.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/ensemble/plot_gradient_boosting_regularization.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code or to run this example in your browser via JupyterLite or Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_ensemble_plot_gradient_boosting_regularization.py: ================================ Gradient Boosting regularization ================================ Illustration of the effect of different regularization strategies for Gradient Boosting. The example is taken from Hastie et al 2009 [1]_. The loss function used is binomial deviance. Regularization via shrinkage (``learning_rate < 1.0``) improves performance considerably. In combination with shrinkage, stochastic gradient boosting (``subsample < 1.0``) can produce more accurate models by reducing the variance via bagging. Subsampling without shrinkage usually does poorly. Another strategy to reduce the variance is by subsampling the features analogous to the random splits in Random Forests (via the ``max_features`` parameter). .. [1] T. Hastie, R. Tibshirani and J. Friedman, "Elements of Statistical Learning Ed. 2", Springer, 2009. .. GENERATED FROM PYTHON SOURCE LINES 23-92 .. image-sg:: /auto_examples/ensemble/images/sphx_glr_plot_gradient_boosting_regularization_001.png :alt: plot gradient boosting regularization :srcset: /auto_examples/ensemble/images/sphx_glr_plot_gradient_boosting_regularization_001.png :class: sphx-glr-single-img .. code-block:: Python # Author: Peter Prettenhofer # # License: BSD 3 clause import matplotlib.pyplot as plt import numpy as np from sklearn import datasets, ensemble from sklearn.metrics import log_loss from sklearn.model_selection import train_test_split X, y = datasets.make_hastie_10_2(n_samples=4000, random_state=1) # map labels from {-1, 1} to {0, 1} labels, y = np.unique(y, return_inverse=True) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.8, random_state=0) original_params = { "n_estimators": 400, "max_leaf_nodes": 4, "max_depth": None, "random_state": 2, "min_samples_split": 5, } plt.figure() for label, color, setting in [ ("No shrinkage", "orange", {"learning_rate": 1.0, "subsample": 1.0}), ("learning_rate=0.2", "turquoise", {"learning_rate": 0.2, "subsample": 1.0}), ("subsample=0.5", "blue", {"learning_rate": 1.0, "subsample": 0.5}), ( "learning_rate=0.2, subsample=0.5", "gray", {"learning_rate": 0.2, "subsample": 0.5}, ), ( "learning_rate=0.2, max_features=2", "magenta", {"learning_rate": 0.2, "max_features": 2}, ), ]: params = dict(original_params) params.update(setting) clf = ensemble.GradientBoostingClassifier(**params) clf.fit(X_train, y_train) # compute test set deviance test_deviance = np.zeros((params["n_estimators"],), dtype=np.float64) for i, y_proba in enumerate(clf.staged_predict_proba(X_test)): test_deviance[i] = 2 * log_loss(y_test, y_proba[:, 1]) plt.plot( (np.arange(test_deviance.shape[0]) + 1)[::5], test_deviance[::5], "-", color=color, label=label, ) plt.legend(loc="upper right") plt.xlabel("Boosting Iterations") plt.ylabel("Test Set Deviance") plt.show() .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 10.157 seconds) .. _sphx_glr_download_auto_examples_ensemble_plot_gradient_boosting_regularization.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: binder-badge .. image:: images/binder_badge_logo.svg :target: https://mybinder.org/v2/gh/scikit-learn/scikit-learn/main?urlpath=lab/tree/notebooks/auto_examples/ensemble/plot_gradient_boosting_regularization.ipynb :alt: Launch binder :width: 150 px .. container:: lite-badge .. image:: images/jupyterlite_badge_logo.svg :target: ../../lite/lab/?path=auto_examples/ensemble/plot_gradient_boosting_regularization.ipynb :alt: Launch JupyterLite :width: 150 px .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_gradient_boosting_regularization.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_gradient_boosting_regularization.py ` .. include:: plot_gradient_boosting_regularization.recommendations .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_