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Abstract
The accelerated scaling of large language models (LLMs)
requires efficient memory management techniques. vLLM
reduces memory fragmentation in LLM inference by propos-
ing a PagedAttention mechanism whereby a virtual memory
similar to the ones used in operating systems memory pag-
ing is used. However, as LLMs handle longer contexts and
generate longer sequences, the KV cache still occupies a sub-
stantial amount of memory. To optimize memory usage, KV
cache sparsification techniques are employed to evict less
important tokens based on attention scores. The eviction
leads to internal fragmentation which negatively impacts
performance. Freeing blocks whose slots are all evicted allevi-
ates the problem but still suffers from internal fragmentation.
Copying non-evicted KV cache to newly allocated memory
blocks solves the fragmentation issue, but incurs copying
overhead that further leads to preemption, degrading its per-
formance. In this paper, we propose SpvLLM that not only
frees fully deactivated blocks, but also reuses freed slots of
partially deactivated blocks, reducing internal fragmentation
by up to 55.7% and achieving up to 2.21× higher end-to-end
throughput and 48.9% lower latency.
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1 Introduction
vLLM is a is a distributed serving system for LLM inference.
To mitigate memory fragmentation, it divides the key-value
(KV) cache into blocks of fixed size and memory is allocated
per block instead of the whole sequence at once. This handles
the complexity associated with variable size memory pieces
due to the variable length outputs of LLMs. The usage of
fixed-size blocks is particularly important because it reduces
the granularity of allocating memory, minimizing the exter-
nal fragmentations caused by oversubscribing memory for
LLM outputs. Moreover, there is no internal fragmentation
except in the final block which may not be fully filled, which
is minimal.
However, the case is different when KV cache sparsifica-

tion comes in to manage growing context and output lengths.
Keeping all tokens in the KV cache wastes a substantial
amount of memory. 1a shows the improvement in through-
put (tokens/s) achieved through sparsification compared to

the raw approach. KV cache sparsification selectively re-
moves tokens from the KV cache based on specific criteria
such as low cumulative attention scores to free up memory.
Some methods such as SnapKV [4] focus only on long con-
texts and perform KV cache eviction only during the prefill
phase. This makes memory reuse very straightforward since
the cache has not been changing dynamically yet. On the
other hand, other techniques such as StreamingLLM [8] and
H2O [9] perform eviction throughout the entire process, but
they break the memory management of vLLM by introduc-
ing internal fragmentations in all blocks instead of only the
final one. Internal fragmentation is problematic because it
increases memory waste and compromises the ability of our
system to process more data faster (higher throughput) and
respond quicker (lower latency). We investigate the follow-
ing strawmans and propose our solution SpvLLM.

Strawman 0 (no-op): This is a baseline strategy of KV cache
sparsification where tokens are evicted based on some sparsi-
fication criteria, but the memory associated with the evicted
tokens is not reclaimed. The free slots remain inactive and
nothing is done to reorganize memory usage.

Strawman 1 (free-block): When evicting a single token,
the block it belongs to can be freed for reuse only when
all tokens in that block are freed. This strawman does not
introduce extra overhead, but the freeing of full blocks is not
guaranteed to happen and preserved tokens likely scatter all
over the KV cache, so it still suffers from significant internal
fragmentation.

Strawman 2 (sparse-copy): Whenever an eviction hap-
pens, allocate sufficiently many new KV blocks and copy
only the preserved tokens in the original KV cache to the
new KV blocks. This mitigates internal fragmentation except
in the final block (same as the original vLLM), but incurs
copying overhead especially for large KV caches and when
eviction happens frequently. In particular, additional blocks
must be pre-allocated for sparse copying, which can further
cause preemption due to non-sufficient memory for such
pre-allocation. In the worst case where eviction happens
per iteration (which is the default of StreamingLLM [8] and
H2O [9]), this overhead can lead to serious performance
degradation.

