Out-of-core classification of text documents#

This is an example showing how scikit-learn can be used for classification using an out-of-core approach: learning from data that doesn’t fit into main memory. We make use of an online classifier, i.e., one that supports the partial_fit method, that will be fed with batches of examples. To guarantee that the features space remains the same over time we leverage a HashingVectorizer that will project each example into the same feature space. This is especially useful in the case of text classification where new features (words) may appear in each batch.

# Authors: Eustache Diemert <eustache@diemert.fr>
#          @FedericoV <https://github.com/FedericoV/>
# License: BSD 3 clause

import itertools
import re
import sys
import tarfile
import time
from hashlib import sha256
from html.parser import HTMLParser
from pathlib import Path
from urllib.request import urlretrieve

import matplotlib.pyplot as plt
import numpy as np
from matplotlib import rcParams

from sklearn.datasets import get_data_home
from sklearn.feature_extraction.text import HashingVectorizer
from sklearn.linear_model import PassiveAggressiveClassifier, Perceptron, SGDClassifier
from sklearn.naive_bayes import MultinomialNB


def _not_in_sphinx():
    # Hack to detect whether we are running by the sphinx builder
    return "__file__" in globals()

Main#

Create the vectorizer and limit the number of features to a reasonable maximum

vectorizer = HashingVectorizer(
    decode_error="ignore", n_features=2**18, alternate_sign=False
)


# Iterator over parsed Reuters SGML files.
data_stream = stream_reuters_documents()

# We learn a binary classification between the "acq" class and all the others.
# "acq" was chosen as it is more or less evenly distributed in the Reuters
# files. For other datasets, one should take care of creating a test set with
# a realistic portion of positive instances.
all_classes = np.array([0, 1])
positive_class = "acq"

# Here are some classifiers that support the `partial_fit` method
partial_fit_classifiers = {
    "SGD": SGDClassifier(max_iter=5),
    "Perceptron": Perceptron(),
    "NB Multinomial": MultinomialNB(alpha=0.01),
    "Passive-Aggressive": PassiveAggressiveClassifier(),
}


def get_minibatch(doc_iter, size, pos_class=positive_class):
    """Extract a minibatch of examples, return a tuple X_text, y.

    Note: size is before excluding invalid docs with no topics assigned.

    """
    data = [
        ("{title}\n\n{body}".format(**doc), pos_class in doc["topics"])
        for doc in itertools.islice(doc_iter, size)
        if doc["topics"]
    ]
    if not len(data):
        return np.asarray([], dtype=int), np.asarray([], dtype=int)
    X_text, y = zip(*data)
    return X_text, np.asarray(y, dtype=int)


def iter_minibatches(doc_iter, minibatch_size):
    """Generator of minibatches."""
    X_text, y = get_minibatch(doc_iter, minibatch_size)
    while len(X_text):
        yield X_text, y
        X_text, y = get_minibatch(doc_iter, minibatch_size)


# test data statistics
test_stats = {"n_test": 0, "n_test_pos": 0}

# First we hold out a number of examples to estimate accuracy
n_test_documents = 1000
tick = time.time()
X_test_text, y_test = get_minibatch(data_stream, 1000)
parsing_time = time.time() - tick
tick = time.time()
X_test = vectorizer.transform(X_test_text)
vectorizing_time = time.time() - tick
test_stats["n_test"] += len(y_test)
test_stats["n_test_pos"] += sum(y_test)
print("Test set is %d documents (%d positive)" % (len(y_test), sum(y_test)))


def progress(cls_name, stats):
    """Report progress information, return a string."""
    duration = time.time() - stats["t0"]
    s = "%20s classifier : \t" % cls_name
    s += "%(n_train)6d train docs (%(n_train_pos)6d positive) " % stats
    s += "%(n_test)6d test docs (%(n_test_pos)6d positive) " % test_stats
    s += "accuracy: %(accuracy).3f " % stats
    s += "in %.2fs (%5d docs/s)" % (duration, stats["n_train"] / duration)
    return s


