sklearn.model_selection
.ValidationCurveDisplay#
- class sklearn.model_selection.ValidationCurveDisplay(*, param_name, param_range, train_scores, test_scores, score_name=None)[source]#
Validation Curve visualization.
It is recommended to use
from_estimator
to create aValidationCurveDisplay
instance. All parameters are stored as attributes.Read more in the User Guide for general information about the visualization API and detailed documentation regarding the validation curve visualization.
New in version 1.3.
- Parameters:
- param_namestr
Name of the parameter that has been varied.
- param_rangearray-like of shape (n_ticks,)
The values of the parameter that have been evaluated.
- train_scoresndarray of shape (n_ticks, n_cv_folds)
Scores on training sets.
- test_scoresndarray of shape (n_ticks, n_cv_folds)
Scores on test set.
- score_namestr, default=None
The name of the score used in
validation_curve
. It will override the name inferred from thescoring
parameter. Ifscore
isNone
, we use"Score"
ifnegate_score
isFalse
and"Negative score"
otherwise. Ifscoring
is a string or a callable, we infer the name. We replace_
by spaces and capitalize the first letter. We removeneg_
and replace it by"Negative"
ifnegate_score
isFalse
or just remove it otherwise.
- Attributes:
- ax_matplotlib Axes
Axes with the validation curve.
- figure_matplotlib Figure
Figure containing the validation curve.
- errorbar_list of matplotlib Artist or None
When the
std_display_style
is"errorbar"
, this is a list ofmatplotlib.container.ErrorbarContainer
objects. If another style is used,errorbar_
isNone
.- lines_list of matplotlib Artist or None
When the
std_display_style
is"fill_between"
, this is a list ofmatplotlib.lines.Line2D
objects corresponding to the mean train and test scores. If another style is used,line_
isNone
.- fill_between_list of matplotlib Artist or None
When the
std_display_style
is"fill_between"
, this is a list ofmatplotlib.collections.PolyCollection
objects. If another style is used,fill_between_
isNone
.
See also
sklearn.model_selection.validation_curve
Compute the validation curve.
Examples
>>> import numpy as np >>> import matplotlib.pyplot as plt >>> from sklearn.datasets import make_classification >>> from sklearn.model_selection import ValidationCurveDisplay, validation_curve >>> from sklearn.linear_model import LogisticRegression >>> X, y = make_classification(n_samples=1_000, random_state=0) >>> logistic_regression = LogisticRegression() >>> param_name, param_range = "C", np.logspace(-8, 3, 10) >>> train_scores, test_scores = validation_curve( ... logistic_regression, X, y, param_name=param_name, param_range=param_range ... ) >>> display = ValidationCurveDisplay( ... param_name=param_name, param_range=param_range, ... train_scores=train_scores, test_scores=test_scores, score_name="Score" ... ) >>> display.plot() <...> >>> plt.show()
Methods
from_estimator
(estimator, X, y, *, ...[, ...])Create a validation curve display from an estimator.
plot
([ax, negate_score, score_name, ...])Plot visualization.
- classmethod from_estimator(estimator, X, y, *, param_name, param_range, groups=None, cv=None, scoring=None, n_jobs=None, pre_dispatch='all', verbose=0, error_score=nan, fit_params=None, ax=None, negate_score=False, score_name=None, score_type='both', std_display_style='fill_between', line_kw=None, fill_between_kw=None, errorbar_kw=None)[source]#
Create a validation curve display from an estimator.
Read more in the User Guide for general information about the visualization API and detailed documentation regarding the validation curve visualization.
- Parameters:
- estimatorobject type that implements the “fit” and “predict” methods
An object of that type which is cloned for each validation.
- Xarray-like of shape (n_samples, n_features)
Training data, where
n_samples
is the number of samples andn_features
is the number of features.- yarray-like of shape (n_samples,) or (n_samples, n_outputs) or None
Target relative to X for classification or regression; None for unsupervised learning.
- param_namestr
Name of the parameter that will be varied.
- param_rangearray-like of shape (n_values,)
The values of the parameter that will be evaluated.
- groupsarray-like of shape (n_samples,), default=None
Group labels for the samples used while splitting the dataset into train/test set. Only used in conjunction with a “Group” cv instance (e.g.,
GroupKFold
).- cvint, cross-validation generator or an iterable, default=None
Determines the cross-validation splitting strategy. Possible inputs for cv are:
None, to use the default 5-fold cross validation,
int, to specify the number of folds in a
(Stratified)KFold
,An iterable yielding (train, test) splits as arrays of indices.
For int/None inputs, if the estimator is a classifier and
y
is either binary or multiclass,StratifiedKFold
is used. In all other cases,KFold
is used. These splitters are instantiated withshuffle=False
so the splits will be the same across calls.Refer User Guide for the various cross-validation strategies that can be used here.
