sklearn.preprocessing
.OrdinalEncoder#
- class sklearn.preprocessing.OrdinalEncoder(*, categories='auto', dtype=<class 'numpy.float64'>, handle_unknown='error', unknown_value=None, encoded_missing_value=nan, min_frequency=None, max_categories=None)[source]#
Encode categorical features as an integer array.
The input to this transformer should be an array-like of integers or strings, denoting the values taken on by categorical (discrete) features. The features are converted to ordinal integers. This results in a single column of integers (0 to n_categories - 1) per feature.
Read more in the User Guide. For a comparison of different encoders, refer to: Comparing Target Encoder with Other Encoders.
New in version 0.20.
- Parameters:
- categories‘auto’ or a list of array-like, default=’auto’
Categories (unique values) per feature:
‘auto’ : Determine categories automatically from the training data.
list :
categories[i]
holds the categories expected in the ith column. The passed categories should not mix strings and numeric values, and should be sorted in case of numeric values.
The used categories can be found in the
categories_
attribute.- dtypenumber type, default=np.float64
Desired dtype of output.
- handle_unknown{‘error’, ‘use_encoded_value’}, default=’error’
When set to ‘error’ an error will be raised in case an unknown categorical feature is present during transform. When set to ‘use_encoded_value’, the encoded value of unknown categories will be set to the value given for the parameter
unknown_value
. Ininverse_transform
, an unknown category will be denoted as None.New in version 0.24.
- unknown_valueint or np.nan, default=None
When the parameter handle_unknown is set to ‘use_encoded_value’, this parameter is required and will set the encoded value of unknown categories. It has to be distinct from the values used to encode any of the categories in
fit
. If set to np.nan, thedtype
parameter must be a float dtype.New in version 0.24.
- encoded_missing_valueint or np.nan, default=np.nan
Encoded value of missing categories. If set to
np.nan
, then thedtype
parameter must be a float dtype.New in version 1.1.
- min_frequencyint or float, default=None
Specifies the minimum frequency below which a category will be considered infrequent.
If
int
, categories with a smaller cardinality will be considered infrequent.If
float
, categories with a smaller cardinality thanmin_frequency * n_samples
will be considered infrequent.
New in version 1.3: Read more in the User Guide.
- max_categoriesint, default=None
Specifies an upper limit to the number of output categories for each input feature when considering infrequent categories. If there are infrequent categories,
max_categories
includes the category representing the infrequent categories along with the frequent categories. IfNone
, there is no limit to the number of output features.max_categories
do not take into account missing or unknown categories. Settingunknown_value
orencoded_missing_value
to an integer will increase the number of unique integer codes by one each. This can result in up tomax_categories + 2
integer codes.New in version 1.3: Read more in the User Guide.
- Attributes:
- categories_list of arrays
The categories of each feature determined during
fit
(in order of the features in X and corresponding with the output oftransform
). This does not include categories that weren’t seen duringfit
.- n_features_in_int
Number of features seen during fit.
New in version 1.0.
- feature_names_in_ndarray of shape (
n_features_in_
,) Names of features seen during fit. Defined only when
X
has feature names that are all strings.New in version 1.0.
infrequent_categories_
list of ndarrayInfrequent categories for each feature.
See also
OneHotEncoder
Performs a one-hot encoding of categorical features. This encoding is suitable for low to medium cardinality categorical variables, both in supervised and unsupervised settings.
TargetEncoder
Encodes categorical features using supervised signal in a classification or regression pipeline. This encoding is typically suitable for high cardinality categorical variables.
LabelEncoder
Encodes target labels with values between 0 and
n_classes-1
.
Notes
With a high proportion of
nan
values, inferring categories becomes slow with Python versions before 3.10. The handling ofnan
values was improved from Python 3.10 onwards, (c.f. bpo-43475).Examples
Given a dataset with two features, we let the encoder find the unique values per feature and transform the data to an ordinal encoding.
>>> from sklearn.preprocessing import OrdinalEncoder >>> enc = OrdinalEncoder() >>> X = [['Male', 1], ['Female', 3], ['Female', 2]] >>> enc.fit(X) OrdinalEncoder() >>> enc.categories_ [array(['Female', 'Male'], dtype=object), array([1, 2, 3], dtype=object)] >>> enc.transform([['Female', 3], ['Male', 1]]) array([[0., 2.], [1., 0.]])
>>> enc.inverse_transform([[1, 0], [0, 1]]) array([['Male', 1], ['Female', 2]], dtype=object)
By default,
OrdinalEncoder
is lenient towards missing values by propagating them.>>> import numpy as np >>> X = [['Male', 1], ['Female', 3], ['Female', np.nan]] >>> enc.fit_transform(X) array([[ 1., 0.], [ 0., 1.], [ 0., nan]])
You can use the parameter
encoded_missing_value
to encode missing values.>>> enc.set_params(encoded_missing_value=-1).fit_transform(X) array([[ 1., 0.], [ 0., 1.], [ 0., -1.]])