Solution (SpvLLM): We propose that freed slots of evicted
tokens can be reused even in cases that full blocks cannot be
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Figure 1: (a) Improvement in request throughput (req/s) with KV cache sparsification, showing up to 2.21× performance boost
compared to the original vLLM without sparsification. (b) Illustration of how KV cache sparsification is managed by different
strategies. no-op leaves evicted slots unused. free-block frees fully evicted blocks but leaves evicted slots unused. sparse-copy
copies all preserved slots to newly allocated blocks. SpvLLM is able to reuse evicted slots to reduce internal fragmentation.

freed. In particular, we observe that the order of tokens in the
KV cache does not matter. The scaled dot-product attention
computation can be formulated as follows:

𝑞𝑖 =𝑊𝑄𝑥𝑖 , 𝑘𝑖 =𝑊𝐾𝑥𝑖 , 𝑣𝑖 =𝑊𝑉𝑥𝑖 ,
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where:

• 𝑞𝑖 is the query vector for token 𝑖 ,
• 𝑘𝑖 is the key vector for token 𝑖 ,
• 𝑣𝑖 is the value vector for token 𝑖 ,
• 𝑊𝑄 , 𝑊𝐾 , and 𝑊𝑉 are weight matrices for queries,
keys, and values, respectively,

• 𝐻 is the size of the hidden dimension, which is the
scaling factor here.

It is obvious from the formulation above that attention
computation is both agnostic of key cache ordering (because
of the inner sum) and of value cache ordering (because of
the outer sum). Hence, newly generated tokens can directly
be filled into the freed slots (if any) instead of allocating new
slots to mitigate internal fragmentation issues caused by
KV cache sparsification. In the simplest case of performing
KV cache sparsification per decoding step and evicting one
token per sparsification, this fills up the fragmented space
immediately after each eviction, leading to minimal internal
fragmentation at the same level as the original vLLM. This
also does not involve copying, incurring minimal runtime
overhead.

2 Design
In this section, we will introduce the high-level design of our
system on top of the vLLM architecture.

Attention score retrieval: Most KV cache sparsification
strategies are based on attention scores, i.e., 𝑄𝐾⊤. However,
attention scores are not accessible in the original vLLM sys-
tem. SpvLLM collects the attention scores from the tempo-
rary logits storing partial 𝑞𝑘 results in the PagedAttention
kernel. Note, however, that this is not possible for certain
attention backends such as FlashAttention.

Block masks: The original vLLM system do not have a
masking mechanism, but for no-op, free-block, and SpvLLM,
tokens at certain positions of the blocks need to be masked
once they are evicted to avoid contributing to the atten-
tion output, retaining the correct computation result. This
is achieved by extending the vLLM block manager to keep
track of additional boolean masks on its blocks, marking
whether each slot in a block has been evicted or not. This in-
formation is then passed down to the PagedAttention kernel,
which will forcefully set the 𝑞𝑘 values at the masked slots
to −∞. This will diminish after the scaled softmax operation
for obtaining attention weights, thus not contributing to the
final attention output.

Sparse copying kernel: vLLM can copy full blocks of KV
cache due to its CoW (copy-on-write) mechanism, but the
sparse-copy strategy requires copying at per-slot granularity.
In order to minimize the impact of sparse copying operation
itself on performance, we implement a fast sparse copying
kernel parallelized on a 3D grid:

(1) num_layers: The number of attention layers.
(2) num_seqs: The number of sequences in the current

batch to be processed.
(3) num_blocks × block_size: The block dimension,

i.e., the number of slots involved in sparse copying.

Source-to-destination block mapping and slot mapping are
constructed and wrapped into tensors in advance for the
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Figure 2: Internal fragmentation over the iterations for KV cache management strategies with token budgets of 256, 512, and
1024. The black dashed line represents the original vLLM without KV cache sparsification.

kernel, with −1 marking slots that will not be copied over to
the destination.

Others: There are various assumptions in the original vLLM
system that will be broken by KV cache sparsification.

• It is not true that the number of blocks occupied by
a sequence can be directly inferred from its length.

• It is not true that the position ID of each new token
is the current length of its sequence.

• It is not true that the KV cache of the new token will
fill the last logical block occupied by its sequence,
because SpvLLM may reuse previously deactivated
slots instead of allocating new slots (blocks).

