sklearn.utils
.as_float_array#
- sklearn.utils.as_float_array(X, *, copy=True, force_all_finite=True)[source]#
Convert an array-like to an array of floats.
The new dtype will be np.float32 or np.float64, depending on the original type. The function can create a copy or modify the argument depending on the argument copy.
- Parameters:
- X{array-like, sparse matrix}
The input data.
- copybool, default=True
If True, a copy of X will be created. If False, a copy may still be returned if X’s dtype is not a floating point type.
- force_all_finitebool or ‘allow-nan’, default=True
Whether to raise an error on np.inf, np.nan, pd.NA in X. The possibilities are:
True: Force all values of X to be finite.
False: accepts np.inf, np.nan, pd.NA in X.
‘allow-nan’: accepts only np.nan and pd.NA values in X. Values cannot be infinite.
New in version 0.20:
force_all_finite
accepts the string'allow-nan'
.Changed in version 0.23: Accepts
pd.NA
and converts it intonp.nan
- Returns:
- XT{ndarray, sparse matrix}
An array of type float.
Examples
>>> from sklearn.utils import as_float_array >>> import numpy as np >>> array = np.array([0, 0, 1, 2, 2], dtype=np.int64) >>> as_float_array(array) array([0., 0., 1., 2., 2.])