sklearn.base.BaseEstimator#

class sklearn.base.BaseEstimator[source]#

Base class for all estimators in scikit-learn.

Inheriting from this class provides default implementations of:

  • setting and getting parameters used by GridSearchCV and friends;

  • textual and HTML representation displayed in terminals and IDEs;

  • estimator serialization;

  • parameters validation;

  • data validation;

  • feature names validation.

Read more in the User Guide.

Notes

All estimators should specify all the parameters that can be set at the class level in their __init__ as explicit keyword arguments (no *args or **kwargs).

Examples

>>> import numpy as np
>>> from sklearn.base import BaseEstimator
>>> class MyEstimator(BaseEstimator):
...     def __init__(self, *, param=1):
...         self.param = param
...     def fit(self, X, y=None):
...         self.is_fitted_ = True
...         return self
...     def predict(self, X):
...         return np.full(shape=X.shape[0], fill_value=self.param)
>>> estimator = MyEstimator(param=2)
>>> estimator.get_params()
{'param': 2}
>>> X = np.array([[1, 2], [2, 3], [3, 4]])
>>> y = np.array([1, 0, 1])
>>> estimator.fit(X, y).predict(X)
array([2, 2, 2])
>>> estimator.set_params(param=3).fit(X, y).predict(X)
array([3, 3, 3])

Methods

get_metadata_routing()

Get metadata routing of this object.

get_params([deep])

Get parameters for this estimator.

set_params(**params)

Set the parameters of this estimator.

get_metadata_routing()[source]#

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns:
routingMetadataRequest

A MetadataRequest encapsulating routing information.

get_params(deep=True)[source]#

Get parameters for this estimator.

Parameters:
deepbool, default=True

If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns:
paramsdict

Parameter names mapped to their values.

set_params(**params)[source]#

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.

Parameters:
**paramsdict

Estimator parameters.

Returns:
selfestimator instance

Estimator instance.

Examples using sklearn.base.BaseEstimator#

Inductive Clustering

Inductive Clustering

__sklearn_is_fitted__ as Developer API

__sklearn_is_fitted__ as Developer API

Metadata Routing

Metadata Routing

Approximate nearest neighbors in TSNE

Approximate nearest neighbors in TSNE