Every part of the original vLLM system that relies on these
assumptions must be handled carefully.

3 Evaluation
In this section, we evaluate the performance of different
memorymanagement strategies, i.e., no-op, free-block, sparse-
copy, and SpvLLM, under KV cache sparsification. We will
perform micro-benchmarks on internal fragmentation (§3.2)
and sparse copying kernel overhead (§3.3), as well as end-to-
end performance evaluation (§3.4).

3.1 Experimental Setup
The implementation of the KV cache sparsification frame-
work involved approximately 2000 lines of additional C++,
CUDA, and Python code on top of vLLM 0.6.2. These changes
were evaluated on a single instance with one NVIDIA Tesla
T4 GPU (16GP GDDR6 memory) with a dataset of 1000 ran-
domly sampled single-round conversations from the ShareGPT
dataset [7], a collection of user-shared real-world conversa-
tions with ChatGPT. The average input length of the sampled
dataset is 224.7 tokens the average output length is 208.9
tokens. All 1000 requests arrive at the server at the same
time to exhaust system resources. The attention backend
used for testing is xFormers [3]. It is slightly slower than
FlashAttention (the default of vLLM), but it is impossible

to extract attention scores with the FlashAttention backend.
The KV cache sparsification mechanism is H2O [9], evicting
one token per sequence per decode iteration. The testing
framework disables CPU cache offloading of vLLM, meaning
that requests need to be recomputed upon preemption.

Implementation notes: Due to limited time, we did not imple-
ment a computationally correct version of SpvLLM, but with
the correct memory pattern. All strawman strategies, i.e., no-op,
free-block, and sparse-copy, are fully implemented. We also did
not figure out the reason for low KV blocks utilization, so we
normalized our benchmarking results by mean KV blocks uti-
lization to simulate that 100% of KV blocks are exhausted. This
may not be accurate since we cannot ensure linear relation.

3.2 Internal Fragmentation
Internal fragmentation is measured by the number of active
slots, i.e., not evicted, divided by the total number of slots in
the KV blocks occupied by each sequence. The larger internal
fragmentation, the lower GPU memory utilization. From
Figure 2, we can see that the original vLLMwithout KV cache
sparsification has negligible internal fragmentation, which
only comes from the last block of each sequence. With no-
op, internal fragmentation grows continuously because no
evicted slots can be reused. free-block reduces fragmentation
by freeing KV blocks that are fully deactivated. SpvLLM
further improves by reusing deactivated slots. With the setup
of evicting one token per iteration, SpvLLM will simply be
refilling the one evicted slot per iteration once reaching the
budget, thus no longer introducing fragmentation. sparse-
copy has the same level of internal fragmentation as the
original vLLM since it fills contiguously the KV blocks by
copying and falls back to the non-sparsified scenario.
Apart from the over-time analysis of internal fragmen-

tation, Figure 3 provides a snapshot of peak internal frag-
mentation at 99th percentile across the different strategies.
Among no-op, free-block, and SpvLLM, SpvLLM has the low-
est peak internal fragmentation across all different token
budgets, by up 21.2% less than free-block and 55.7% less than
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Figure 3: 99th percentile internal fragmentation.

no-op when limiting to 256 tokens. This is aligned with our
previous observation. sparse-copy is consistently at the same
level as without KV cache sparsification (black dashed base-
line). Moreover, all KV cache management strategies have
lower internal fragmentation as token budget increases, be-
cause fewer tokens need to be evicted and the chance for
fragmentation to occur is lower.

3.3 Sparse Copying Kernel Overhead
This micro-benchmark measures the total overhead incurred
by launching the sparse copying kernel over time, using the
sparse-copy KV cache management strategy.

Budget # Copies Total overhead (ms)
256 2007 179.14
512 2007 155.03
1024 2004 162.01

Table 1: Copying overhead for the copy strategy remains
consistent and negligible across all token budgets.

