.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/tree/plot_tree_regression_multioutput.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code or to run this example in your browser via JupyterLite or Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_tree_plot_tree_regression_multioutput.py: =================================================================== Multi-output Decision Tree Regression =================================================================== An example to illustrate multi-output regression with decision tree. The :ref:`decision trees ` is used to predict simultaneously the noisy x and y observations of a circle given a single underlying feature. As a result, it learns local linear regressions approximating the circle. We can see that if the maximum depth of the tree (controlled by the `max_depth` parameter) is set too high, the decision trees learn too fine details of the training data and learn from the noise, i.e. they overfit. .. GENERATED FROM PYTHON SOURCE LINES 17-66 .. image-sg:: /auto_examples/tree/images/sphx_glr_plot_tree_regression_multioutput_001.png :alt: Multi-output Decision Tree Regression :srcset: /auto_examples/tree/images/sphx_glr_plot_tree_regression_multioutput_001.png :class: sphx-glr-single-img .. code-block:: Python import matplotlib.pyplot as plt import numpy as np from sklearn.tree import DecisionTreeRegressor # Create a random dataset rng = np.random.RandomState(1) X = np.sort(200 * rng.rand(100, 1) - 100, axis=0) y = np.array([np.pi * np.sin(X).ravel(), np.pi * np.cos(X).ravel()]).T y[::5, :] += 0.5 - rng.rand(20, 2) # Fit regression model regr_1 = DecisionTreeRegressor(max_depth=2) regr_2 = DecisionTreeRegressor(max_depth=5) regr_3 = DecisionTreeRegressor(max_depth=8) regr_1.fit(X, y) regr_2.fit(X, y) regr_3.fit(X, y) # Predict X_test = np.arange(-100.0, 100.0, 0.01)[:, np.newaxis] y_1 = regr_1.predict(X_test) y_2 = regr_2.predict(X_test) y_3 = regr_3.predict(X_test) # Plot the results plt.figure() s = 25 plt.scatter(y[:, 0], y[:, 1], c="navy", s=s, edgecolor="black", label="data") plt.scatter( y_1[:, 0], y_1[:, 1], c="cornflowerblue", s=s, edgecolor="black", label="max_depth=2", ) plt.scatter(y_2[:, 0], y_2[:, 1], c="red", s=s, edgecolor="black", label="max_depth=5") plt.scatter( y_3[:, 0], y_3[:, 1], c="orange", s=s, edgecolor="black", label="max_depth=8" ) plt.xlim([-6, 6]) plt.ylim([-6, 6]) plt.xlabel("target 1") plt.ylabel("target 2") plt.title("Multi-output Decision Tree Regression") plt.legend(loc="best") plt.show() .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 0.219 seconds) .. _sphx_glr_download_auto_examples_tree_plot_tree_regression_multioutput.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: binder-badge .. image:: images/binder_badge_logo.svg :target: https://mybinder.org/v2/gh/scikit-learn/scikit-learn/main?urlpath=lab/tree/notebooks/auto_examples/tree/plot_tree_regression_multioutput.ipynb :alt: Launch binder :width: 150 px .. container:: lite-badge .. image:: images/jupyterlite_badge_logo.svg :target: ../../lite/lab/?path=auto_examples/tree/plot_tree_regression_multioutput.ipynb :alt: Launch JupyterLite :width: 150 px .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_tree_regression_multioutput.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_tree_regression_multioutput.py ` .. include:: plot_tree_regression_multioutput.recommendations .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_