- scoringstr or callable, default=None
A string (see The scoring parameter: defining model evaluation rules) or a scorer callable object / function with signature
scorer(estimator, X, y)
(see Defining your scoring strategy from metric functions).- n_jobsint, default=None
Number of jobs to run in parallel. Training the estimator and computing the score are parallelized over the different training and test sets.
None
means 1 unless in ajoblib.parallel_backend
context.-1
means using all processors. See Glossary for more details.- pre_dispatchint or str, default=’all’
Number of predispatched jobs for parallel execution (default is all). The option can reduce the allocated memory. The str can be an expression like ‘2*n_jobs’.
- verboseint, default=0
Controls the verbosity: the higher, the more messages.
- error_score‘raise’ or numeric, default=np.nan
Value to assign to the score if an error occurs in estimator fitting. If set to ‘raise’, the error is raised. If a numeric value is given, FitFailedWarning is raised.
- fit_paramsdict, default=None
Parameters to pass to the fit method of the estimator.
- axmatplotlib Axes, default=None
Axes object to plot on. If
None
, a new figure and axes is created.- negate_scorebool, default=False
Whether or not to negate the scores obtained through
validation_curve
. This is particularly useful when using the error denoted byneg_*
inscikit-learn
.- score_namestr, default=None
The name of the score used to decorate the y-axis of the plot. It will override the name inferred from the
scoring
parameter. Ifscore
isNone
, we use"Score"
ifnegate_score
isFalse
and"Negative score"
otherwise. Ifscoring
is a string or a callable, we infer the name. We replace_
by spaces and capitalize the first letter. We removeneg_
and replace it by"Negative"
ifnegate_score
isFalse
or just remove it otherwise.- score_type{“test”, “train”, “both”}, default=”both”
The type of score to plot. Can be one of
"test"
,"train"
, or"both"
.- std_display_style{“errorbar”, “fill_between”} or None, default=”fill_between”
The style used to display the score standard deviation around the mean score. If
None
, no representation of the standard deviation is displayed.- line_kwdict, default=None
Additional keyword arguments passed to the
plt.plot
used to draw the mean score.- fill_between_kwdict, default=None
Additional keyword arguments passed to the
plt.fill_between
used to draw the score standard deviation.- errorbar_kwdict, default=None
Additional keyword arguments passed to the
plt.errorbar
used to draw mean score and standard deviation score.
- Returns:
- display
ValidationCurveDisplay
Object that stores computed values.
- display
Examples
>>> import numpy as np >>> import matplotlib.pyplot as plt >>> from sklearn.datasets import make_classification >>> from sklearn.model_selection import ValidationCurveDisplay >>> from sklearn.linear_model import LogisticRegression >>> X, y = make_classification(n_samples=1_000, random_state=0) >>> logistic_regression = LogisticRegression() >>> param_name, param_range = "C", np.logspace(-8, 3, 10) >>> ValidationCurveDisplay.from_estimator( ... logistic_regression, X, y, param_name=param_name, ... param_range=param_range, ... ) <...> >>> plt.show()
- plot(ax=None, *, negate_score=False, score_name=None, score_type='both', std_display_style='fill_between', line_kw=None, fill_between_kw=None, errorbar_kw=None)[source]#
Plot visualization.
- Parameters:
- axmatplotlib Axes, default=None
Axes object to plot on. If
None
, a new figure and axes is created.- negate_scorebool, default=False
Whether or not to negate the scores obtained through
validation_curve
. This is particularly useful when using the error denoted byneg_*
inscikit-learn
.- score_namestr, default=None
The name of the score used to decorate the y-axis of the plot. It will override the name inferred from the
scoring
parameter. Ifscore
isNone
, we use"Score"
ifnegate_score
isFalse
and"Negative score"
otherwise. Ifscoring
is a string or a callable, we infer the name. We replace_
by spaces and capitalize the first letter. We removeneg_
and replace it by"Negative"
ifnegate_score
isFalse
or just remove it otherwise.- score_type{“test”, “train”, “both”}, default=”both”
The type of score to plot. Can be one of
"test"
,"train"
, or"both"
.- std_display_style{“errorbar”, “fill_between”} or None, default=”fill_between”
The style used to display the score standard deviation around the mean score. If None, no standard deviation representation is displayed.
- line_kwdict, default=None
Additional keyword arguments passed to the
plt.plot
used to draw the mean score.- fill_between_kwdict, default=None
Additional keyword arguments passed to the
plt.fill_between
used to draw the score standard deviation.- errorbar_kwdict, default=None
Additional keyword arguments passed to the
plt.errorbar
used to draw mean score and standard deviation score.
- Returns:
- display
ValidationCurveDisplay
Object that stores computed values.
- display
Examples using sklearn.model_selection.ValidationCurveDisplay.from_estimator
#
Release Highlights for scikit-learn 1.3