.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/cluster/plot_bisect_kmeans.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code or to run this example in your browser via JupyterLite or Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_cluster_plot_bisect_kmeans.py: ============================================================= Bisecting K-Means and Regular K-Means Performance Comparison ============================================================= This example shows differences between Regular K-Means algorithm and Bisecting K-Means. While K-Means clusterings are different when increasing n_clusters, Bisecting K-Means clustering builds on top of the previous ones. As a result, it tends to create clusters that have a more regular large-scale structure. This difference can be visually observed: for all numbers of clusters, there is a dividing line cutting the overall data cloud in two for BisectingKMeans, which is not present for regular K-Means. .. GENERATED FROM PYTHON SOURCE LINES 16-65 .. image-sg:: /auto_examples/cluster/images/sphx_glr_plot_bisect_kmeans_001.png :alt: Bisecting K-Means : 4 clusters, Bisecting K-Means : 8 clusters, Bisecting K-Means : 16 clusters, K-Means : 4 clusters, K-Means : 8 clusters, K-Means : 16 clusters :srcset: /auto_examples/cluster/images/sphx_glr_plot_bisect_kmeans_001.png :class: sphx-glr-single-img .. code-block:: Python import matplotlib.pyplot as plt from sklearn.cluster import BisectingKMeans, KMeans from sklearn.datasets import make_blobs print(__doc__) # Generate sample data n_samples = 10000 random_state = 0 X, _ = make_blobs(n_samples=n_samples, centers=2, random_state=random_state) # Number of cluster centers for KMeans and BisectingKMeans n_clusters_list = [4, 8, 16] # Algorithms to compare clustering_algorithms = { "Bisecting K-Means": BisectingKMeans, "K-Means": KMeans, } # Make subplots for each variant fig, axs = plt.subplots( len(clustering_algorithms), len(n_clusters_list), figsize=(12, 5) ) axs = axs.T for i, (algorithm_name, Algorithm) in enumerate(clustering_algorithms.items()): for j, n_clusters in enumerate(n_clusters_list): algo = Algorithm(n_clusters=n_clusters, random_state=random_state, n_init=3) algo.fit(X) centers = algo.cluster_centers_ axs[j, i].scatter(X[:, 0], X[:, 1], s=10, c=algo.labels_) axs[j, i].scatter(centers[:, 0], centers[:, 1], c="r", s=20) axs[j, i].set_title(f"{algorithm_name} : {n_clusters} clusters") # Hide x labels and tick labels for top plots and y ticks for right plots. for ax in axs.flat: ax.label_outer() ax.set_xticks([]) ax.set_yticks([]) plt.show() .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 0.905 seconds) .. _sphx_glr_download_auto_examples_cluster_plot_bisect_kmeans.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: binder-badge .. image:: images/binder_badge_logo.svg :target: https://mybinder.org/v2/gh/scikit-learn/scikit-learn/main?urlpath=lab/tree/notebooks/auto_examples/cluster/plot_bisect_kmeans.ipynb :alt: Launch binder :width: 150 px .. container:: lite-badge .. image:: images/jupyterlite_badge_logo.svg :target: ../../lite/lab/?path=auto_examples/cluster/plot_bisect_kmeans.ipynb :alt: Launch JupyterLite :width: 150 px .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_bisect_kmeans.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_bisect_kmeans.py ` .. include:: plot_bisect_kmeans.recommendations .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_