sklearn.base
.ClusterMixin#
- class sklearn.base.ClusterMixin[source]#
Mixin class for all cluster estimators in scikit-learn.
_estimator_type
class attribute defaulting to"clusterer"
;fit_predict
method returning the cluster labels associated to each sample.
Examples
>>> import numpy as np >>> from sklearn.base import BaseEstimator, ClusterMixin >>> class MyClusterer(ClusterMixin, BaseEstimator): ... def fit(self, X, y=None): ... self.labels_ = np.ones(shape=(len(X),), dtype=np.int64) ... return self >>> X = [[1, 2], [2, 3], [3, 4]] >>> MyClusterer().fit_predict(X) array([1, 1, 1])
Methods
fit_predict
(X[, y])Perform clustering on
X
and returns cluster labels.- fit_predict(X, y=None, **kwargs)[source]#
Perform clustering on
X
and returns cluster labels.- Parameters:
- Xarray-like of shape (n_samples, n_features)
Input data.
- yIgnored
Not used, present for API consistency by convention.
- **kwargsdict
Arguments to be passed to
fit
.New in version 1.4.
- Returns:
- labelsndarray of shape (n_samples,), dtype=np.int64
Cluster labels.