From Table 1, we can see that the overhead introduced
directly by the sparse copying kernel is almost negligible,
being less than 1 second in a total 2 to 3 minutes’ duration,
independent of the token budget. However, this does not
mean that the overall overhead of the sparse-copy strategy
is low. With the most intuitive implementation, destination
blocks must be pre-allocated when the source blocks cannot
yet be freed, which may waste a significant amount of mem-
ory and lead to preemptions. This micro-benchmark only
implies that the overhead of the kernel execution alone will
make nearly no negative contributions to the performance.

3.4 End-to-End Performance
Eventually, we perform end-to-end benchmarking to check
the impact of different KV cache management strategies
and different token budgets on end-to-end throughput and
latency when serving on our dataset.

Figure 4: Request throughput (requests per second).

Figure 5: Total token throughput (number of tokens pro-
cessed per second).

Throughput: From Figure 4, we can see that larger KV cache
budget leads to lower throughput in general. Though there
is less need for sparsification, larger budgets means larger
KV cache per sequence, leading to fewer sequences that
can be batch processed together and thus lower throughput.
Focusing on different KV cache management strategies, we
see that SpvLLM shines as the strategy with the highest
end-to-end throughput, followed by free-block, achieving
up to 2.21× higher throughput compared with no KV cache
sparsification with a budget of 256 tokens. All strategies
start showing closer performance for moderate (512 tokens)
and larger (1024 tokens) budgets. We see similar results from
Figure 5, which measures the throughput as the total number
of tokens processed per second.
One might expect free-block to show poor performance

at smaller batches due to frequent fragmentation, but it is
important to note that in these cases batch size dominates
the relationship. Impacts of fragmentation and copying are
still visible, such as the low performance of the no-op due
to frequent fragmentation. For sparse-copy, we showed in
§3.3 that the sparse copying kernel has an almost negligible
impact on performance, but it is not performing the best
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Figure 6: 99th percentile time-to-first-token (TTFT), time-per-output-token (TPOT), and inter-token latency (ITL).

among the strategies despite its lowest fragmentation. The
reason is that, within the vLLM framework, the scheduler
must decide the memory plan before actual execution takes
place. This means that destination blocks need to be pre-
allocated before source blocks are freed for further reuse,
when sparse copying is to happen. This is not considered in-
ternal fragmentation, but is another form of memory waste
that degrades end-to-end performance. Moreover, we ob-
server that with sparse-copy there is approximately 19.5%
requests that have been preempted, compared to 0 for all the
other strategies. A preemption, due to disabled CPU cache
offloading mechanism, means recomputing the whole re-
quest, also explaining the unexpectedly low performance of
sparse-copy.

Why sparse-copy causes preemption, not the others:
This is mostly because the provision is correct for the other
strategies. Provisioning means estimating and scheduling
a suitable number of requests per batch. It is non-trivial,
when a request is first scheduled, to provision when a sparse
copying may happen. It is thus likely that too many requests
have been scheduled to run, leading to lack of space to sparse
copy to for certain running requests. Consequently, those
requests would have to be preempted for recomputation.

Latency: Figure 6 demonstrates the end-to-end latency met-
rics. We see negligible differences in TTFT, because KV cache
sparsificationmakes hardly any difference in the prefill phase
(i.e., when generating the first token). For TPOT and ITL,
due to normalization (as mentioned in the implementation
note at the end of §3.1) and the likely non-linear relationship
between TPOP/ITL and KV blocks utilization, the strategies
that have close performance may not be reflecting the correct
latency results. Regardless, it shows an overall inverse pat-
tern as end-to-end throughput, which is as expected. SpvLLM
achieves up to 17.6% lower time-per-output-token and 48.9%
lower inter-token latency than the baseline of no KV cache
sparsification.

4 Related Work

4.1 PagedAttention and vLLM
vLLM is a high-throughput, memory-efficient serving frame-
work for LLM inference. It is a state-of-the-art system for
LLM inference and a widely acknowledged standard in both
industry and academia. It introduces the PagedAttention
mechanism that allows for optimized memory usage during
inference. Traditional frameworks for serving LLMs often
require significant memory overhead, limiting the model’s
ability to scale efficiently. vLLM addresses this by managing
memory allocation dynamically, which not only reduces
fragmentation but also enables models to handle longer
contexts and larger batches. As a result, vLLM can achieve
higher throughput compared to conventional serving solu-
tions while still maintaining low latency.