cls_stats = {}

for cls_name in partial_fit_classifiers:
    stats = {
        "n_train": 0,
        "n_train_pos": 0,
        "accuracy": 0.0,
        "accuracy_history": [(0, 0)],
        "t0": time.time(),
        "runtime_history": [(0, 0)],
        "total_fit_time": 0.0,
    }
    cls_stats[cls_name] = stats

get_minibatch(data_stream, n_test_documents)
# Discard test set

# We will feed the classifier with mini-batches of 1000 documents; this means
# we have at most 1000 docs in memory at any time.  The smaller the document
# batch, the bigger the relative overhead of the partial fit methods.
minibatch_size = 1000

# Create the data_stream that parses Reuters SGML files and iterates on
# documents as a stream.
minibatch_iterators = iter_minibatches(data_stream, minibatch_size)
total_vect_time = 0.0

# Main loop : iterate on mini-batches of examples
for i, (X_train_text, y_train) in enumerate(minibatch_iterators):
    tick = time.time()
    X_train = vectorizer.transform(X_train_text)
    total_vect_time += time.time() - tick

    for cls_name, cls in partial_fit_classifiers.items():
        tick = time.time()
        # update estimator with examples in the current mini-batch
        cls.partial_fit(X_train, y_train, classes=all_classes)

        # accumulate test accuracy stats
        cls_stats[cls_name]["total_fit_time"] += time.time() - tick
        cls_stats[cls_name]["n_train"] += X_train.shape[0]
        cls_stats[cls_name]["n_train_pos"] += sum(y_train)
        tick = time.time()
        cls_stats[cls_name]["accuracy"] = cls.score(X_test, y_test)
        cls_stats[cls_name]["prediction_time"] = time.time() - tick
        acc_history = (cls_stats[cls_name]["accuracy"], cls_stats[cls_name]["n_train"])
        cls_stats[cls_name]["accuracy_history"].append(acc_history)
        run_history = (
            cls_stats[cls_name]["accuracy"],
            total_vect_time + cls_stats[cls_name]["total_fit_time"],
        )
        cls_stats[cls_name]["runtime_history"].append(run_history)

        if i % 3 == 0:
            print(progress(cls_name, cls_stats[cls_name]))
    if i % 3 == 0:
        print("\n")
downloading dataset (once and for all) into /home/runner/scikit_learn_data/reuters
untarring Reuters dataset...
done.
Test set is 982 documents (90 positive)
                 SGD classifier :          972 train docs (   115 positive)    982 test docs (    90 positive) accuracy: 0.904 in 0.66s ( 1482 docs/s)
          Perceptron classifier :          972 train docs (   115 positive)    982 test docs (    90 positive) accuracy: 0.918 in 0.66s ( 1476 docs/s)
      NB Multinomial classifier :          972 train docs (   115 positive)    982 test docs (    90 positive) accuracy: 0.907 in 0.67s ( 1450 docs/s)
  Passive-Aggressive classifier :          972 train docs (   115 positive)    982 test docs (    90 positive) accuracy: 0.940 in 0.67s ( 1444 docs/s)


                 SGD classifier :         3821 train docs (   491 positive)    982 test docs (    90 positive) accuracy: 0.964 in 1.86s ( 2053 docs/s)
          Perceptron classifier :         3821 train docs (   491 positive)    982 test docs (    90 positive) accuracy: 0.947 in 1.86s ( 2050 docs/s)
      NB Multinomial classifier :         3821 train docs (   491 positive)    982 test docs (    90 positive) accuracy: 0.919 in 1.87s ( 2038 docs/s)
  Passive-Aggressive classifier :         3821 train docs (   491 positive)    982 test docs (    90 positive) accuracy: 0.962 in 1.88s ( 2035 docs/s)


