L1 Penalty and Sparsity in Logistic Regression#

Comparison of the sparsity (percentage of zero coefficients) of solutions when L1, L2 and Elastic-Net penalty are used for different values of C. We can see that large values of C give more freedom to the model. Conversely, smaller values of C constrain the model more. In the L1 penalty case, this leads to sparser solutions. As expected, the Elastic-Net penalty sparsity is between that of L1 and L2.

We classify 8x8 images of digits into two classes: 0-4 against 5-9. The visualization shows coefficients of the models for varying C.

L1 penalty, Elastic-Net l1_ratio = 0.5, L2 penalty
C=1.00
Sparsity with L1 penalty:                4.69%
Sparsity with Elastic-Net penalty:       4.69%
Sparsity with L2 penalty:                4.69%
Score with L1 penalty:                   0.90
Score with Elastic-Net penalty:          0.90
Score with L2 penalty:                   0.90
C=0.10
Sparsity with L1 penalty:                29.69%
Sparsity with Elastic-Net penalty:       14.06%
Sparsity with L2 penalty:                4.69%
Score with L1 penalty:                   0.90
Score with Elastic-Net penalty:          0.90
Score with L2 penalty:                   0.90
C=0.01
Sparsity with L1 penalty:                84.38%
Sparsity with Elastic-Net penalty:       68.75%
Sparsity with L2 penalty:                4.69%
Score with L1 penalty:                   0.86
Score with Elastic-Net penalty:          0.88
Score with L2 penalty:                   0.89

# Authors: Alexandre Gramfort <alexandre.gramfort@inria.fr>
#          Mathieu Blondel <mathieu@mblondel.org>
#          Andreas Mueller <amueller@ais.uni-bonn.de>
# License: BSD 3 clause

import matplotlib.pyplot as plt
import numpy as np

from sklearn import datasets
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import StandardScaler

X, y = datasets.load_digits(return_X_y=True)

X = StandardScaler().fit_transform(X)

# classify small against large digits
y = (y > 4).astype(int)

l1_ratio = 0.5  # L1 weight in the Elastic-Net regularization

fig, axes = plt.subplots(3, 3)

# Set regularization parameter
for i, (C, axes_row) in enumerate(zip((1, 0.1, 0.01), axes)):
    # Increase tolerance for short training time
    clf_l1_LR = LogisticRegression(C=C, penalty="l1", tol=0.01, solver="saga")
    clf_l2_LR = LogisticRegression(C=C, penalty="l2", tol=0.01, solver="saga")
    clf_en_LR = LogisticRegression(
        C=C, penalty="elasticnet", solver="saga", l1_ratio=l1_ratio, tol=0.01
    )
    clf_l1_LR.fit(X, y)
    clf_l2_LR.fit(X, y)
    clf_en_LR.fit(X, y)

    coef_l1_LR = clf_l1_LR.coef_.ravel()
    coef_l2_LR = clf_l2_LR.coef_.ravel()
    coef_en_LR = clf_en_LR.coef_.ravel()

    # coef_l1_LR contains zeros due to the
    # L1 sparsity inducing norm

    sparsity_l1_LR = np.mean(coef_l1_LR == 0) * 100
    sparsity_l2_LR = np.mean(coef_l2_LR == 0) * 100
    sparsity_en_LR = np.mean(coef_en_LR == 0) * 100

    print("C=%.2f" % C)
    print("{:<40} {:.2f}%".format("Sparsity with L1 penalty:", sparsity_l1_LR))
    print("{:<40} {:.2f}%".format("Sparsity with Elastic-Net penalty:", sparsity_en_LR))
    print("{:<40} {:.2f}%".format("Sparsity with L2 penalty:", sparsity_l2_LR))
    print("{:<40} {:.2f}".format("Score with L1 penalty:", clf_l1_LR.score(X, y)))
    print(
        "{:<40} {:.2f}".format("Score with Elastic-Net penalty:", clf_en_LR.score(X, y))
    )
    print("{:<40} {:.2f}".format("Score with L2 penalty:", clf_l2_LR.score(X, y)))

    if i == 0:
        axes_row[0].set_title("L1 penalty")
        axes_row[1].set_title("Elastic-Net\nl1_ratio = %s" % l1_ratio)
        axes_row[2].set_title("L2 penalty")

    for ax, coefs in zip(axes_row, [coef_l1_LR, coef_en_LR, coef_l2_LR]):
        ax.imshow(
            np.abs(coefs.reshape(8, 8)),
            interpolation="nearest",
            cmap="binary",
            vmax=1,
            vmin=0,
        )
        ax.set_xticks(())
        ax.set_yticks(())

    axes_row[0].set_ylabel("C = %s" % C)

plt.show()

Total running time of the script: (0 minutes 0.507 seconds)

Related examples

MNIST classification using multinomial logistic + L1

MNIST classification using multinomial logistic + L1

Lasso and Elastic Net

Lasso and Elastic Net

Scaling the regularization parameter for SVCs

Scaling the regularization parameter for SVCs

SGD: Penalties

SGD: Penalties

Regularization path of L1- Logistic Regression

Regularization path of L1- Logistic Regression

Gallery generated by Sphinx-Gallery