4.2 KV Cache Sparsification
Across the literature, various KV cache sparsification tech-
niques have emerged to manage memory efficiently in large
language models by evicting less important tokens from the
KV cache. These methods use different methods to deter-
mine which tokens to evict, and are applied in different LLM
inference systems (but none of them are integrated with the
memory management mechanism of vLLM). Some of these
KV cache sparsification methods are as follows:

StreamingLLM [8]: StreamingLLM manages memory dy-
namically by using a rolling cache KV cache. On top of the a
sliding window, it identifies attention sinks, which refer to
early tokens that receive high attention scores, and preserve
them in the KV cache. Cumulative attention scores are com-
puted across layers for each token and those with the lowest
score are evicted.

SnapKV [4]: SnapKV performs a single KV cache eviction in
the prefill phase by observing that important tokens remain
important throughout the inference. It takes a snapshot of
the prompt and sum attention scores across layers within
a certain window. A voting mechanism is applied and only
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tokens that consistently show high score are retained. How-
ever, due to not evicting dynamically in the decode phase,
SnapKV handles only long contexts but not long outputs.

H2O [9]: H2O, or the Heavy-Hitter Oracle, identifies tokens
with high cumulative attention scores in recent decoding
steps. Per eviction, it greedily discards a token with the low-
est cumulative attention score among all tokens that are
generated more than 𝑘 steps earlier. This greedy eviction de-
cision allows H2O to quickly identify critical tokens without
looking ahead to future tokens. By default, H2O performs an
eviction per decode iteration and evicts one token each time.

PyramidKV [1]: PyramidKV distinguishes token impor-
tance per layer. It identifies that different layers can have
different KV cache budgets, thus allowing even higher level
of sparsification than other methods like H2O. In particular,
tokens are ranked based on their attention scores per layer,
and again only highest-ranking tokens are retained in the
KV cache. Lower layers are given more KV cache budget
as they capture more foundational information, and higher
layers are given less KV cache budget. Per eviction, not only
low-ranking tokens are evicted, but those that exceed the
layer’s allocated budget are also removed.

More: There are many more other KV cache sparsification
mechanisms, such as ScissorHands [5], Adaptive Compres-
sion [2], Dynamic Memory Compression [6], etc.They are
more or less similar to the aforementioned strategies and
will not be detailed here.

5 Conclusion

The division of the KV cache into blocks of fixed-size by
vLLM minimizes memory waste in between allocations, re-
ducing fragmentation. It does not have built-in support for
KV cache sparsification, and we investigated different KV
cache management strategies when integrating KV cache
sparsification in vLLM. Our paper demonstrated that strate-
gies such as no-op, where thememory associatedwith evicted
tokens is not reclaimed and free slots remain inactive, suffer
from high internal fragmentation which leads to degraded
performance.
Allocating sufficiently many new KV cache blocks and

sparse copying only the preserved tokens from the original
KV cache to the new blocks, as in the sparse-copy strategy,
incurred negligible overhead on the actual copying operation
(done by a dedicated CUDA kernel), but still showed lower
than expected end-to-end throughput. We identified that
the need for pre-allocating destination blocks before being
able to free source blocks causes a different kind of memory
waste, and also leads to preemption which is the culprit of
low performance.

The free-block strategy is a net improvement on top of no-
op, and same for SpvLLM on top of free-block. Indeed we see
significant reduction in internal fragmentation with SpvLLM,
as well as up to 2.21× higher end-to-end throughput and up
to 48.9% lower end-to-end latency.

As futurework, wewill correct the implementation SpvLLM
computationally, andwewill figure out the reason for lowKV
block utilization and mitigate the need for normalization on
the end-to-end performance metrics. The sparse-copy strat-
egy also has room for improvement, with better provisioning
and memory planning.
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