                 SGD classifier :         6761 train docs (   937 positive)    982 test docs (    90 positive) accuracy: 0.960 in 3.13s ( 2162 docs/s)
          Perceptron classifier :         6761 train docs (   937 positive)    982 test docs (    90 positive) accuracy: 0.957 in 3.13s ( 2160 docs/s)
      NB Multinomial classifier :         6761 train docs (   937 positive)    982 test docs (    90 positive) accuracy: 0.936 in 3.14s ( 2153 docs/s)
  Passive-Aggressive classifier :         6761 train docs (   937 positive)    982 test docs (    90 positive) accuracy: 0.973 in 3.14s ( 2151 docs/s)


                 SGD classifier :         9669 train docs (  1286 positive)    982 test docs (    90 positive) accuracy: 0.970 in 4.33s ( 2233 docs/s)
          Perceptron classifier :         9669 train docs (  1286 positive)    982 test docs (    90 positive) accuracy: 0.971 in 4.33s ( 2231 docs/s)
      NB Multinomial classifier :         9669 train docs (  1286 positive)    982 test docs (    90 positive) accuracy: 0.941 in 4.34s ( 2226 docs/s)
  Passive-Aggressive classifier :         9669 train docs (  1286 positive)    982 test docs (    90 positive) accuracy: 0.962 in 4.35s ( 2225 docs/s)


                 SGD classifier :        12101 train docs (  1606 positive)    982 test docs (    90 positive) accuracy: 0.964 in 5.49s ( 2204 docs/s)
          Perceptron classifier :        12101 train docs (  1606 positive)    982 test docs (    90 positive) accuracy: 0.963 in 5.49s ( 2203 docs/s)
      NB Multinomial classifier :        12101 train docs (  1606 positive)    982 test docs (    90 positive) accuracy: 0.939 in 5.50s ( 2198 docs/s)
  Passive-Aggressive classifier :        12101 train docs (  1606 positive)    982 test docs (    90 positive) accuracy: 0.961 in 5.51s ( 2197 docs/s)


                 SGD classifier :        14977 train docs (  1973 positive)    982 test docs (    90 positive) accuracy: 0.970 in 6.68s ( 2240 docs/s)
          Perceptron classifier :        14977 train docs (  1973 positive)    982 test docs (    90 positive) accuracy: 0.969 in 6.69s ( 2239 docs/s)
      NB Multinomial classifier :        14977 train docs (  1973 positive)    982 test docs (    90 positive) accuracy: 0.939 in 6.69s ( 2237 docs/s)
  Passive-Aggressive classifier :        14977 train docs (  1973 positive)    982 test docs (    90 positive) accuracy: 0.970 in 6.70s ( 2236 docs/s)


                 SGD classifier :        17328 train docs (  2211 positive)    982 test docs (    90 positive) accuracy: 0.964 in 7.82s ( 2215 docs/s)
          Perceptron classifier :        17328 train docs (  2211 positive)    982 test docs (    90 positive) accuracy: 0.956 in 7.82s ( 2215 docs/s)
      NB Multinomial classifier :        17328 train docs (  2211 positive)    982 test docs (    90 positive) accuracy: 0.944 in 7.83s ( 2212 docs/s)
  Passive-Aggressive classifier :        17328 train docs (  2211 positive)    982 test docs (    90 positive) accuracy: 0.969 in 7.84s ( 2211 docs/s)

Plot results#

The plot represents the learning curve of the classifier: the evolution of classification accuracy over the course of the mini-batches. Accuracy is measured on the first 1000 samples, held out as a validation set.

