.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/linear_model/plot_logistic_multinomial.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code or to run this example in your browser via JupyterLite or Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_linear_model_plot_logistic_multinomial.py: ==================================================== Plot multinomial and One-vs-Rest Logistic Regression ==================================================== Plot decision surface of multinomial and One-vs-Rest Logistic Regression. The hyperplanes corresponding to the three One-vs-Rest (OVR) classifiers are represented by the dashed lines. .. GENERATED FROM PYTHON SOURCE LINES 11-67 .. rst-class:: sphx-glr-horizontal * .. image-sg:: /auto_examples/linear_model/images/sphx_glr_plot_logistic_multinomial_001.png :alt: Decision surface of LogisticRegression (multinomial) :srcset: /auto_examples/linear_model/images/sphx_glr_plot_logistic_multinomial_001.png :class: sphx-glr-multi-img * .. image-sg:: /auto_examples/linear_model/images/sphx_glr_plot_logistic_multinomial_002.png :alt: Decision surface of LogisticRegression (ovr) :srcset: /auto_examples/linear_model/images/sphx_glr_plot_logistic_multinomial_002.png :class: sphx-glr-multi-img .. rst-class:: sphx-glr-script-out .. code-block:: none training score : 0.995 (multinomial) /home/runner/work/scikit-learn-pst/scikit-learn-pst/examples/linear_model/plot_logistic_multinomial.py:47: UserWarning: No data for colormapping provided via 'c'. Parameters 'cmap' will be ignored training score : 0.976 (ovr) /home/runner/work/scikit-learn-pst/scikit-learn-pst/examples/linear_model/plot_logistic_multinomial.py:47: UserWarning: No data for colormapping provided via 'c'. Parameters 'cmap' will be ignored | .. code-block:: Python # Authors: Tom Dupre la Tour # License: BSD 3 clause import matplotlib.pyplot as plt import numpy as np from sklearn.datasets import make_blobs from sklearn.inspection import DecisionBoundaryDisplay from sklearn.linear_model import LogisticRegression # make 3-class dataset for classification centers = [[-5, 0], [0, 1.5], [5, -1]] X, y = make_blobs(n_samples=1000, centers=centers, random_state=40) transformation = [[0.4, 0.2], [-0.4, 1.2]] X = np.dot(X, transformation) for multi_class in ("multinomial", "ovr"): clf = LogisticRegression( solver="sag", max_iter=100, random_state=42, multi_class=multi_class ).fit(X, y) # print the training scores print("training score : %.3f (%s)" % (clf.score(X, y), multi_class)) _, ax = plt.subplots() DecisionBoundaryDisplay.from_estimator( clf, X, response_method="predict", cmap=plt.cm.Paired, ax=ax ) plt.title("Decision surface of LogisticRegression (%s)" % multi_class) plt.axis("tight") # Plot also the training points colors = "bry" for i, color in zip(clf.classes_, colors): idx = np.where(y == i) plt.scatter( X[idx, 0], X[idx, 1], c=color, cmap=plt.cm.Paired, edgecolor="black", s=20 ) # Plot the three one-against-all classifiers xmin, xmax = plt.xlim() ymin, ymax = plt.ylim() coef = clf.coef_ intercept = clf.intercept_ def plot_hyperplane(c, color): def line(x0): return (-(x0 * coef[c, 0]) - intercept[c]) / coef[c, 1] plt.plot([xmin, xmax], [line(xmin), line(xmax)], ls="--", color=color) for i, color in zip(clf.classes_, colors): plot_hyperplane(i, color) plt.show() .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 0.216 seconds) .. _sphx_glr_download_auto_examples_linear_model_plot_logistic_multinomial.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: binder-badge .. image:: images/binder_badge_logo.svg :target: https://mybinder.org/v2/gh/scikit-learn/scikit-learn/main?urlpath=lab/tree/notebooks/auto_examples/linear_model/plot_logistic_multinomial.ipynb :alt: Launch binder :width: 150 px .. container:: lite-badge .. image:: images/jupyterlite_badge_logo.svg :target: ../../lite/lab/?path=auto_examples/linear_model/plot_logistic_multinomial.ipynb :alt: Launch JupyterLite :width: 150 px .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_logistic_multinomial.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_logistic_multinomial.py ` .. include:: plot_logistic_multinomial.recommendations .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_