical Bernoulli percolation with density p > p∞c . We will present the original

proof in [6] with slightly more details, which shall demonstrate how slabs can be useful in such

proofs and why the proof cannot be intuitively extended to the critical cases.

Proof of Theorem 3.3 (Chayes et al. [6]). Let

Lj
l := Zd−1 × { (j − 1)(l + 1), (j − 1)(l + 1) + 1, . . . , j(l + 1)− 1 } , j ∈ Z, (28)

the slab translated by (j−1)(l+1) of Ll. Denote by ψj
l the first time that the invasion percolation

process invades Lj
l and by ξjl the vertex at which this invasion occurs. Construct the invasion

percolation within each slab Lj
l with the percolation cluster method with density p. The weights

of edges between two slabs can be assigned when needed, according to the definition used in the

simulation algorithms. Furthermore, when choosing the configurations ωj
l within the slabs Lj

l in
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the percolation cluster method, we can first choose a configuration in Ll and then shift the origin

to ξjl to obtain the configuration in Lj
l .

Now let Ej
l (p) be the event that ξjl is included in an infinite cluster. If TN < ∞ for some

N ≥ 0, then ψN ′
l < ∞ for some any N ′ ≥ 0 such that (N ′ − 1)(l + 1) ≤ N . Indeed, if we can

invade the hyperplane {x ∈ Zd; xd = N } in finite steps, then we can surely invade any slab Lj
l

that has not gone beyond the hyperplane in finite steps. Denote by N the largest integer N ′ that

satisfies the condition above. If ψN
l < ∞ and Ej

l (p) occurs for some 1 ≤ j ≤ N (say j′), then

wn ≤ p for all n ≥ ψj′

l and thus wn > p for some n > ψj′

l . To see this, if ξj
′

l is in an infinite

cluster, then all steps of invasion after j′ must invade open edges (which are edges with weights

at most p according to the percolation cluster method), since otherwise the connected component

will break at some finite point given that ψN
l <∞.

Taking the contrapositive of the argument above, wn > p for some n ≥ ψj′

l implies that Ej
l (p)

does not occur for any 1 ≤ j ≤ N . Also recall that TN <∞ implies that ψN
l <∞, hence we can

write

P((TN <∞) ∧ (wn > p for some n > TN )) ≤ P

(ψN
l <∞) ∧

N⋂
j=1

(Ej
l (p))

∁

 . (29)

Note that EN
l (p) occurs with probability ρ(l, p), i.e., that there exists an infinite cluster in Ll.

Moreover, it is independent of the events Ej
l (p), 1 ≤ j ≤ N − 1. Hence, we have that

P

(ψN
l <∞) ∧

N⋂
j=1

(Ej
l (p))

∁


= (1− ρ(l, p))P

(ψN
l <∞) ∧

N−1⋂
j=1

(Ej
l (p))

∁


≤ (1− ρ(l, p))P

(ψN−1
l <∞) ∧

N−1⋂
j=1

(Ej
l (p))

∁

 , (30)

where the inequality is because the invasion percolation process must first cross the slab LN−1
l

(and thus invading it) before invading LN
l since it starts from the origin. Note in addition that

P((ψ1
l <∞) ∧ (E1

l (p))
∁) = P((E1

l (p))
∁) = 1− ρ(l, p), (31)

because ψ1
l is the first time that the invasion percolation process invades L1

l = Ll which is finite
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for sure. Hence by mathematical induction, we can obtain that

P

(ψN
l <∞) ∧

N⋂
j=1

(Ej
l (p))

∁

 ≤ (1− ρ(l, p))N . (32)

Now recall (29) to complete the proof.

This result cannot be intuitively extended to critical Bernoulli percolation because the con-

clusion relies on nonzero probability ρ(l, p) to be meaningful (otherwise we will be claiming that

a probability is at most one which does not provide any information). Recall that ρ(l, p) is the

probability that there exists an infinite cluster in a Bernoulli percolation with density p in Ll,

and only when p > plc can this be possible by its definition.

4. Fractal Dimension of Invasion Percolation on Z3

In this section, we will numerically estimate the fractal dimension of the invaded region of an

invasion percolation process in Z3. We will begin by introducing the concept of fractal geometry

and the box-counting method for estimating fractal dimensions. Subsequently, we will describe

the algorithm for computing the fractal dimension of invasion percolation clusters and present

the results of our numerical analysis. By characterizing the geometric properties of invasion

percolation clusters, we aim to gain insights into the spatial complexity and self-similarity of the

invaded regions of invasion percolations in Z3.

Box-counting dimension. Fractal geometry serves as a robust analytical framework for dissect-

ing the complex structures inherent in natural and synthetic systems. Fractals, characterized by

their self-similarity and non-integer dimensions, offer a profound departure from traditional Eu-

clidean geometry, allowing for a deeper understanding of spatial intricacies across various scales.

In the context of invasion percolation, existing work has already demonstrated the fractal nature

of invaded region of an invation percolation [9]. The application of fractal geometry offers a

precise method for delineating the spatial characteristics of the invaded regions.