Infrequent categories are enabled by setting
max_categories
ormin_frequency
. In the following example, “a” and “d” are considered infrequent and grouped together into a single category, “b” and “c” are their own categories, unknown values are encoded as 3 and missing values are encoded as 4.>>> X_train = np.array( ... [["a"] * 5 + ["b"] * 20 + ["c"] * 10 + ["d"] * 3 + [np.nan]], ... dtype=object).T >>> enc = OrdinalEncoder( ... handle_unknown="use_encoded_value", unknown_value=3, ... max_categories=3, encoded_missing_value=4) >>> _ = enc.fit(X_train) >>> X_test = np.array([["a"], ["b"], ["c"], ["d"], ["e"], [np.nan]], dtype=object) >>> enc.transform(X_test) array([[2.], [0.], [1.], [2.], [3.], [4.]])
Methods
fit
(X[, y])Fit the OrdinalEncoder to X.
fit_transform
(X[, y])Fit to data, then transform it.
get_feature_names_out
([input_features])Get output feature names for transformation.
Get metadata routing of this object.
get_params
([deep])Get parameters for this estimator.
Convert the data back to the original representation.
set_output
(*[, transform])Set output container.
set_params
(**params)Set the parameters of this estimator.
transform
(X)Transform X to ordinal codes.
- fit(X, y=None)[source]#
Fit the OrdinalEncoder to X.
- Parameters:
- Xarray-like of shape (n_samples, n_features)
The data to determine the categories of each feature.
- yNone
Ignored. This parameter exists only for compatibility with
Pipeline
.
- Returns:
- selfobject
Fitted encoder.
- fit_transform(X, y=None, **fit_params)[source]#
Fit to data, then transform it.
Fits transformer to
X
andy
with optional parametersfit_params
and returns a transformed version ofX
.- Parameters:
- Xarray-like of shape (n_samples, n_features)
Input samples.
- yarray-like of shape (n_samples,) or (n_samples, n_outputs), default=None
Target values (None for unsupervised transformations).
- **fit_paramsdict
Additional fit parameters.
- Returns:
- X_newndarray array of shape (n_samples, n_features_new)
Transformed array.
- get_feature_names_out(input_features=None)[source]#
Get output feature names for transformation.
- Parameters:
- input_featuresarray-like of str or None, default=None
Input features.
If
input_features
isNone
, thenfeature_names_in_
is used as feature names in. Iffeature_names_in_
is not defined, then the following input feature names are generated:["x0", "x1", ..., "x(n_features_in_ - 1)"]
.If
input_features
is an array-like, theninput_features
must matchfeature_names_in_
iffeature_names_in_
is defined.
- Returns:
- feature_names_outndarray of str objects
Same as input features.
- get_metadata_routing()[source]#
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
- Returns:
- routingMetadataRequest
A
MetadataRequest
encapsulating routing information.
- get_params(deep=True)[source]#
Get parameters for this estimator.
- Parameters:
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns:
- paramsdict
Parameter names mapped to their values.
- property infrequent_categories_#
Infrequent categories for each feature.
- inverse_transform(X)[source]#
Convert the data back to the original representation.
- Parameters:
- Xarray-like of shape (n_samples, n_encoded_features)
The transformed data.
- Returns:
- X_trndarray of shape (n_samples, n_features)
Inverse transformed array.
- set_output(*, transform=None)[source]#
Set output container.
See Introducing the set_output API for an example on how to use the API.
- Parameters:
- transform{“default”, “pandas”}, default=None
Configure output of
transform
andfit_transform
."default"
: Default output format of a transformer"pandas"
: DataFrame output"polars"
: Polars outputNone
: Transform configuration is unchanged
New in version 1.4:
"polars"
option was added.
- Returns:
- selfestimator instance
Estimator instance.
- set_params(**params)[source]#
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters:
- **paramsdict
Estimator parameters.
- Returns:
- selfestimator instance
Estimator instance.
Examples using sklearn.preprocessing.OrdinalEncoder
#
Release Highlights for scikit-learn 1.3
Release Highlights for scikit-learn 1.2
Categorical Feature Support in Gradient Boosting
Combine predictors using stacking
Poisson regression and non-normal loss
Partial Dependence and Individual Conditional Expectation Plots
Permutation Importance vs Random Forest Feature Importance (MDI)
Evaluation of outlier detection estimators
Comparing Target Encoder with Other Encoders