sklearn.datasets.make_friedman3#

sklearn.datasets.make_friedman3(n_samples=100, *, noise=0.0, random_state=None)[source]#

Generate the “Friedman #3” regression problem.

This dataset is described in Friedman [1] and Breiman [2].

Inputs X are 4 independent features uniformly distributed on the intervals:

0 <= X[:, 0] <= 100,
40 * pi <= X[:, 1] <= 560 * pi,
0 <= X[:, 2] <= 1,
1 <= X[:, 3] <= 11.

The output y is created according to the formula:

y(X) = arctan((X[:, 1] * X[:, 2] - 1 / (X[:, 1] * X[:, 3])) / X[:, 0]) + noise * N(0, 1).

Read more in the User Guide.

Parameters:
n_samplesint, default=100

The number of samples.

noisefloat, default=0.0

The standard deviation of the gaussian noise applied to the output.

random_stateint, RandomState instance or None, default=None

Determines random number generation for dataset noise. Pass an int for reproducible output across multiple function calls. See Glossary.

Returns:
Xndarray of shape (n_samples, 4)

The input samples.

yndarray of shape (n_samples,)

The output values.

References

[1]

J. Friedman, “Multivariate adaptive regression splines”, The Annals of Statistics 19 (1), pages 1-67, 1991.

[2]

L. Breiman, “Bagging predictors”, Machine Learning 24, pages 123-140, 1996.

Examples

>>> from sklearn.datasets import make_friedman3
>>> X, y = make_friedman3(random_state=42)
>>> X.shape
(100, 4)
>>> y.shape
(100,)
>>> list(y[:3])
[1.5..., 0.9..., 0.4...]