The box-counting dimension, also known as the Minkowski-Bouligand dimension, is a funda-

mental measure of the fractal dimension of a set. It is defined as

dim(S) := lim
ϵ→0

lnN(ϵ)

ln(1/ϵ)
, (33)
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where N(ϵ) is the number of boxes of side length ϵ required to cover the set S. The box-counting

dimension provides a quantitative measure of the space-filling properties of a set, while being

computationally tractable for estimating the fractal dimension of complex structures such as the

invaded regions of invasion percolation processes.

Algorithm. Create a three-dimensional array of size (2l + 1)3, initialized with zeros, where l

is chosen in advance. This is a three-dimensional cube with length 2l + 1, which represents

{x ∈ Z3; | xi| ≤ l, i = 1, 2, 3 }. For each vertex x ∈ Sn invaded by the invasion percolation

process, set the corresponding entry in the array to one if within the cube. This way, we can

easily determine the positions of the invaded vertices, thus the invaded region. Next, we determine

the size of the boxes to cover the invaded region with. We start with a box of size 2m where

m is the smallest integer that allows covering the entire invaded region with only one box. We

then gradually reduce the size of the box until the box is of size 2. For each box size, we count

the number of boxes required to cover the invaded region. Finally, we compute the box-counting

dimension by fitting a linear regression to the data points (ln(1/ϵ), lnN(ϵ)), according to the

definition of dim(S). The implementation of the algorithm is based on that introduced in [10],

extending it to three dimensions.

Results. Same as in Section 3, we simulate 106 steps of invasion due to technical constraints.

We choose l = 100 and compute the box-counting dimension of the invaded region. The reason

for restricting within l = 100 is that 106 steps of invasion is not sufficient to invade the region

beyond l = 100 to a steady state. We have repeated the computation for 10 independent runs

of the invasion percolation process with different random seeds, and discovered that l = 100 is a

reasonable choice where the result stabilizes among different runs while still being large enough

to capture the fractal nature of the invaded region. Figure 7 shows an overview of the shape of

the invaded region within the finite cube.

We compute lnN(ϵ) and measure the ratios lnN(ϵ)/ ln(1/ϵ) for ϵ ranging from 128 (where

a single box covers the whole invaded region) to 2 (the stopping criterion). Ignoring the ϵ = 128

where N(ϵ) = 1 and hence logN(ϵ) = 0, we perform the least-squares linear fit to the the obtained

data points (ln(1/ϵ), lnN(ϵ)) and record the slope of the fitted line. As is shown in Figure 8, the

fitted slope is approximately 2.627, which would be our estimate of the box-counting dimension

of the invaded region of an invasion percolation process in Z3. This suggests that the invaded

region has a complex and self-similar structure that does not fill up the three-dimensional space
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Figure 7: An invasion percolation process in Z3 with 106 steps, visualized within a finite cube.

Figure 8: Fitting (ln(1/ϵ), lnN(ϵ)) of the invaded region of invasion percolation in Z3.

uniformly.

5. Conclusion

This paper has investigated the relationship between Bernoulli percolation and invasion perco-

lation, based on which it has shown that the infinite cluster density P∞(pc) = 0 at the critical
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point for Bernoulli bond percolation in Z3, extending the known result in Z2 with the help of

computational simulation of the invasion percolation process. The most important simulation

result is that GZ3(0, x) is dominated by GZ2(0, x) for all |x|, which is also the observation that

contributed to the proof of P∞(pc) = 0. The paper has also analyzed invasion percolation in

slabs that might be helpful for rigorous proofs of the results in future research. It has in addition

examined the geometric properties of the invaded regions of invasion percolation by estimating

their fractal dimensions, which is approximately 2.627 in Z3.
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A. Visualizing Invasion Percolations in Slabs Z2,l

This section presents the visualizations of invasion percolation in slabs Z2,l for l = 2, 5, 10, 20 for

104 steps by Algorithm 2. Each of Figure 9, Figure 10, and Figure 11 presents three independent

simulation results corresponding to three different random seeds used for assigning the edge

weights. The semi-transparent surfaces represents the maximum and minimum values in the first

two dimensions (unconstrained ones) that the invasion percolation process invaded within the

first 104 steps. As we can see within each figure, the positions and shapes of the invaded regions

differ a lot, as with Z2 and Z3 noted in Section 3.1. The more intriguing result comes from

comparing the figures, where we can see that the invaded regions in the first two dimensions get

smaller as the slab width l increases. This is consistent with our conclusion in Section 3.2 that

GZ2,l
decreases as l increases. This is also intuitively self-explanatory, as the invasion percolation

process has more freedom to explore the third dimension as l increases, hence invading less in the

first two dimensions.
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Figure 9: Simulation of invasion percolation in Z2,5 for 104 steps.
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Figure 10: Simulation of invasion percolation in Z2,10 for 104 steps.
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Figure 11: Simulation of invasion percolation in Z2,20 for 104 steps.
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