sklearn.utils.estimator_checks
.parametrize_with_checks#
- sklearn.utils.estimator_checks.parametrize_with_checks(estimators)[source]#
Pytest specific decorator for parametrizing estimator checks.
The
id
of each check is set to be a pprint version of the estimator and the name of the check with its keyword arguments. This allows to usepytest -k
to specify which tests to run:pytest test_check_estimators.py -k check_estimators_fit_returns_self
- Parameters:
- estimatorslist of estimators instances
Estimators to generated checks for.
Changed in version 0.24: Passing a class was deprecated in version 0.23, and support for classes was removed in 0.24. Pass an instance instead.
New in version 0.24.
- Returns:
- decorator
pytest.mark.parametrize
- decorator
See also
check_estimator
Check if estimator adheres to scikit-learn conventions.
Examples
>>> from sklearn.utils.estimator_checks import parametrize_with_checks >>> from sklearn.linear_model import LogisticRegression >>> from sklearn.tree import DecisionTreeRegressor
>>> @parametrize_with_checks([LogisticRegression(), ... DecisionTreeRegressor()]) ... def test_sklearn_compatible_estimator(estimator, check): ... check(estimator)
Examples using sklearn.utils.estimator_checks.parametrize_with_checks
#
Release Highlights for scikit-learn 0.22
Release Highlights for scikit-learn 0.22