sklearn.utils.sparsefuncs
.inplace_csr_column_scale#
- sklearn.utils.sparsefuncs.inplace_csr_column_scale(X, scale)[source]#
Inplace column scaling of a CSR matrix.
Scale each feature of the data matrix by multiplying with specific scale provided by the caller assuming a (n_samples, n_features) shape.
- Parameters:
- Xsparse matrix of shape (n_samples, n_features)
Matrix to normalize using the variance of the features. It should be of CSR format.
- scalendarray of shape (n_features,), dtype={np.float32, np.float64}
Array of precomputed feature-wise values to use for scaling.
Examples
>>> from sklearn.utils import sparsefuncs >>> from scipy import sparse >>> import numpy as np >>> indptr = np.array([0, 3, 4, 4, 4]) >>> indices = np.array([0, 1, 2, 2]) >>> data = np.array([8, 1, 2, 5]) >>> scale = np.array([2, 3, 2]) >>> csr = sparse.csr_matrix((data, indices, indptr)) >>> csr.todense() matrix([[8, 1, 2], [0, 0, 5], [0, 0, 0], [0, 0, 0]]) >>> sparsefuncs.inplace_csr_column_scale(csr, scale) >>> csr.todense() matrix([[16, 3, 4], [ 0, 0, 10], [ 0, 0, 0], [ 0, 0, 0]])