To limit the memory consumption, we queue examples up to a fixed amount before feeding them to the learner.

def plot_accuracy(x, y, x_legend):
    """Plot accuracy as a function of x."""
    x = np.array(x)
    y = np.array(y)
    plt.title("Classification accuracy as a function of %s" % x_legend)
    plt.xlabel("%s" % x_legend)
    plt.ylabel("Accuracy")
    plt.grid(True)
    plt.plot(x, y)


rcParams["legend.fontsize"] = 10
cls_names = list(sorted(cls_stats.keys()))

# Plot accuracy evolution
plt.figure()
for _, stats in sorted(cls_stats.items()):
    # Plot accuracy evolution with #examples
    accuracy, n_examples = zip(*stats["accuracy_history"])
    plot_accuracy(n_examples, accuracy, "training examples (#)")
    ax = plt.gca()
    ax.set_ylim((0.8, 1))
plt.legend(cls_names, loc="best")

plt.figure()
for _, stats in sorted(cls_stats.items()):
    # Plot accuracy evolution with runtime
    accuracy, runtime = zip(*stats["runtime_history"])
    plot_accuracy(runtime, accuracy, "runtime (s)")
    ax = plt.gca()
    ax.set_ylim((0.8, 1))
plt.legend(cls_names, loc="best")

# Plot fitting times
plt.figure()
fig = plt.gcf()
cls_runtime = [stats["total_fit_time"] for cls_name, stats in sorted(cls_stats.items())]

cls_runtime.append(total_vect_time)
cls_names.append("Vectorization")
bar_colors = ["b", "g", "r", "c", "m", "y"]

ax = plt.subplot(111)
rectangles = plt.bar(range(len(cls_names)), cls_runtime, width=0.5, color=bar_colors)

ax.set_xticks(np.linspace(0, len(cls_names) - 1, len(cls_names)))
ax.set_xticklabels(cls_names, fontsize=10)
ymax = max(cls_runtime) * 1.2
ax.set_ylim((0, ymax))
ax.set_ylabel("runtime (s)")
ax.set_title("Training Times")


def autolabel(rectangles):
    """attach some text vi autolabel on rectangles."""
    for rect in rectangles:
        height = rect.get_height()
        ax.text(
            rect.get_x() + rect.get_width() / 2.0,
            1.05 * height,
            "%.4f" % height,
            ha="center",
            va="bottom",
        )
        plt.setp(plt.xticks()[1], rotation=30)


autolabel(rectangles)
plt.tight_layout()
plt.show()

# Plot prediction times
plt.figure()
cls_runtime = []
cls_names = list(sorted(cls_stats.keys()))
for cls_name, stats in sorted(cls_stats.items()):
    cls_runtime.append(stats["prediction_time"])
cls_runtime.append(parsing_time)
cls_names.append("Read/Parse\n+Feat.Extr.")
cls_runtime.append(vectorizing_time)
cls_names.append("Hashing\n+Vect.")

ax = plt.subplot(111)
rectangles = plt.bar(range(len(cls_names)), cls_runtime, width=0.5, color=bar_colors)

ax.set_xticks(np.linspace(0, len(cls_names) - 1, len(cls_names)))
ax.set_xticklabels(cls_names, fontsize=8)
plt.setp(plt.xticks()[1], rotation=30)
ymax = max(cls_runtime) * 1.2
ax.set_ylim((0, ymax))
ax.set_ylabel("runtime (s)")
ax.set_title("Prediction Times (%d instances)" % n_test_documents)
autolabel(rectangles)
plt.tight_layout()
plt.show()
  • Classification accuracy as a function of training examples (#)
  • Classification accuracy as a function of runtime (s)
  • Training Times
  • Prediction Times (1000 instances)

Total running time of the script: (0 minutes 11.391 seconds)

Related examples

Classification of text documents using sparse features

Classification of text documents using sparse features

Column Transformer with Heterogeneous Data Sources

Column Transformer with Heterogeneous Data Sources

Prediction Latency

Prediction Latency

FeatureHasher and DictVectorizer Comparison

FeatureHasher and DictVectorizer Comparison

Biclustering documents with the Spectral Co-clustering algorithm

Biclustering documents with the Spectral Co-clustering algorithm

Gallery generated by Sphinx-Gallery