sklearn.gaussian_process.kernels
.Kernel#
- class sklearn.gaussian_process.kernels.Kernel[source]#
Base class for all kernels.
New in version 0.18.
- Attributes:
bounds
Returns the log-transformed bounds on the theta.
hyperparameters
Returns a list of all hyperparameter specifications.
n_dims
Returns the number of non-fixed hyperparameters of the kernel.
requires_vector_input
Returns whether the kernel is defined on fixed-length feature vectors or generic objects.
theta
Returns the (flattened, log-transformed) non-fixed hyperparameters.
Examples
>>> from sklearn.gaussian_process.kernels import Kernel, RBF >>> import numpy as np >>> class CustomKernel(Kernel): ... def __init__(self, length_scale=1.0): ... self.length_scale = length_scale ... def __call__(self, X, Y=None): ... if Y is None: ... Y = X ... return np.inner(X, X if Y is None else Y) ** 2 ... def diag(self, X): ... return np.ones(X.shape[0]) ... def is_stationary(self): ... return True >>> kernel = CustomKernel(length_scale=2.0) >>> X = np.array([[1, 2], [3, 4]]) >>> print(kernel(X)) [[ 25 121] [121 625]]
Methods
__call__
(X[, Y, eval_gradient])Evaluate the kernel.
clone_with_theta
(theta)Returns a clone of self with given hyperparameters theta.
diag
(X)Returns the diagonal of the kernel k(X, X).
get_params
([deep])Get parameters of this kernel.
Returns whether the kernel is stationary.
set_params
(**params)Set the parameters of this kernel.
- property bounds#
Returns the log-transformed bounds on the theta.
- Returns:
- boundsndarray of shape (n_dims, 2)
The log-transformed bounds on the kernel’s hyperparameters theta
- clone_with_theta(theta)[source]#
Returns a clone of self with given hyperparameters theta.
- Parameters:
- thetandarray of shape (n_dims,)
The hyperparameters
- abstract diag(X)[source]#
Returns the diagonal of the kernel k(X, X).
The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently since only the diagonal is evaluated.
- Parameters:
- Xarray-like of shape (n_samples,)
Left argument of the returned kernel k(X, Y)
- Returns:
- K_diagndarray of shape (n_samples_X,)
Diagonal of kernel k(X, X)
- get_params(deep=True)[source]#
Get parameters of this kernel.
- Parameters:
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns:
- paramsdict
Parameter names mapped to their values.
- property hyperparameters#
Returns a list of all hyperparameter specifications.
- property n_dims#
Returns the number of non-fixed hyperparameters of the kernel.
- property requires_vector_input#
Returns whether the kernel is defined on fixed-length feature vectors or generic objects. Defaults to True for backward compatibility.
- set_params(**params)[source]#
Set the parameters of this kernel.
The method works on simple kernels as well as on nested kernels. The latter have parameters of the form
<component>__<parameter>
so that it’s possible to update each component of a nested object.- Returns:
- self
- property theta#
Returns the (flattened, log-transformed) non-fixed hyperparameters.
Note that theta are typically the log-transformed values of the kernel’s hyperparameters as this representation of the search space is more amenable for hyperparameter search, as hyperparameters like length-scales naturally live on a log-scale.
- Returns:
- thetandarray of shape (n_dims,)
The non-fixed, log-transformed hyperparameters of the kernel
Examples using sklearn.gaussian_process.kernels.Kernel
#
Gaussian processes on discrete data structures